
Evolution of Programming Languages:
From Machine Language to Python

Dr. Bart Stuck

24 March 2024

1

2

Types of Computer Applications: Example
• A. Scientific Computing:

• Scientific computing is a field of computing that focuses on developing algorithms and
software for solving complex mathematical problems.

• It is used in scientific research, engineering, and other fields that require high-performance
computing.

• Supercomputers are often used for simulations, data analysis, and complex computations

• B. Embedded Systems:
• Embedded Systems are computer systems that are designed to perform specific functions

within a larger system or machine.
• They are used in a wide range of applications, from consumer electronics to industrial

automation.
• Embedded systems are often designed to operate without human interaction and have real-

time computing constraints

• C. Commercial Computing
• Commercial Computing refers to the use of computers in business and commerce.
• It includes a wide range of applications, from data processing and resource management to

office productivity tasks.
• Commercial computing is used in a variety of industries, including finance, healthcare, and

retail. 3

Global Computing Market Size by Segment

• Scientific Computing
• The Global High-Performance Computing Market size is forecasted to reach

USD 50.3 Billion by the year 2028 and is expected to grow exhibiting a
Compound Annual Growth Rate (CAGR) of 6.3%

• Embedded Systems
• The global market for embedded systems is projected to reach USD 163.2

billion by 2031 with a CAGR of 6.5% from 2022 to 2031

• Commercial Computing
• The global market size for banking and finance computing applications was

estimated to be USD 146.65 billion in 2024 and is expected to reach USD
271.75 billion by 2029

4

Scientific Computing

• Seymour Cray

• Burton Smith

5

https://en.wikipedia.org/wiki/Seymour_Cray
https://en.wikipedia.org/wiki/Burton_Smith

Computer Language Usage by Segment

• Scientific Computing
• Popular programming languages used in Scientific Computing include C, C++, Java,

and Python
• Recently, researchers at MIT have developed a new programming language called A

Tensor Language (ATL), which is specifically designed for high-performance
computing. (Image processing, Deep-Learning Applications)

• Embedded Systems
• According to a survey by IEEE Spectrum, the top two most popular and used

programming languages in embedded systems are C and C++

• Commercial Computing
• The most widely used commercial programming computer language is COBOL.
• COBOL is a compiled English-like computer programming language designed for

business use.
• It is imperative, procedural and, since 2002, object-oriented.
• COBOL is a programming language that reads like regular English and is most

commonly used for business and administrative purposes
6

Top 5 Largest Programs Ever Written

• Human Genome Project:
• Human Genome Project is a scientific research project with the aim to determine the sequence of human

DNA.
• The ultimate goal is to map all the genes of the human genome. It is already the largest collaborative project

in biology till date.
• The project started in 1990 and ended in 2003. The project was performed across twenty different

universities.
• The software for analyzing the human genome and map the nucleotide base pairs of DNA took 3300 billion

lines of code. In fact, the coding took more time than the actual execution of the project.
• Human Genome Project | The McDonnell Genome Institute | Washington University in St. Louis

(wustl.edu)
• Human Epigenome Project

• Google:
• Google is the largest platform in terms of the internet services it provides.
• This includes the Google search engine which is the largest part of the Google platform, Gmail, Google Drive,

Google Calendar, Google+, Google Translate, Google Photos, Google Notes, Google Maps, etc.
• All these constitute nearly 2000 billion lines of code.
• With the constant upgrading and addition of features and new services, in the next few decades, Google is

going to overcome the Human Genome Project in terms of lines of codes.

7

https://genome.wustl.edu/items/human-genome-project/
https://genome.wustl.edu/items/human-genome-project/
https://www.epigenome.org/index.php?page=project

Top 5 Largest Programs Written (continued)

• Average High-End Car Software:
• This should come as a shock to many. A lot of people have the opinion that the

operating systems have the most lines of codes which is not far from the truth.
• The car software in itself is an operating system and more. It is like the Windows with

all the inbuilt software applications.
• It is important to note that not all the car software that you see in the dashboard has

millions of lines of code. We all know how robust the dashboard of high-end cars like
BMW, Mercedes and likewise is.

• The higher price you pay, the better the dashboard software will be. In fact, with the
introduction of automation and driver-less driving, the lines of code for the car
software have increased exponentially.

• It has been found that average high-end car software has over 100 million lines of
code to execute everything perfectly and provide the buyer with a value for their
money.

• C++ is the most popular language

8

Top 5 Largest Programs Written (continued)

• Mac OS X:
• Mac OS X is the latest operating system from Apple, and it is well-received by the

Apple fans who were tired of lack of innovation and user-friendliness in the previous
Mac OS versions.

• It is truly a major development from Apple as it combines the desktop and mobile
devices under one platform.

• Its competitors like Google and Microsoft are still struggling in this department.
• Mac OS X has cross-platform functionality with iOS 8 and above. Mac OS X is

considered to be the largest operating system ever written.
• It contains over 85 million lines of codes

• Facebook:
• After Google, Facebook is hands down the largest online platform.
• This includes Facebook social network platform, the Facebook Messenger, gaming

and other apps.
• The one thing common about Google and Facebook as online platforms is that they

are continuously upgrading and adding new features.
• Facebook with all its services has over 60 million lines of code. 9

Top Programming Languages in 2023 (IEEE)

10

What Language Does a Computer Use To Do
Actual Computing?
• A Computer Uses Machine Language in Binary Format

• For Ease of Programming, Early Computers Used Assembly Language
• It is a symbolic representation of machine code instructions that can be easily understood by

humans
• Assembly code is converted into executable machine code by a utility program referred to as

an Assembler
• It is relatively time intensive vs high level languages for developing robust software

modules

• A high-level programming language is a programming language that enables
development of a program in a user-friendly and abstract way, without having to
deal with the details of the computer's hardware or processor.
• Examples of High Level Languages: Fortran, COBOL, Java, Python, C, C++
• A Program called Compiler translates high-level language statements to machine code.

11

Example of a Computer:
Apollo Guidance Computer AGC
• The Apollo Guidance Computer (AGC) was a digital

computer produced for the Apollo program that was installed on
board each Apollo command module (CM) and Apollo Lunar
Module (LM).

• The AGC provided computation and electronic interfaces for
guidance, navigation, and control of the spacecraft.The AGC
was the first computer based on silicon integrated circuits.

• The computer's performance was comparable to the first
generation of home computers from the late 1970s, such as
the Apple II, TRS-80, and Commodore PET.

12

https://en.wikipedia.org/wiki/Apollo_Guidance_Computer
https://en.wikipedia.org/wiki/Digital_computer
https://en.wikipedia.org/wiki/Digital_computer
https://en.wikipedia.org/wiki/Apollo_program
https://en.wikipedia.org/wiki/Apollo_command_module
https://en.wikipedia.org/wiki/Apollo_Lunar_Module
https://en.wikipedia.org/wiki/Apollo_Lunar_Module
https://en.wikipedia.org/wiki/Silicon
https://en.wikipedia.org/wiki/Integrated_circuit
https://en.wikipedia.org/wiki/Home_computer
https://en.wikipedia.org/wiki/Apple_II
https://en.wikipedia.org/wiki/TRS-80
https://en.wikipedia.org/wiki/Commodore_PET

Apollo Guidance Computer AGC

• The AGC has a 16-bit word length, with 15 data bits and
one parity bit. Most of the software on the AGC is stored in a
special read-only memory known as core rope memory,
fashioned by weaving wires through and around magnetic
cores, though a small amount of read/write core memory is
available.

• Astronauts communicated with the AGC using a numeric
display and keyboard called the DSKY (for "display and
keyboard", pronounced "DIS-kee"). The AGC and its DSKY user
interface were developed in the early 1960s for the Apollo
program by the MIT Instrumentation Laboratory and first flew in
1966.

13

https://en.wikipedia.org/wiki/Word_(computer_architecture)
https://en.wikipedia.org/wiki/Parity_bit
https://en.wikipedia.org/wiki/Read-only_memory
https://en.wikipedia.org/wiki/Core_rope_memory
https://en.wikipedia.org/wiki/Magnetic_core
https://en.wikipedia.org/wiki/Magnetic_core
https://en.wikipedia.org/wiki/Core_memory
https://en.wikipedia.org/wiki/MIT_Instrumentation_Laboratory

Apollo Guidance Computer Instruction Set

• The instruction format used 3 bits for opcode, and 12 bits for address.
Block I had 11 instructions: TC, CCS, INDEX, XCH, CS, TS, AD, and MASK
(basic), and SU, MP, and DV (extra).

• The first eight, called basic instructions, were directly accessed by the 3-bit
op. code.

• The final three were denoted as extracode instructions because they were
accessed by performing a special type of TC instruction (called EXTEND)
immediately before the instruction.

• Total number of instructions=33
• Total storage=2,048 words erasable magnetic storage + 36,864 words read

only core rope memory (16 bit word: 15 bits data, 1 bit odd parity)=77.824
kilobytes total storage

14

Examples of AGC Instruction Set
• AD k (Add)

• The "Add" instruction adds the contents of a memory location “k” into the accumulator.

• BZF k (Jump)
• The "Branch Zero to Fixed" instruction jumps to a memory location “k”

• CA k (Load)
• The "Clear and Add" instruction moves the contents of a memory location “k” into the accumulator

• COM (Complement)
• Complements the Contents of Accumulator

• LXCH k (Exchange)
• Exchanges the value in the L register with a value stored in memory location “k”

• NOOP
• No operation

• CCS (Count, Compare, Skip)

• INDEX
• Add the data retrieved at the address specified by the instruction to the next instruction.

15

Example of a Simple Program Using AGC
Instruction Set
• Problem:

• Sum of first N integers starting with one (1)

• Problem in AGC Assembly Language

• 10 1 #INITIAL#

• 20 1 #SUM#

• 30 N #NUMBER OF INTEGERS#

• 40 CA 10

• 50 ADD 10

• 60 CA 10

• 70 CCS

• 80 INDEX

• 5 distinct instructions

16

Using Chat GPT to Write the Same Program
Using AGC Instruction set
• # Extend the next instruction DCA INDEX using EXTEND

• # Clear and Add to the Accumulator, using INDEX as the location. This sets the accumulator to 0. INDEX TEN

• # Set the INDEX register to the value at location TEN (10). CA ZERO

• # Clear the Accumulator and then add the value at ZERO (0). LOOP ADS INDEX

• # Add to Storage. Adds the contents of the accumulator to the value at location INDEX and stores the result back in INDEX. ADS
TOTAL

• # Add the contents of INDEX to TOTAL, storing the result in TOTAL. SU ONE

• # Subtract the value at location ONE (1) from the accumulator. CCS A

• # Count, Compare, and Skip. If the Accumulator is negative, jump to the next instruction. TCF LOOP

• # Transfer Control to LOOP if the above CCS doesn't jump. CS TOTAL

• # Clear and Subtract. This effectively loads the negative of TOTAL into the accumulator. TC Q

• # Transfer Control to Quit (or the next part of your program). ONE OCT 00001

• # Define ONE as octal 1 ZERO OCT 00000 # Define ZERO as octal 0 TEN OCT 00012

• # Define TEN as octal 10 (decimal 10) INDEX ERASE

• # Allocate an erasable memory location for INDEX TOTAL ERASE

• # Allocate an erasable memory location for TOTAL

17

Same Problem In Python
• Problem:

• Sum of first N integers starting with one (1)

• Problem in Python programming language

• Def sum(n)

• a, b = 0, 1

• While a<n:

• Print (a, end=‘ ‘)

• a,b=b,1+b

• Print()

• 5 distinct lines of code total

18

Chat GPT Response to Question
Python Program to Add All Integers From 1 to 10

• Here is a Python program that adds the integers starting from 1
and ending at 10:

• ```python

• # Initialize the sum variable total = 0

• # Loop through the integers from 1 to 10 and add them to the
total for i in range(1, 11): total += i

• # Print the total sum print("The sum of integers from 1 to 10 is:",
total) ```

• You can run this program in a Python environment to see the
sum of integers from 1 to 10.

19

How Does a Compiler Work?
• A compiler is a program that translates code written in a

programming language into another language.

• The main steps of a compiler are:
• Lexical analysis: the compiler breaks the source code into tokens that

represent the individual elements of the program.

• Syntactic and semantic analysis: the compiler checks the syntax and meaning
of the code and builds an intermediate representation of the program.

• Optimization: the compiler improves the performance and efficiency of the
intermediate representation.

• Output code generation: the compiler produces the final code in the target
language.

20

https://en.wikipedia.org/wiki/Optimizing_compiler

How Does Lexical Analysis Work?
• Lexical analysis is the first phase of a compiler, also known as scanning
• The process of lexical analysis can be broken down into the following

stages:
• Input preprocessing: This stage involves cleaning up the input text and preparing it

for lexical analysis. This may include removing comments, whitespace, and other
non-essential characters from the input text.

• Tokenization: This is the process of breaking the input text into a sequence of tokens.
This is usually done by matching the characters in the input text against a set of
patterns or regular expressions that define the different types of tokens.

• Token classification: In this stage, the lexer determines the type of each token. For
example, in a programming language, the lexer might classify keywords, identifiers,
operators, and punctuation symbols as separate token types.

• Token validation: In this stage, the lexer checks that each token is valid according to
the rules of the programming language. For example, it might check that a variable
name is a valid identifier, or that an operator has the correct syntax.

• Output generation: In this final stage, the lexer generates the output of the lexical
analysis process, which is typically a list of tokens. This list of tokens can then be
passed to the next stage of compilation or interpretation.

21

Syntactic Analysis & Semantic Analysis
• Syntactic Analysis Functions:

• Functions of Syntactic Analysis (also known as parsing) is the process of
analyzing the input code to determine its structure and ensure that it
conforms to the rules of the language’s grammar.

• The output of this phase is an abstract syntax tree (AST), which represents the
structure of the input code in a tree-like format

• Semantic Analysis Functions:
• Type Checking: Ensures that data types are used in a way consistent with their

definition.

• Label Checking: A program should contain label references.

• Flow Control Check: Keeps a check that control structures are used in a proper
manner. (example: no break statement outside a loop)

22

Optimization and Code Generation
• Optimization:

• The optimization process is generally implemented using a sequence of
optimizing transformations, algorithms which take a program and transform it
to produce a semantically equivalent output program that uses fewer
resources or executes faster

• Some examples of optimization techniques include peephole optimizations,
local optimizations, and global optimizations

• Code Generation
• The input to the code generator typically consists of a parse tree or an

abstract syntax tree. The tree is converted into a linear sequence of
instructions, usually in an intermediate language such as three-address code

• This is followed by:
• Instruction selection: which instructions to use.
• Instruction scheduling: in which order to put those instructions.
• Register allocation: the allocation of variables to processor registers.

23

https://en.wikipedia.org/wiki/Optimizing_compiler

Number of Machine Language Statements
For a Java Statement
• The number of machine language instructions that result from

compiling a typical Java statement depends on the complexity of the
statement.

• A single high-level language statement may lead to several assembly
(machine) language instructions

• For example, the following Java statement a=b+c-d; corresponds to
four instructions: LOAD B, ADD C, SUBTRACT D, and STORE A

24

What Is An Interpreter?

• An interpreter is a computer program that executes instructions
written in a high-level language.

• It is used to directly execute program instructions written using one of
the many high-level programming languages.

• Interpreters enable other programs to run on a computer or server.

• They process program code at run time, checking the code for errors
line by line.

25

Which Programming Languages Are Based on
Interpreters?
• Programming languages that are based on interpreters include

Python, Ruby, Perl, PHP, and MATLAB.

• In an interpreted language, the source code is not directly translated
by the target machine.

• Instead, a different program, aka the interpreter, reads and executes
the code.

26

Compilers vs. Interpreters

• A compiler and an interpreter are two types of software that convert
high-level programming languages into machine code that computers
can understand.

• The main difference between the two is that a compiler translates the
entire program into machine code before running it, while an
interpreter translates the program line by line as it runs

• Programs that are compiled into native machine code tend to be
faster than interpreted code.

• This is because the process of translating code at run time adds to the
overhead, and can cause the program to be slower overall.

27

Compilers vs. Interpreters (cont.)

Compiler Interpreter

Translates the entire program into machine code
before running it

Translates the program line by line as it runs

Takes a long time to analyze the source code Takes less time to analyze the source code

Generates object code which requires more memory
Does not generate object code, hence is memory
efficient

Programming languages like C, C++, Java use compilers
Programming languages like JavaScript, Python, Ruby
use interpreters

28

An Illustration of the Linking Process
While compilers (and assemblers) generally produce
machine code directly executable by computer hardware,
they can often (optionally) produce an intermediate form
called object code. This is basically the same machine
specific code but augmented with a symbol table with
names and tags to make executable blocks (or modules)
identifiable and relocatable.

Compiled programs will typically use building blocks
(functions) kept in a library of such object code modules. A
linker is used to combine (pre-made) library files with the
object file(s) of the application to form a single executable
file. The object files that are used to generate an
executable file are thus often produced at different times,
and sometimes even by different languages (capable of
generating the same object format).

How Many Instructions Does A Computer
Need to Solve Typical Computation Problem?
• Answer: LOAD, STORE, JUMP, ADD and SUBTRACT

• Using AGC: XCH(LOAD), TC(JUMP), TS(TRANSFER TO STORAGE),
AD(ADD), SU(SUBTRACT)

• For improved effectiveness, most computers have additional
instructions

• For instance, AGC had 33 instructions when it could use far less

• IBM 360 had more than 140 instructions with all variations

• DEC PDP11 had 138 instructions

30

How Many Instructions Does a Computer
Need to Be Useful?
• The first FORTRAN compiler for the IBM 360 was developed by IBM in

1964.

• The compiler was written in assembly language and used only 47
instructions types

• The Compiler Was Written By Very Smart IBM Programmers

• They Only Used 47 Out Of 140 Instructions IBM 360 Had For Writing
The FORTRAN Compiler

• Only 47 Out of 140 Instructions Were Useful
• The Rest of The Instructions Added To The Complexity/Cost of IBM 360

31

Python: Basic Principles
The Name Comes from Monty Python
• Its core philosophy is summarized in the Zen of Python (PEP 20), which

includes aphorisms such as:
• Beautiful is better than ugly.
• Explicit is better than implicit.
• Simple is better than complex.
• Complex is better than complicated.
• Readability counts.

• Rather than building all of its functionality into its core, Python was
designed to be highly extensible via modules. This compact modularity has
made it particularly popular as a means of adding programmable interfaces
to existing applications.

• Van Rossum's vision of a small core language with a large standard library
and easily extensible interpreter stemmed from his frustrations with ABC,
which espoused the opposite approach.

32

Summary: Programming Language Evolution
• FORTRAN (1957): Developed by IBM, FORTRAN (Formula Translation) was the first high-level

programming language designed for scientific and engineering calculations, making it easier to
write numerical algorithms.

• LISP (1958): LISP (List Processing) was created for artificial intelligence research. It introduced the
concept of symbolic expression processing and is still used in AI and symbolic computing.

• COBOL (1959): COBOL (COmmon Business-Oriented Language) was designed for business,
finance, and administrative systems. It aimed to be readable and self-documenting.

• ALGOL (1958-60): ALGOL (ALGOrithmic Language) influenced many subsequent languages and
introduced block structures, lexical scoping, and syntax formalism.

• BASIC (1964): Beginner's All-purpose Symbolic Instruction Code (BASIC) was developed for
educational purposes and simplicity. It played a significant role in popularizing computer
programming.

• C (1972): Developed at Bell Labs by Dennis Ritchie, C became a widely used language due to its
efficiency and portability. It served as the foundation for the development of the UNIX operating
system.

• Pascal (1970): Designed for teaching programming, Pascal introduced structured programming
concepts and data structuring mechanisms.

33

Summary: Programming Language Evolution
(continued)
• C++ (1983): An extension of C, C++ introduced object-oriented programming (OOP) features, allowing for

better code organization and reuse.

• Java (1995): Developed by Sun Microsystems, Java was designed for cross-platform compatibility. It became
popular for web development and enterprise applications.

• Python (1991): Known for its readability and simplicity, Python gained popularity for a wide range of
applications, including web development, data science, and artificial intelligence..

• JavaScript (1995): Initially designed for web development, JavaScript evolved into a versatile language used
for both client-side and server-side scripting.

• Ruby (1995): Known for its elegant syntax and focus on developer productivity, Ruby gained popularity,
especially with the Ruby on Rails web framework.

• C# (2000): Developed by Microsoft, C# is part of the .NET framework and combines elements of C++ and
Java. It's widely used for Windows application development

• Rust (2010): Known for its focus on memory safety without sacrificing performance, Rust is gaining
popularity for systems programming.

• Swift (2014): Developed by Apple, Swift is designed for iOS, macOS, watchOS, and tvOS development. It
aimed to be a more modern and safer alternative to Objective-C.

• ATL (2022): A programming language for high-performance computing

34

References (with direct web hypertext links)

• Assembly Language

• A Tensor Language to the Rescue | MIT CSAIL

• AA-KX10A-TC_RSTS_E_V9.5_PDP-11_MACRO-
11_Language_Reference_Oct87.pdf (mirrorservice.org)

• Apollo Guidance Computer

• Compiler

• High Level Programming Language

• Interpreter

• Python Programming Language

• Zen of Python

35

https://en.wikipedia.org/wiki/Assembly_language
https://www.csail.mit.edu/news/tensor-language-rescue
https://www.mirrorservice.org/sites/www.bitsavers.org/pdf/dec/pdp11/rsts_e/V09/7_MACRO_Programming/AA-KX10A-TC_RSTS_E_V9.5_PDP-11_MACRO-11_Language_Reference_Oct87.pdf
https://www.mirrorservice.org/sites/www.bitsavers.org/pdf/dec/pdp11/rsts_e/V09/7_MACRO_Programming/AA-KX10A-TC_RSTS_E_V9.5_PDP-11_MACRO-11_Language_Reference_Oct87.pdf
https://en.wikipedia.org/wiki/Apollo_Guidance_Computer
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/Interpreter_(computing)
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Zen_of_Python

B.W.Stuck Biography

• MIT, 1964-1972: SBEE 1968, SMEE 1969, EE 1970, PhD 1972
• Bell Laboratories 1972-1984:

• Lectured at over 50 universities and research institutes in
North America, Western Europe, Soviet Union, Japan.

• Worked on 20 UNIX application systems, consulted on another
80, created a class for a masters level computer science
program, which was taught at Columbia University three times,
leading to publishing a book, A Computer and Communication
Network Performance Analysis Primer, Prentice Hall, 1985

• Independent consulting, 1984-1998
• Venture capital, 1998-today

	Slide 1: Evolution of Programming Languages: From Machine Language to Python
	Slide 2
	Slide 3: Types of Computer Applications: Example
	Slide 4: Global Computing Market Size by Segment
	Slide 5: Scientific Computing
	Slide 6: Computer Language Usage by Segment
	Slide 7: Top 5 Largest Programs Ever Written
	Slide 8: Top 5 Largest Programs Written (continued)
	Slide 9: Top 5 Largest Programs Written (continued)
	Slide 10: Top Programming Languages in 2023 (IEEE)
	Slide 11: What Language Does a Computer Use To Do Actual Computing?
	Slide 12: Example of a Computer: Apollo Guidance Computer AGC
	Slide 13: Apollo Guidance Computer AGC
	Slide 14: Apollo Guidance Computer Instruction Set
	Slide 15: Examples of AGC Instruction Set
	Slide 16: Example of a Simple Program Using AGC Instruction Set
	Slide 17: Using Chat GPT to Write the Same Program Using AGC Instruction set
	Slide 18: Same Problem In Python
	Slide 19: Chat GPT Response to Question Python Program to Add All Integers From 1 to 10
	Slide 20: How Does a Compiler Work?
	Slide 21: How Does Lexical Analysis Work?
	Slide 22: Syntactic Analysis & Semantic Analysis
	Slide 23: Optimization and Code Generation
	Slide 24: Number of Machine Language Statements For a Java Statement
	Slide 25: What Is An Interpreter?
	Slide 26: Which Programming Languages Are Based on Interpreters?
	Slide 27: Compilers vs. Interpreters
	Slide 28: Compilers vs. Interpreters (cont.)
	Slide 29: An Illustration of the Linking Process
	Slide 30: How Many Instructions Does A Computer Need to Solve Typical Computation Problem?
	Slide 31: How Many Instructions Does a Computer Need to Be Useful?
	Slide 32: Python: Basic Principles The Name Comes from Monty Python
	Slide 33: Summary: Programming Language Evolution
	Slide 34: Summary: Programming Language Evolution (continued)
	Slide 35: References (with direct web hypertext links)
	Slide 36: B.W.Stuck Biography

