
Programming
Languages
Adapted from Wikipedia

©2024, AlephTalks

B.W.Stuck, MIT: SBEE 1968,
SMEE 1969, ScD 1972

Outline

• What Is a Programming
Language?

• Procedural Programming
• What Is the Test Problem?
• Object Oriented Programming
• Alfred V Aho
• Historical Survey of

Programming Languages

What Is a
Programming
Language

• A programming language is a system of notation for writing
computer programs.

• Programming languages are described in terms of their
syntax (form) and semantics (meaning), usually defined by
a formal language. Languages usually provide features
such as a type system, variables, and mechanisms for error
handling.

• An implementation of a programming language is required
in order to execute programs, namely an interpreter or a
compiler. An interpreter directly executes the source code,
while a compiler produces an executable program.

• Thousands of programming languages—often classified as
imperative, functional, logic, or object-oriented—have been
developed for a wide variety of uses. Many aspects of
programming language design involve tradeoffs—for
example, exception handling simplifies error handling, but
at a performance cost. Programming language theory is the
subfield of computer science that studies the design,
implementation, analysis, characterization, and
classification of programming languages.

Computer
Language vs
Programming
Language

• The term computer language is sometimes used interchangeably
with programming language. However, the usage of both terms
varies among authors, including the exact scope of each.

• One usage describes programming languages as a subset of
computer languages.Similarly, languages used in computing that
have a different goal than expressing computer programs are
generically designated computer languages.

• For instance, markup languages are sometimes referred to as
computer languages to emphasize that they are not meant to be
used for programming. One way of classifying computer
languages is by the computations they are capable of expressing,
as described by the theory of computation.

• The majority of practical programming languages are Turing
complete, and all Turing complete languages can implement the
same set of algorithms. ANSI/ISO SQL-92 and Charity are
examples of languages that are not Turing complete, yet are often
called programming languages. However, some authors restrict
the term "programming language" to Turing complete languages.

Computer
Language vs
Programming
Language

• Another usage regards programming languages
as theoretical constructs for programming
abstract machines and computer languages as
the subset thereof that runs on physical
computers, which have finite hardware
resources.

• John C. Reynolds emphasizes that formal
specification languages are just as much
programming languages as are the languages
intended for execution. He also argues that
textual and even graphical input formats that
affect the behavior of a computer are
programming languages, despite the fact they are
commonly not Turing-complete, and remarks that
ignorance of programming language concepts is
the reason for many flaws in input formats.

Procedural
Programming

• Procedural programming is a programming paradigm,
classified as imperative programming, that involves
implementing the behavior of a computer program as
procedures (a.k.a. functions, subroutines) that call each
other. The resulting program is a series of steps that forms a
hierarchy of calls to its constituent procedures.

• The first major procedural programming languages
appeared c. 1957–1964, including Fortran, ALGOL, COBOL,
PL/I and BASIC. Pascal and C were published c. 1970–1972.

• Computer processors provide hardware support for
procedural programming through a stack register and
instructions for calling procedures and returning from
them. Hardware support for other types of programming is
possible, like Lisp machines or Java processors, but no
attempt was commercially successful.

What Is the
Test
Problem?

• When programming languages were first developed, it was felt that the software application
program would be developed, and then over time the software would be enhanced as more
and more features or capabilities were identified as necessary, but the hardware would not
change

• In fact when a critical mass of new features were identified that should be added, that
would result in a major new change or new release of the application, it was discovered that
the time required to test all the new features to insure no problems with old features led to
more and more time spent in testing with each new release

• To quantify this, suppose the initial release of software had 10 states the program could be
resident in with one second required to test all combinations of states = 10! =
10x9x8..x1=3,628,800, and the first new release had 2 new states the program could be
resident in, then the test had to access 12 states, so the number of possible states tested is
12!=479,001,600 and the test time increased from one second to one hundred thirty two
seconds; the next release had 3 new states the program could be resident in, so the test
had to access 15!=1.367 * 10^12 states and the test time increased to 360,360 seconds or
100.1 hours!

• Object oriented can address this problem: if the initial release of software had three objects
with 4 states, 3 states and 3 states each, then the total number of states is 10, and each
module can be tested. If a new release of software adds 2 new states, but no new objects,
then the three objects have 5 states, 3 states, and 4 states each, and each of the modules
with changes need to be tested, but not the modules with no changes; if a new object with 3
new states is added, then the total number of states is 15! but only the new object need be
tested

Object
Oriented
Programming

• Object-oriented programming (OOP) is a programming
paradigm based on the concept of objects, which can
contain data and code: data in the form of fields (often
known as attributes or properties), and code in the form of
procedures (often known as methods). In OOP, computer
programs are designed by making them out of objects that
interact with one another.

• Many of the most widely used programming languages
(such as C++, Java, and Python) are multi-paradigm and
support object-oriented programming to a greater or lesser
degree, typically in combination with imperative
programming, procedural programming and functional
programming.

• Significant object-oriented languages include Ada,
ActionScript, C++, Common Lisp, C#, Dart, Eiffel, Fortran
2003, Haxe, Java, Kotlin, Logo, MATLAB, Objective-C,
Object Pascal, Perl, PHP, Python, R, Raku, Ruby, Scala,
SIMSCRIPT, Simula, Smalltalk, Swift, Vala and Visual
Basic.NET.

Object
Oriented
Programming

• Terminology invoking "objects" in the modern sense of object-
oriented programming made its first appearance at the artificial
intelligence group at MIT in the late 1950s and early 1960s.
"Object" referred to LISP atoms with identified properties
(attributes). Another early MIT example was Sketchpad created by
Ivan Sutherland in 1960–1961; in the glossary of the 1963
technical report based on his dissertation about Sketchpad,
Sutherland defined notions of "object" and "instance" (with the
class concept covered by "master" or "definition"), albeit
specialized to graphical interaction. Also, in 1968, an MIT ALGOL
version, AED-0, established a direct link between data structures
("plexes", in that dialect) and procedures, prefiguring what were
later termed "messages", "methods", and "member functions".
Topics such as data abstraction and modular programming were
common points of discussion at this time.

• Independently of later MIT work such as AED, Simula was
developed during the years 1961–1967. Simula introduced
important concepts that are today an essential part of object-
oriented programming, such as class and object, inheritance, and
dynamic binding. The object-oriented Simula programming
language was used mainly by researchers involved with physical
modelling, such as models to study and improve the movement of
ships and their content through cargo ports.

Object
Oriented
Programming

• Influenced by the work at MIT and the Simula language, in
November 1966 Alan Kay began working on ideas that
would eventually be incorporated into the Smalltalk
programming language. Kay used the term "object-oriented
programming" in conversation as early as 1967. Although
sometimes called "the father of object-oriented
programming", Alan Kay has differentiated his notion of OO
from the more conventional abstract data type notion of
object, and has implied that the computer science
establishment did not adopt his notion. A 1976 MIT memo
co-authored by Barbara Liskov lists Simula 67, CLU, and
Alphard as object-oriented languages, but does not
mention Smalltalk.
• I thought of objects being like biological cells and/or

individual computers on a network, only able to
communicate with messages (so messaging came at
the very beginning – it took a while to see how to do
messaging in a programming language efficiently
enough to be useful). Alan Kay

Object
Oriented
Programming

• In the 1970s, the first version of the Smalltalk programming language was
developed at Xerox PARC by Alan Kay, Dan Ingalls and Adele Goldberg.
Smalltalk-72 included a programming environment and was dynamically
typed, and at first was interpreted, not compiled. Smalltalk became noted
for its application of object orientation at the language-level and its
graphical development environment. Smalltalk went through various
versions and interest in the language grew. While Smalltalk was influenced
by the ideas introduced in Simula 67 it was designed to be a fully dynamic
system in which classes could be created and modified dynamically.

• During the late 1970s and 1980s, object-oriented programming rose to
prominence. The Flavors object-oriented Lisp was developed starting
1979, introducing multiple inheritance and mixins. In 1981, Goldberg
edited the August issue of Byte Magazine, introducing Smalltalk and
object-oriented programming to a wide audience. LOOPS, the object
system for Interlisp-D, was influenced by Smalltalk and Flavors, and a
paper about it was published in 1982. In 1986, the Association for
Computing Machinery organized the first Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), which
was attended by 1,000 people. Among other developments was the
Common Lisp Object System, which integrates functional programming
and object-oriented programming and allows extension via a Meta-object
protocol. In the 1980s, there were a few attempts to design processor
architectures that included hardware support for objects in memory but
these were not successful. Examples include the Intel iAPX 432 and the
Linn Smart Rekursiv.

Object
Oriented
Programming

• In the mid-1980s Objective-C was developed by Brad Cox, who had
used Smalltalk at ITT Inc.. Bjarne Stroustrup, who had used Simula for
his PhD thesis, created the object-oriented C++. In 1985, Bertrand
Meyer also produced the first design of the Eiffel language. Focused
on software quality, Eiffel is a purely object-oriented programming
language and a notation supporting the entire software lifecycle.
Meyer described the Eiffel software development method, based on a
small number of key ideas from software engineering and computer
science, in Object-Oriented Software Construction. Essential to the
quality focus of Eiffel is Meyer's reliability mechanism, design by
contract, which is an integral part of both the method and language.

• In the early and mid-1990s object-oriented programming developed
as the dominant programming paradigm when programming
languages supporting the techniques became widely available. These
included Visual FoxPro 3.0,C++, and Delphi. Its dominance was
further enhanced by the rising popularity of graphical user interfaces,
which rely heavily upon object-oriented programming techniques. An
example of a closely related dynamic GUI library and OOP language
can be found in the Cocoa frameworks on Mac OS X, written in
Objective-C, an object-oriented, dynamic messaging extension to C
based on Smalltalk. OOP toolkits also enhanced the popularity of
event-driven programming (although this concept is not limited to
OOP).

Object
Oriented
Programming

• At ETH Zürich, Niklaus Wirth and his colleagues investigated the
concept of type checking across module boundaries. Modula-2
(1978) included this concept, and their succeeding design,
Oberon (1987), included a distinctive approach to object
orientation, classes, and such. Inheritance is not obvious in
Wirth's design since his nomenclature looks in the opposite
direction: It is called type extension and the viewpoint is from the
parent down to the inheritor.

• Object-oriented features have been added to many previously
existing languages, including Ada, BASIC, Fortran, Pascal, and
COBOL. Adding these features to languages that were not initially
designed for them often led to problems with compatibility and
maintainability of code.

• More recently, some languages have emerged that are primarily
object-oriented, but that are also compatible with procedural
methodology. Two such languages are Python and Ruby. Probably
the most commercially important recent object-oriented
languages are Java, developed by Sun Microsystems, as well as
C# and Visual Basic.NET (VB.NET), both designed for Microsoft's
.NET platform. Each of these two frameworks shows, in its way,
the benefit of using OOP by creating an abstraction from
implementation. VB.NET and C# support cross-language
inheritance, allowing classes defined in one language to subclass
classes defined in the other language.

Object
Oriented
Programming

• Object-oriented programming uses objects, but not all of the associated
techniques and structures are supported directly in languages that claim
to support OOP. The features listed below are common among languages
considered to be strongly class- and object-oriented (or multi-paradigm
with OOP support), with notable exceptions mentioned.

• Christopher J. Date stated that critical comparison of OOP to other
technologies, relational in particular, is difficult because of lack of an
agreed-upon and rigorous definition of OOP.

• Shared with non-OOP Languages
• Variables that can store information formatted in a small number of

built-in data types like integers and alphanumeric characters. This
may include data structures like strings, lists, and hash tables that
are either built-in or result from combining variables using memory
pointers.

• Procedures – also known as functions, methods, routines, or
subroutines – that take input, generate output, and manipulate data.
Modern languages include structured programming constructs like
loops and conditionals.

• Modular programming support provides the ability to group procedures
into files and modules for organizational purposes. Modules are
namespaced so identifiers in one module will not conflict with a
procedure or variable sharing the same name in another file or module

Object
Oriented
Programming

• An object is a data structure or abstract data type containing fields (state
variables containing data) and methods (subroutines or procedures defining the
object's behavior in code). Fields may also be known as members, attributes, or
properties. Objects are typically stored as contiguous regions of memory.
Objects are accessed somewhat like variables with complex internal
structures, and in many languages are effectively pointers, serving as actual
references to a single instance of said object in memory within a heap or stack.

• Objects sometimes correspond to things found in the real world. For example, a
graphics program may have objects such as "circle", "square", and "menu". An
online shopping system might have objects such as "shopping cart",
"customer", and "product". Sometimes objects represent more abstract
entities, like an object that represents an open file, or an object that provides
the service of translating measurements from U.S. customary to metric.

• Objects can contain other objects in their instance variables; this is known as
object composition. For example, an object in the Employee class might
contain (either directly or through a pointer) an object in the Address class, in
addition to its own instance variables like "first_name" and "position". Object
composition is used to represent "has-a" relationships: every employee has an
address, so every Employee object has access to a place to store an Address
object (either directly embedded within itself or at a separate location
addressed via a pointer). Date and Darwen have proposed a theoretical
foundation that uses OOP as a kind of customizable type system to support
RDBMS, but it forbids object pointers.

Alfred V Aho
• Aho received a B.A.Sc. (1963) in Engineering Physics from the University of Toronto, then an M.A.

(1965) and Ph.D. (1967) in Electrical Engineering/Computer Science from Princeton University.[6] He
conducted research at Bell Labs from 1967 to 1991, and again from 1997 to 2002 as Vice President of
the Computing Sciences Research Center. Since 1995, he has held the Lawrence Gussman
Professorship in Computer Science at Columbia University. He served as chair of the department from
1995 to 1997, and again in the spring of 2003.

• In his PhD thesis Aho created indexed grammars[9] and the nested-stack automaton as vehicles for
extending the power of context-free languages, but retaining many of their decidability and closure
properties. One application of indexed grammars is modelling parallel rewriting systems, particularly in
biological applications.

• After graduating from Princeton, Aho joined the Computing Sciences Research Center at Bell Labs
where he devised efficient regular expression and string-pattern matching algorithms that he
implemented in the first versions of the Unix tools egrep and fgrep. The fgrep algorithm has become
known as the Aho–Corasick algorithm; it is used by several bibliographic search-systems, including the
one developed by Margaret J. Corasick, and by other string-searching applications.

• At Bell Labs, Aho worked closely with Steve Johnson and Jeffrey Ullman to develop efficient algorithms
for analyzing and translating programming languages. Steve Johnson used the bottom-up LALR parsing
algorithms to create the syntax-analyzer generator yacc, and Michael E. Lesk and Eric Schmidt used
Aho's regular-expression pattern-matching algorithms to create the lexical-analyzer generator lex. The
lex and yacc tools and their derivatives have been used to develop the front ends of many of today's
programming language compilers.

Alfred V Aho
• Aho and Ullman wrote a series of textbooks on compiling techniques that codified the

theory relevant to compiler design. Their 1977 textbook Principles of Compiler Design
had a green dragon on the front cover and became known as "the green dragon book".
In 1986 Aho and Ullman were joined by Ravi Sethi to create a new edition, "the red
dragon book" (which was briefly shown in the 1995 movie Hackers), and in 2006 also
by Monica Lam to create "the purple dragon book". The dragon books are used for
university courses as well as industry references.

• In 1974, Aho, John Hopcroft, and Ullman wrote The Design and Analysis of Computer
Algorithms, codifying some of their early research on algorithms. This book became
one of the most highly cited books in computer science for several decades and helped
to stimulate the creation of algorithms and data structures as a central course in the
computer science curriculum.

• Aho is also widely known for his co-authorship of the AWK programming language with
Peter J. Weinberger and Brian Kernighan (the "A" stands for "Aho"). As of 2010 Aho's
research interests include programming languages, compilers, algorithms, and
quantum computing. He is part of the Language and Compilers research-group at
Columbia University.

• Overall, his works have been cited 81,040 times and he has an h-index of 66, as of
May 8, 2019.

Fortran
• In late 1953, John W. Backus submitted a proposal to his superiors at IBM to develop a more

practical alternative to assembly language for programming their IBM 704 mainframe computer.
Backus' historic FORTRAN team consisted of programmers Richard Goldberg, Sheldon F. Best,
Harlan Herrick, Peter Sheridan, Roy Nutt, Robert Nelson, Irving Ziller, Harold Stern, Lois Haibt,
and David Sayre Its concepts included easier entry of equations into a computer, an idea
developed by J. Halcombe Laning and demonstrated in the Laning and Zierler system of 1952.

• The Fortran Automatic Coding System for the IBM 704 (October 15, 1956), the first programmer's
reference manual for Fortran

• A draft specification for The IBM Mathematical Formula Translating System was completed by
November 1954. The first manual for FORTRAN appeared in October 1956, with the first FORTRAN
compiler delivered in April 1957. Fortran produced efficient enough code for assembly language
programmers to accept a high-level programming language replacement.

• John Backus said during a 1979 interview with Think, the IBM employee magazine, "Much of my
work has come from being lazy. I didn't like writing programs, and so, when I was working on the
IBM 701, writing programs for computing missile trajectories, I started work on a programming
system to make it easier to write programs."

• The language was widely adopted by scientists for writing numerically intensive programs, which
encouraged compiler writers to produce compilers that could generate faster and more efficient
code. The inclusion of a complex number data type in the language made Fortran especially
suited to technical applications such as electrical engineering.

Fortran
• Fortran (/ˈfɔːrtræn/; formerly FORTRAN) Formula Translating System is a third generation, compiled,

imperative programming language that is especially suited to numeric computation and scientific
computing.

• Fortran was originally developed by IBM.It first compiled correctly in 1958.Fortran computer programs have
been written to support scientific and engineering applications, such as numerical weather prediction,
finite element analysis, computational fluid dynamics, geophysics, computational physics, crystallography
and computational chemistry. It is a popular language for high-performance computing[and is used for
programs that benchmark and rank the world's fastest supercomputers.

• The IBM Blue Gene/P supercomputer installation in 2007 at the Argonne Leadership Angela Yang
Computing Facility located in the Argonne National Laboratory, in Lemont, Illinois, US

• Fortran has evolved through numerous versions and dialects. In 1966, the American National Standards
Institute (ANSI) developed a standard for Fortran to limit proliferation of compilers using slightly different
syntax.[8] Successive versions have added support for a character data type (Fortran 77), structured
programming, array programming, modular programming, generic programming (Fortran 90), parallel
computing (Fortran 95), object-oriented programming (Fortran 2003), and concurrent programming
(Fortran 2008).

• Since April 2024, Fortran has ranked among the top ten languages in the TIOBE index, a measure of the
popularity of programming languages.[9]

Programming
Language 1 PL1

• PL/I (Programming Language One, pronounced /piː ɛl wʌn/
and sometimes written PL/1) is a procedural, imperative
computer programming language initially developed by
IBM. It is designed for scientific, engineering, business and
system programming. It has been in continuous use by
academic, commercial and industrial organizations since it
was introduced in the 1960s.

• The PL/1 ANSI standard, X3.53-1976, was published in
1976.

• PL/I's main domains are data processing, numerical
computation, scientific computing, and system
programming. It supports recursion, structured
programming, linked data structure handling, fixed-point,
floating-point, complex, character string handling, and bit
string handling. The language syntax is English-like and
suited for describing complex data formats with a wide set
of functions available to verify and manipulate them.

Programming
Language 1

• The goals for PL/I evolved during the early development of the language. Competitiveness with COBOL's
record handling and report writing was required. The language's scope of usefulness grew to include system
programming and event-driven programming. Additional goals for PL/I were:

• Performance of compiled code competitive with that of Fortran (but this was not achieved)[citation
needed]

• Extensibility for new hardware and new application areas

• Improved productivity of the programming process, transferring effort from the programmer to the
compiler

• Machine independence to operate effectively on the main computer hardware and operating systems

• To achieve these goals, PL/I borrowed ideas from contemporary languages while adding substantial new
capabilities and casting it with a distinctive concise and readable syntax. Many principles and capabilities
combined to give the language its character and were important in meeting the language's goals:

• Block structure, with underlying semantics (including recursion), similar to Algol 60. Arguments are
passed using call by reference, using dummy variables for values where needed (call by value).

• A wide range of computational data types, program control data types, and forms of data structure
(strong typing).

• Dynamic extents for arrays and strings with inheritance of extents by procedure parameters.

• Concise syntax for expressions, declarations, and statements with permitted abbreviations. Suitable
for a character set of 60 glyphs and sub-settable to 48.

• An extensive structure of defaults in statements, options, and declarations to hide some complexities
and facilitate extending the language while minimizing keystrokes.

• Powerful iterative processing with good support for structured programming.

• There were to be no reserved words (although the function names DATE and TIME initially proved to be
impossible[citation needed] to meet this goal). New attributes, statements and statement options could be
added to PL/I without invalidating existing programs. Not even IF, THEN, ELSE, and DO were reserved.

• Orthogonality: each capability to be independent of other capabilities and freely combined with other
capabilities wherever meaningful. Each capability to be available in all contexts where meaningful, to
exploit it as widely as possible and to avoid "arbitrary restrictions". Orthogonality helps make the
language "large".

• Exception handling capabilities for controlling and intercepting exceptional conditions at run time.

• Programs divided into separately compilable sections, with extensive compile-time facilities (a.k.a.
macros), not part of the standard, for tailoring and combining sections of source code into complete
programs. External names to bind separately compiled procedures into a single program.

• Debugging facilities integrated into the language.

Basic Programming
Language
• BASIC (Beginners' All-purpose Symbolic Instruction Code)[1] is a family of general-purpose, high-level

programming languages designed for ease of use. The original version was created by John G. Kemeny and
Thomas E. Kurtz at Dartmouth College in 1963. They wanted to enable students in non-scientific fields to
use computers. At the time, nearly all computers required writing custom software, which only scientists
and mathematicians tended to learn.

• In addition to the programming language, Kemeny and Kurtz developed the Dartmouth Time Sharing System
(DTSS), which allowed multiple users to edit and run BASIC programs simultaneously on remote terminals.
This general model became popular on minicomputer systems like the PDP-11 and Data General Nova in
the late 1960s and early 1970s. Hewlett-Packard produced an entire computer line for this method of
operation, introducing the HP2000 series in the late 1960s and continuing sales into the 1980s. Many early
video games trace their history to one of these versions of BASIC.

• The emergence of microcomputers in the mid-1970s led to the development of multiple BASIC dialects,
including Microsoft BASIC in 1975. Due to the tiny main memory available on these machines, often 4 KB, a
variety of Tiny BASIC dialects were also created. BASIC was available for almost any system of the era, and
became the de facto programming language for home computer systems that emerged in the late 1970s.
These PCs almost always had a BASIC interpreter installed by default, often in the machine's firmware or
sometimes on a ROM cartridge.

• BASIC declined in popularity in the 1990s, as more powerful microcomputers came to market and
programming languages with advanced features (such as Pascal and C) became tenable on such
computers. By then, most nontechnical personal computer users relied on pre-written applications rather
than writing their own programs. In 1991, Microsoft released Visual Basic, combining an updated version of
BASIC with a visual forms builder. This reignited use of the language and "VB" remains a major programming
language in the form of VB.NET, while a hobbyist scene for BASIC more broadly continues to exist.[

Basic Programming
Language
• John G. Kemeny was the chairman of the Dartmouth College Mathematics Department. Based largely on his

reputation as an innovator in math teaching, in 1959 the College won an Alfred P. Sloan Foundation award
for $500,000 to build a new department building. Thomas E. Kurtz had joined the department in 1956, and
from the 1960s Kemeny and Kurtz agreed on the need for programming literacy among students outside the
traditional STEM fields. Kemeny later noted that "Our vision was that every student on campus should have
access to a computer, and any faculty member should be able to use a computer in the classroom
whenever appropriate. It was as simple as that."

• Kemeny and Kurtz had made two previous experiments with simplified languages, DARSIMCO (Dartmouth
Simplified Code) and DOPE (Dartmouth Oversimplified Programming Experiment). These did not progress
past a single freshman class. New experiments using Fortran and ALGOL followed, but Kurtz concluded
these languages were too tricky for what they desired. As Kurtz noted, Fortran had numerous oddly formed
commands, notably an "almost impossible-to-memorize convention for specifying a loop: DO 100, I = 1, 10,
2. Is it '1, 10, 2' or '1, 2, 10', and is the comma after the line number required or not?"

• Moreover, the lack of any sort of immediate feedback was a key problem; the machines of the era used
batch processing and took a long time to complete a run of a program. While Kurtz was visiting MIT, John
McCarthy suggested that time-sharing offered a solution; a single machine could divide up its processing
time among many users, giving them the illusion of having a (slow) computer to themselves.[8] Small
programs would return results in a few seconds. This led to increasing interest in a system using time-
sharing and a new language specifically for use by non-STEM students.

• Kemeny wrote the first version of BASIC. The acronym BASIC comes from the name of an unpublished paper
by Thomas Kurtz. The new language was heavily patterned on FORTRAN II; statements were one-to-a-line,
numbers were used to indicate the target of loops and branches, and many of the commands were similar
or identical to Fortran. However, the syntax was changed wherever it could be improved. For instance, the
difficult to remember DO loop was replaced by the much easier to remember FOR I = 1 TO 10 STEP 2, and
the line number used in the DO was instead indicated by the NEXT I.[a] Likewise, the cryptic IF statement of
Fortran, whose syntax matched a particular instruction of the machine on which it was originally written,
became the simpler IF I=5 THEN GOTO 100. These changes made the language much less idiosyncratic
while still having an overall structure and feel similar to the original FORTRAN.

C Programming
Language
• C (pronounced /ˈsiː/ – like the letter c) is a general-purpose programming

language. It was created in the 1970s by Dennis Ritchie and remains very widely
used and influential. By design, C's features cleanly reflect the capabilities of the
targeted CPUs. It has found lasting use in operating systems code (especially in
kernels[7]), device drivers, and protocol stacks, but its use in application
software has been decreasing. C is commonly used on computer architectures
that range from the largest supercomputers to the smallest microcontrollers and
embedded systems.

• A successor to the programming language B, C was originally developed at Bell
Labs by Ritchie between 1972 and 1973 to construct utilities running on Unix. It
was applied to re-implementing the kernel of the Unix operating system. During
the 1980s, C gradually gained popularity. It has become one of the most widely
used programming languages, with C compilers available for practically all
modern computer architectures and operating systems. The book The C
Programming Language, co-authored by the original language designer, served
for many years as the de facto standard for the language. C has been
standardized since 1989 by the American National Standards Institute (ANSI)
and, subsequently, jointly by the International Organization for Standardization
(ISO) and the International Electrotechnical Commission (IEC).

• C is an imperative procedural language, supporting structured programming,
lexical variable scope, and recursion, with a static type system. It was designed
to be compiled to provide low-level access to memory and language constructs
that map efficiently to machine instructions, all with minimal runtime support.
Despite its low-level capabilities, the language was designed to encourage
cross-platform programming. A standards-compliant C program written with
portability in mind can be compiled for a wide variety of computer platforms and
operating systems with few changes to its source code.

• Since 2000, C has consistently ranked among the top three languages in the
TIOBE index, a measure of the popularity of programming languages.

C Programming
Language

• C is an imperative, procedural language in the ALGOL tradition. It has a static type system. In C, all executable code is
contained within subroutines (also called "functions", though not in the sense of functional programming). Function
parameters are passed by value, although arrays are passed as pointers, i.e. the address of the first item in the array.
Pass-by-reference is simulated in C by explicitly passing pointers to the thing being referenced.

• C program source text is free-form code. Semicolons terminate statements, while curly braces are used to group
statements into blocks.

• The C language also exhibits the following characteristics:

• The language has a small, fixed number of keywords, including a full set of control flow primitives: if/else, for,
do/while, while, and switch. User-defined names are not distinguished from keywords by any kind of sigil.

• It has a large number of arithmetic, bitwise, and logic operators: +,+=,++,&,||, etc.

• More than one assignment may be performed in a single statement.

• Functions:

• Function return values can be ignored, when not needed.

• Function and data pointers permit ad hoc run-time polymorphism.

• Functions may not be defined within the lexical scope of other functions.

• Variables may be defined within a function, with scope.

• A function may call itself, so recursion is supported.

• Data typing is static, but weakly enforced; all data has a type, but implicit conversions are possible.

• User-defined (typedef) and compound types are possible.

• Heterogeneous aggregate data types (struct) allow related data elements to be accessed and assigned as a unit. The
contents of whole structs cannot be compared using a single built-in operator (the elements must be compared
individually).

• Union is a structure with overlapping members; it allows multiple data types to share the same memory location.

C Programming
Language

• Array indexing is a secondary notation, defined in terms of pointer arithmetic. Whole arrays
cannot be assigned or compared using a single built-in operator. There is no "array" keyword in
use or definition; instead, square brackets indicate arrays syntactically, for example month

• Enumerated types are possible with the enum keyword. They are freely interconvertible
with integers.

• Strings are not a distinct data type, but are conventionally implemented as null-terminated
character arrays.

• Low-level access to computer memory is possible by converting machine addresses to pointers.

• Procedures (subroutines not returning values) are a special case of function, with an empty return
type void.

• Memory can be allocated to a program with calls to library routines.

• A preprocessor performs macro definition, source code file inclusion, and conditional
compilation.

• There is a basic form of modularity: files can be compiled separately and linked together, with
control over which functions and data objects are visible to other files via static and extern
attributes.

• Complex functionality such as I/O, string manipulation, and mathematical functions are
consistently delegated to library routines.

• The generated code after compilation has relatively straightforward needs on the
underlying platform, which makes it suitable for creating operating systems and for use in
embedded systems.

• While C does not include certain features found in other languages (such as object
orientation and garbage collection), these can be implemented or emulated, often through
the use of external libraries (e.g., the GLib Object System or the Boehm garbage collector).

C++ Programming
Language
• C++ (/ˈsiː plʌs plʌs/, pronounced "C plus plus" and sometimes abbreviated

as CPP) is a high-level, general-purpose programming language created by
Danish computer scientist Bjarne Stroustrup. First released in 1985 as an
extension of the C programming language, it has since expanded
significantly over time; as of 1997, C++ has object-oriented, generic, and
functional features, in addition to facilities for low-level memory
manipulation for systems like microcomputers or to make operating
systems like Linux or Windows. It is usually implemented as a compiled
language, and many vendors provide C++ compilers, including the Free
Software Foundation, LLVM, Microsoft, Intel, Embarcadero, Oracle, and
IBM.

• C++ was designed with systems programming and embedded, resource-
constrained software and large systems in mind, with performance,
efficiency, and flexibility of use as its design highlights. C++ has also been
found useful in many other contexts, with key strengths being software
infrastructure and resource-constrained applications, including desktop
applications, video games, servers (e.g., e-commerce, web search, or
databases), and performance-critical applications (e.g., telephone
switches or space probes).

MATLAB Programming
Language
• MATLAB (an abbreviation of "MATrix LABoratory") is a

proprietary multi-paradigm programming language and
numeric computing environment developed by MathWorks.
MATLAB allows matrix manipulations, plotting of functions
and data, implementation of algorithms, creation of user
interfaces, and interfacing with programs written in other
languages.

• Although MATLAB is intended primarily for numeric
computing, an optional toolbox uses the MuPAD symbolic
engine allowing access to symbolic computing abilities. An
additional package, Simulink, adds graphical multi-domain
simulation and model-based design for dynamic and
embedded systems.

• As of 2020, MATLAB has more than four million users
worldwide. They come from various backgrounds of
engineering, science, and economics. As of 2017, more than
5000 global colleges and universities use MATLAB to support
instruction and research.

MATLAB Programming
Language
• MATLAB was invented by mathematician and computer programmer

Cleve Moler. The idea for MATLAB was based on his 1960s PhD thesis.
Moler became a math professor at the University of New Mexico and
started developing MATLAB for his students as a hobby. He developed
MATLAB's initial linear algebra programming in 1967 with his one-time
thesis advisor, George Forsythe. This was followed by Fortran code for
linear equations in 1971.

• Before version 1.0, MATLAB "was not a programming language; it was
a simple interactive matrix calculator. There were no programs, no
toolboxes, no graphics. And no ODEs or FFTs."

• The first early version of MATLAB was completed in the late 1970s.
The software was disclosed to the public for the first time in February
1979 at the Naval Postgraduate School in California. Early versions of
MATLAB were simple matrix calculators with 71 pre-built functions. At
the time, MATLAB was distributed for free to universities. Moler would
leave copies at universities he visited and the software developed a
strong following in the math departments of university campuses.

• In the 1980s, Cleve Moler met John N. Little. They decided to
reprogram MATLAB in C and market it for the IBM desktops that were
replacing mainframe computers at the time. John Little and
programmer Steve Bangert re-programmed MATLAB in C, created the
MATLAB programming language, and developed features for
toolboxes.

Java
• Java is a high-level, class-based, object-oriented programming language that is designed

to have as few implementation dependencies as possible. It is a general-purpose
programming language intended to let programmers write once, run anywhere (WORA),
meaning that compiled Java code can run on all platforms that support Java without the
need to recompile. Java applications are typically compiled to bytecode that can run on
any Java virtual machine (JVM) regardless of the underlying computer architecture. The
syntax of Java is similar to C and C++, but has fewer low-level facilities than either of
them. The Java runtime provides dynamic capabilities (such as reflection and runtime
code modification) that are typically not available in traditional compiled languages.

• Java gained popularity shortly after its release, and has been a very popular
programming language since then. Java was the third most popular programming
language in 2022 according to GitHub. Although still widely popular, there has been a
gradual decline in use of Java in recent years with other languages using JVM gaining
popularity.

• Java was originally developed by James Gosling at Sun Microsystems. It was released in
May 1995 as a core component of Sun's Java platform. The original and reference
implementation Java compilers, virtual machines, and class libraries were originally
released by Sun under proprietary licenses. As of May 2007, in compliance with the
specifications of the Java Community Process, Sun had relicensed most of its Java
technologies under the GPL-2.0-only license. Oracle offers its own HotSpot Java Virtual
Machine, however the official reference implementation is the OpenJDK JVM which is
free open-source software and used by most developers and is the default JVM for
almost all Linux distributions.

Python

• Python is a high-level, general-purpose programming
language. Its design philosophy emphasizes code readability
with the use of significant indentation.

• Python is dynamically typed and garbage-collected. It
supports multiple programming paradigms, including
structured (particularly procedural), object-oriented and
functional programming. It is often described as a "batteries
included" language due to its comprehensive standard library.

• Guido van Rossum began working on Python in the late 1980s
as a successor to the ABC programming language and first
released it in 1991 as Python 0.9.0.[35] Python 2.0 was
released in 2000. Python 3.0, released in 2008, was a major
revision not completely backward-compatible with earlier
versions. Python 2.7.18, released in 2020, was the last release
of Python 2.

• Python consistently ranks as one of the most popular
programming languages, and has gained widespread use in
the machine learning community.

Python Programming
Language

• Python was invented in the late 1980s by Guido van Rossum at
Centrum Wiskunde & Informatica (CWI) in the Netherlands as a
successor to the ABC programming language, which was
inspired by SETL, capable of exception handling and interfacing
with the Amoeba operating system.

• Its implementation began in December 1989. Van Rossum
shouldered sole responsibility for the project, as the lead
developer, until 12 July 2018, when he announced his
"permanent vacation" from his responsibilities as Python's
"benevolent dictator for life" (BDFL), a title the Python
community bestowed upon him to reflect his long-term
commitment as the project's chief decision-maker (he's since
come out of retirement and is self-titled "BDFL-emeritus"). In
January 2019, active Python core developers elected a five-
member Steering Council to lead the project.

• Python 2.0 was released on 16 October 2000, with many major
new features such as list comprehensions, cycle-detecting
garbage collection, reference counting, and Unicode support.
Python 3.0 was released on 3 December 2008, with many of its
major features backported to Python 2.6.x[48] and 2.7.x.
Releases of Python 3 include the 2to3 utility, which automates
the translation of Python 2 code to Python 3

RUST
• Rust is a general-purpose programming language emphasizing

performance, type safety, and concurrency. It enforces memory
safety, meaning that all references point to valid memory, without
a garbage collector. To simultaneously enforce memory safety
and prevent data races, its "borrow checker" tracks the object
lifetime of all references in a program during compiling.

• Rust was influenced by ideas from functional programming,
including immutability, higher-order functions, and algebraic data
types. It is popular for systems programming. Rust does not
enforce a programming paradigm, but supports object-oriented
programming via structs, enums, traits, and methods, and
supports functional programming via immutability, pure
functions, higher order functions, and pattern matching.

• Software developer Graydon Hoare created Rust as a personal
project while working at Mozilla Research in 2006. Mozilla
officially sponsored the project in 2009. In the years following the
first stable release in May 2015, Rust was adopted by companies
including Amazon, Discord, Dropbox, Google (Alphabet), Meta,
and Microsoft. In December 2022, it became the first language
other than C and assembly to be supported in the development of
the Linux kernel.

• Rust has been noted for its rapid adoption, and has been studied
in programming language theory research.

RUST Programming
Language
• Memory safety: Rust is built with a strong focus on memory

safety, which helps prevent common programming errors.

• Concurrency: Rust offers great features for concurrent
programming, making it a good choice for writing reliable and
parallel applications.

• Ecosystem: The Rust ecosystem includes tens of thousands
of crates, or Rust code libraries, that are available on
crates.io.

• Error handling: Rust's error handling is powerful and uses
built-in Option and Result types to indicate when a return
value may be missing or an error may have occurred.

• Low memory footprint: Rust has a small runtime footprint,
making it a good choice for building applications for
microcontrollers, embedded systems, and IoT devices.

• Targets bare-metal: Rust can be used to write device drivers
or OS kernels, and can be used as a "high level assembler".

	Slide 1: Programming Languages
	Slide 2: Outline
	Slide 3: What Is a Programming Language
	Slide 4: Computer Language vs Programming Language
	Slide 5: Computer Language vs Programming Language
	Slide 6: Procedural Programming
	Slide 7: What Is the Test Problem?
	Slide 8: Object Oriented Programming
	Slide 9: Object Oriented Programming
	Slide 10: Object Oriented Programming
	Slide 11: Object Oriented Programming
	Slide 12: Object Oriented Programming
	Slide 13: Object Oriented Programming
	Slide 14: Object Oriented Programming
	Slide 15: Object Oriented Programming
	Slide 16: Alfred V Aho
	Slide 17: Alfred V Aho
	Slide 18: Fortran
	Slide 19: Fortran
	Slide 20: Programming Language 1 PL1
	Slide 21: Programming Language 1
	Slide 22: Basic Programming Language
	Slide 23: Basic Programming Language
	Slide 24: C Programming Language
	Slide 25: C Programming Language
	Slide 26: C Programming Language
	Slide 27: C++ Programming Language
	Slide 28: MATLAB Programming Language
	Slide 29: MATLAB Programming Language
	Slide 30: Java
	Slide 31: Python
	Slide 32: Python Programming Language
	Slide 33: RUST
	Slide 34: RUST Programming Language

