
Background Material for
The Engineering of Compilers
and Machine Instruction Sets

Dr. Bart Stuck
18 November 2023

Source: Wikipedia.org

Outline

• Background Information
• History by Languages

• Fortran and Basic and Lisp and Cobol
• PL1
• C and C++
• Ada
• Java
• Python and Pearl

What Is A Compiler?

• In computing, a compiler is a computer
program that translates computer code written in
one programming language (the source language) into another
language (the target language).

• The name "compiler" is primarily used for programs that
translate source code from a high-level programming
language to a low-level programming language (e.g. assembly
language, object code, or machine code) to create
an executable program.

https://en.wikipedia.org/wiki/Computing
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Translator_(computing)
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/Lower_level_language
https://en.wikipedia.org/wiki/Assembly_language
https://en.wikipedia.org/wiki/Assembly_language
https://en.wikipedia.org/wiki/Object_code
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Executable

Many Types of Compilers

• There are many different types of compilers which produce output in
different useful forms.

• A cross-compiler produces code for a different CPU or operating system than the one
on which the cross-compiler itself runs.

• A bootstrap compiler is often a temporary compiler, used for compiling a more
permanent or better optimised compiler for a language.

• Related software include, a program that translates from a low-level
language to a higher level one is a decompiler; a program that translates
between high-level languages, usually called a source-to-source
compiler or transpiler.

• A language rewriter is usually a program that translates the form
of expressions without a change of language. A compiler-compiler is a
compiler that produces a compiler (or part of one), often in a generic and
reusable way so as to be able to produce many differing compilers.

https://en.wikipedia.org/wiki/Cross-compiler
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Bootstrap_compiler
https://en.wikipedia.org/wiki/Decompiler
https://en.wikipedia.org/wiki/Source-to-source_compiler
https://en.wikipedia.org/wiki/Source-to-source_compiler
https://en.wikipedia.org/wiki/Rewriting
https://en.wikipedia.org/wiki/Expression_(computer_science)
https://en.wikipedia.org/wiki/Compiler-compiler

Steps in Running a Compiler

• A compiler is likely to perform some or all of the following operations,
often called phases:

• preprocessing,
• lexical analysis,
• parsing,
• semantic analysis (syntax-directed translation), conversion of input programs to an

intermediate representation, code optimization and machine specific code
generation.

• Compilers generally implement these phases as modular components,
promoting efficient design and correctness of transformations of source
input to target output. Program faults caused by incorrect compiler
behavior can be very difficult to track down and work around; therefore,
compiler implementers invest significant effort to ensure compiler
correctness.

Compiler vs Interpreter

• Compilers are not the only language processor used to
transform source programs. An interpreter is computer software
that transforms and then executes the indicated operations.

• The translation process influences the design of computer
languages, which leads to a preference of compilation or
interpretation.

• In theory, a programming language can have both a compiler
and an interpreter.

• In practice, programming languages tend to be associated with
just one (a compiler or an interpreter).

https://en.wikipedia.org/wiki/Interpreter_(computing)

High Level Language

• It is usually more productive for a programmer to use a high-level language, so
the development of high-level languages followed naturally from the capabilities
offered by digital computers. High-level languages are formal languages that are
strictly defined by their syntax and semantics which form the high-level language
architecture.

• Elements of these formal languages include:
• Alphabet, any finite set of symbols;
• String, a finite sequence of symbols;
• Language, any set of strings on an alphabet.

• The sentences in a language may be defined by a set of rules called a grammar.
• Backus–Naur form (BNF) describes the syntax of "sentences" of a language and

was used for the syntax of Algol 60 by John Backus. The ideas derive from
the context-free grammar concepts by Noam Chomsky, a linguist.[7] "BNF and its
extensions have become standard tools for describing the syntax of programming
notations, and in many cases parts of compilers are generated automatically from
a BNF description."

https://en.wikipedia.org/wiki/Formal_language
https://en.wikipedia.org/wiki/Semantics_(computer_science)
https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form
https://en.wikipedia.org/wiki/John_Backus
https://en.wikipedia.org/wiki/Context-free_grammar
https://en.wikipedia.org/wiki/Noam_Chomsky
https://en.wikipedia.org/wiki/Compiler#cite_note-7

Initial High Level Languages

• High-level language design during the formative years of digital computing
provided useful programming tools for a variety of applications:

• FORTRAN (Formula Translation) for engineering and science applications is
considered to be one of the first actually implemented high-level languages and first
optimizing compiler.

• COBOL (Common Business-Oriented Language) evolved from A-0 and FLOW-
MATIC to become the dominant high-level language for business applications.

• LISP (List Processor) for symbolic computation.
• Compiler technology evolved from the need for a strictly defined

transformation of the high-level source program into a low-level target
program for the digital computer. The compiler could be viewed as a front
end to deal with the analysis of the source code and a back end to
synthesize the analysis into the target code. Optimization between the
front end and back end could produce more efficient target code.

https://en.wikipedia.org/wiki/FORTRAN
https://en.wikipedia.org/wiki/COBOL
https://en.wikipedia.org/wiki/A-0_System
https://en.wikipedia.org/wiki/FLOW-MATIC
https://en.wikipedia.org/wiki/FLOW-MATIC
https://en.wikipedia.org/wiki/Lisp_(programming_language)

Early Milestones in Compiler Technology
• 1952: An Autocode compiler developed by Alick Glennie for the Manchester Mark I computer at the

University of Manchester is considered by some to be the first compiled programming language.
• 1952: Grace Hopper's team at Remington Rand wrote the compiler for the A-0 programming

language (and coined the term compiler to describe it),[17][18] although the A-0 compiler functioned
more as a loader or linker than the modern notion of a full compiler.

• 1954–1957: A team led by John Backus at IBM developed FORTRAN which is usually considered
the first high-level language. In 1957, they completed a FORTRAN compiler that is generally
credited as having introduced the first unambiguously complete compiler.[citation needed]

• 1959: The Conference on Data Systems Language (CODASYL) initiated development of COBOL.
The COBOL design drew on A-0 and FLOW-MATIC. By the early 1960s COBOL was compiled on
multiple architectures.

• 1958–1960: Algol 58 was the precursor to ALGOL 60. Algol 58 introduced code blocks, a key
advance in the rise of structured programming. ALGOL 60 was the first language to
implement nested function definitions with lexical scope. It included recursion. Its syntax was
defined using BNF. ALGOL 60 inspired many languages that followed it. Tony Hoare remarked: "... it
was not only an improvement on its predecessors but also on nearly all its successors."[19][20]

• 1958–1962: John McCarthy at MIT designed LISP.[21] The symbol processing capabilities provided
useful features for artificial intelligence research. In 1962, LISP 1.5 release noted some tools: an
interpreter written by Stephen Russell and Daniel J. Edwards, a compiler and assembler written by
Tim Hart and Mike Levin.

https://en.wikipedia.org/wiki/Autocode
https://en.wikipedia.org/wiki/Alick_Glennie
https://en.wikipedia.org/wiki/Manchester_Mark_I
https://en.wikipedia.org/wiki/Grace_Hopper
https://en.wikipedia.org/wiki/Remington_Rand
https://en.wikipedia.org/wiki/A-0_System
https://en.wikipedia.org/wiki/Compiler#cite_note-17
https://en.wikipedia.org/wiki/Compiler#cite_note-18
https://en.wikipedia.org/wiki/John_Backus
https://en.wikipedia.org/wiki/IBM
https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/Wikipedia:Citation_needed
https://en.wikipedia.org/wiki/COBOL
https://en.wikipedia.org/wiki/Algol_58
https://en.wikipedia.org/wiki/ALGOL_60
https://en.wikipedia.org/wiki/Algol_58
https://en.wikipedia.org/wiki/Block_(programming)
https://en.wikipedia.org/wiki/Structured_programming
https://en.wikipedia.org/wiki/ALGOL_60
https://en.wikipedia.org/wiki/Nested_function
https://en.wikipedia.org/wiki/Lexical_scope
https://en.wikipedia.org/wiki/Recursion
https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form
https://en.wikipedia.org/wiki/ALGOL_60
https://en.wikipedia.org/wiki/Tony_Hoare
https://en.wikipedia.org/wiki/Compiler#cite_note-19
https://en.wikipedia.org/wiki/Compiler#cite_note-r3rs-20
https://en.wikipedia.org/wiki/John_McCarthy_(computer_scientist)
https://en.wikipedia.org/wiki/MIT
https://en.wikipedia.org/wiki/Lisp_(programming_language)
https://en.wikipedia.org/wiki/Compiler#cite_note-21

Operating Systems Move to
High Level Languages
• Early operating systems and software were written in assembly language. In the

1960s and early 1970s, the use of high-level languages for system programming
was still controversial due to resource limitations. However, several research and
industry efforts began the shift toward high-level systems programming
languages, for example, BCPL, BLISS, B, and C.

• BCPL (Basic Combined Programming Language) designed in 1966 by Martin
Richards at the University of Cambridge was originally developed as a compiler
writing tool. Several compilers have been implemented, Richards' book provides
insights to the language and its compiler. BCPL was not only an influential
systems programming language that is still used in research but also provided a
basis for the design of B and C languages.

• BLISS (Basic Language for Implementation of System Software) was developed
for a Digital Equipment Corporation (DEC) PDP-10 computer by W. A. Wulf's
Carnegie Mellon University (CMU) research team. The CMU team went on to
develop BLISS-11 compiler one year later in 1970.

https://en.wikipedia.org/wiki/BCPL
https://en.wikipedia.org/wiki/BLISS
https://en.wikipedia.org/wiki/B_(programming_language)
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/BCPL
https://en.wikipedia.org/wiki/Martin_Richards_(computer_scientist)
https://en.wikipedia.org/wiki/Martin_Richards_(computer_scientist)
https://en.wikipedia.org/wiki/BLISS

Multics and UNIX High Level Languages

• Multics (Multiplexed Information and Computing Service), a time-sharing
operating system project, involved MIT, Bell Labs, General
Electric (later Honeywell) and was led by Fernando Corbató from MIT. Multics
was written in the PL/I language developed by IBM and IBM User Group. IBM's
goal was to satisfy business, scientific, and systems programming requirements.
There were other languages that could have been considered but PL/I offered the
most complete solution even though it had not been implemented. For the first
few years of the Multics project, a subset of the language could be compiled to
assembly language with the Early PL/I (EPL) compiler by Doug McIlory and Bob
Morris from Bell Labs. EPL supported the project until a boot-strapping compiler
for the full PL/I could be developed.

• Bell Labs left the Multics project in 1969, and developed a system programming
language B based on BCPL concepts, written by Dennis Ritchie and Ken
Thompson. Ritchie created a boot-strapping compiler for B and
wrote Unics (Uniplexed Information and Computing Service) operating system for
a PDP-7 in B. Unics eventually became spelled Unix.

https://en.wikipedia.org/wiki/Multics
https://en.wikipedia.org/wiki/MIT
https://en.wikipedia.org/wiki/Bell_Labs
https://en.wikipedia.org/wiki/General_Electric
https://en.wikipedia.org/wiki/General_Electric
https://en.wikipedia.org/wiki/Honeywell
https://en.wikipedia.org/wiki/Fernando_J._Corbat%C3%B3
https://en.wikipedia.org/wiki/PL/I
https://en.wikipedia.org/wiki/B_(programming_language)
https://en.wikipedia.org/wiki/Dennis_Ritchie
https://en.wikipedia.org/wiki/Ken_Thompson
https://en.wikipedia.org/wiki/Ken_Thompson
https://en.wikipedia.org/wiki/Unix

Evolution of C and C++
Higher Level Languages
• Bell Labs started the development and expansion of C based on B and BCPL. The BCPL

compiler had been transported to Multics by Bell Labs and BCPL was a preferred
language at Bell Labs.Initially, a front-end program to Bell Labs' B compiler was used
while a C compiler was developed. In 1971, a new PDP-11 provided the resource to
define extensions to B and rewrite the compiler. By 1973 the design of C language was
essentially complete and the Unix kernel for a PDP-11 was rewritten in C. Steve Johnson
started development of Portable C Compiler (PCC) to support retargeting of C compilers
to new machines.

• Object-oriented programming (OOP) offered some interesting possibilities for application
development and maintenance. OOP concepts go further back but were part
of LISP and Simula language science. Bell Labs became interested in OOP with the
development of C++. C++ was first used in 1980 for systems programming. The initial
design leveraged C language systems programming capabilities with Simula concepts.
Object-oriented facilities were added in 1983.The Cfront program implemented a C++
front-end for C84 language compiler. In subsequent years several C++ compilers were
developed as C++ popularity grew.

• In many application domains, the idea of using a higher-level language quickly caught on.
Because of the expanding functionality supported by newer programming languages and
the increasing complexity of computer architectures, compilers became more complex.

https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/LISP
https://en.wikipedia.org/wiki/Simula
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/Programming_language

DARPA and Ada High Level Language

• DARPA (Defense Advanced Research Projects Agency) sponsored a compiler
project with Wulf's CMU research team in 1970. The Production Quality Compiler-
Compiler PQCC design would produce a Production Quality Compiler (PQC) from
formal definitions of source language and the target. PQCC tried to extend the
term compiler-compiler beyond the traditional meaning as a parser generator
(e.g., Yacc) without much success. PQCC might more properly be referred to as
a compiler generator.

• PQCC research into code generation process sought to build a truly automatic
compiler-writing system. The effort discovered and designed the phase structure
of the PQC. The BLISS-11 compiler provided the initial structure.[38] The phases
included analyses (front end), intermediate translation to virtual machine (middle
end), and translation to the target (back end). TCOL was developed for the
PQCC research to handle language specific constructs in the intermediate
representation. Variations of TCOL supported various languages. The PQCC
project investigated techniques of automated compiler construction. The design
concepts proved useful in optimizing compilers and compilers for the (since 1995,
object-oriented) programming language Ada.

https://en.wikipedia.org/wiki/DARPA
https://en.wikipedia.org/wiki/PQCC
https://en.wikipedia.org/wiki/Yacc
https://en.wikipedia.org/wiki/Compiler#cite_note-38
https://en.wikipedia.org/wiki/Ada_(programming_language)

Ada Programming Language Evolution

• The Ada STONEMAN document formalized the program support
environment (APSE) along with the kernel (KAPSE) and minimal
(MAPSE).

• An Ada interpreter NYU/ED supported development and
standardization efforts with the American National Standards
Institute (ANSI) and the International Standards Organization (ISO).

• Initial Ada compiler development by the U.S. Military Services
included the compilers in a complete integrated design environment
along the lines of the STONEMAN document.

• Army and Navy worked on the Ada Language System (ALS) project
targeted to DEC/VAX architecture while the Air Force started on the
Ada Integrated Environment (AIE) targeted to IBM 370 series. While
the projects did not provide the desired results, they did contribute to
the overall effort on Ada development.

High Level Language Evolution Drives
Compiler Technology Evolution
• High-level languages continued to drive compiler research and development.

Focus areas included optimization and automatic code generation. Trends in
programming languages and development environments influenced compiler
technology.

• More compilers became included in language distributions (PERL, Java
Development Kit) and as a component of an IDE (VADS, Eclipse, Ada Pro). The
interrelationship and interdependence of technologies grew.

• The advent of web services promoted growth of web languages and scripting
languages. Scripts trace back to the early days of Command Line Interfaces (CLI)
where the user could enter commands to be executed by the system. User Shell
concepts developed with languages to write shell programs. Early Windows
designs offered a simple batch programming capability. The conventional
transformation of these language used an interpreter.

• While not widely used, Bash and Batch compilers have been written. More
recently sophisticated interpreted languages became part of the developers tool
kit. Modern scripting languages include PHP, Python, Ruby and Lua. (Lua is
widely used in game development.) All of these have interpreter and compiler
support.

Compiler Design and Implementation

• A compiler implements a formal transformation from a high-level source program
to a low-level target program. Compiler design can define an end-to-end solution
or tackle a defined subset that interfaces with other compilation tools e.g.
preprocessors, assemblers, linkers. Design requirements include rigorously
defined interfaces both internally between compiler components and externally
between supporting toolsets.

• In the early days, the approach taken to compiler design was directly affected by
the complexity of the computer language to be processed, the experience of the
person(s) designing it, and the resources available. Resource limitations led to
the need to pass through the source code more than once.

• A compiler for a relatively simple language written by one person might be a
single, monolithic piece of software. However, as the source language grows in
complexity the design may be split into a number of interdependent phases.
Separate phases provide design improvements that focus development on the
functions in the compilation process.

One Pass vs Multi-Pass Compilers
• Classifying compilers by number of passes has its background in the hardware resource limitations

of computers. Compiling involves performing much work and early computers did not have enough
memory to contain one program that did all of this work. So compilers were split up into smaller
programs which each made a pass over the source (or some representation of it) performing some
of the required analysis and translations.

• The ability to compile in a single pass has classically been seen as a benefit because it simplifies
the job of writing a compiler and one-pass compilers generally perform compilations faster
than multi-pass compilers. Thus, partly driven by the resource limitations of early systems, many
early languages were specifically designed so that they could be compiled in a single pass
(e.g., Pascal).

• In some cases, the design of a language feature may require a compiler to perform more than one
pass over the source. For instance, consider a declaration appearing on line 20 of the source which
affects the translation of a statement appearing on line 10. In this case, the first pass needs to
gather information about declarations appearing after statements that they affect, with the actual
translation happening during a subsequent pass.

• The disadvantage of compiling in a single pass is that it is not possible to perform many of the
sophisticated optimizations needed to generate high quality code. It can be difficult to count exactly
how many passes an optimizing compiler makes. For instance, different phases of optimization may
analyse one expression many times but only analyse another expression once.

https://en.wikipedia.org/wiki/One-pass_compiler
https://en.wikipedia.org/wiki/Multi-pass_compiler
https://en.wikipedia.org/wiki/Pascal_(programming_language)
https://en.wikipedia.org/wiki/Compiler_optimization

Three Stage Compiler Structure

Front End of Compiler

• The front end scans the input and verifies syntax and semantics
according to a specific source language. For statically typed
languages it performs type checking by collecting type information.

• If the input program is syntactically incorrect or has a type error, it
generates error and/or warning messages, usually identifying the
location in the source code where the problem was detected; in
some cases the actual error may be (much) earlier in the program.

• Aspects of the front end include lexical analysis, syntax analysis, and
semantic analysis. The front end transforms the input program into
an intermediate representation (IR) for further processing by the
middle end. This IR is usually a lower-level representation of the
program with respect to the source code.

https://en.wikipedia.org/wiki/Type_system
https://en.wikipedia.org/wiki/Type_system
https://en.wikipedia.org/wiki/Type_checking
https://en.wikipedia.org/wiki/Intermediate_representation

Front End Example: Lexer and Parser for C

Front End Activities
• Line reconstruction converts the input character sequence to a canonical form ready for the parser. Languages

which strop their keywords or allow arbitrary spaces within identifiers require this phase. The top-down, recursive-
descent, table-driven parsers used in the 1960s typically read the source one character at a time and did not require a
separate tokenizing phase. Atlas Autocode and Imp (and some implementations of ALGOL and Coral 66) are examples
of stropped languages whose compilers would have a Line Reconstruction phase.

• Preprocessing supports macro substitution and conditional compilation. Typically the preprocessing phase occurs
before syntactic or semantic analysis; e.g. in the case of C, the preprocessor manipulates lexical tokens rather than
syntactic forms. However, some languages such as Scheme support macro substitutions based on syntactic forms.

• Lexical analysis (also known as lexing or tokenization) breaks the source code text into a sequence of small pieces
called lexical tokens.[46] This phase can be divided into two stages: the scanning, which segments the input text into
syntactic units called lexemes and assigns them a category; and the evaluating, which converts lexemes into a
processed value. A token is a pair consisting of a token name and an optional token value.[47] Common token categories
may include identifiers, keywords, separators, operators, literals and comments, although the set of token categories
varies in different programming languages. The lexeme syntax is typically a regular language, so a finite state
automaton constructed from a regular expression can be used to recognize it. The software doing lexical analysis is
called a lexical analyzer. This may not be a separate step—it can be combined with the parsing step in scannerless
parsing, in which case parsing is done at the character level, not the token level.

• Syntax analysis (also known as parsing) involves parsing the token sequence to identify the syntactic structure of the
program. This phase typically builds a parse tree, which replaces the linear sequence of tokens with a tree structure
built according to the rules of a formal grammar which define the language's syntax. The parse tree is often analyzed,
augmented, and transformed by later phases in the compiler.[48]

• Semantic analysis adds semantic information to the parse tree and builds the symbol table. This phase performs
semantic checks such as type checking (checking for type errors), or object binding (associating variable and function
references with their definitions), or definite assignment (requiring all local variables to be initialized before use),
rejecting incorrect programs or issuing warnings. Semantic analysis usually requires a complete parse tree, meaning
that this phase logically follows the parsing phase, and logically precedes the code generation phase, though it is often
possible to fold multiple phases into one pass over the code in a compiler implementation.

https://en.wikipedia.org/wiki/Stropping_(syntax)
https://en.wikipedia.org/wiki/Top-down_parsing
https://en.wikipedia.org/wiki/Recursive_descent_parser
https://en.wikipedia.org/wiki/Recursive_descent_parser
https://en.wikipedia.org/wiki/Atlas_Autocode
https://en.wikipedia.org/wiki/Edinburgh_IMP
https://en.wikipedia.org/wiki/ALGOL
https://en.wikipedia.org/wiki/Coral_66
https://en.wikipedia.org/wiki/Preprocessor
https://en.wikipedia.org/wiki/Macro_(computer_science)
https://en.wikipedia.org/wiki/Conditional_compilation
https://en.wikipedia.org/wiki/Scheme_(programming_language)
https://en.wikipedia.org/wiki/Lexical_analysis
https://en.wikipedia.org/wiki/Compiler#cite_note-46
https://en.wikipedia.org/wiki/Compiler#cite_note-47
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Regular_language
https://en.wikipedia.org/wiki/Finite_state_automaton
https://en.wikipedia.org/wiki/Finite_state_automaton
https://en.wikipedia.org/wiki/Regular_expression
https://en.wikipedia.org/wiki/Lexical_analyzer
https://en.wikipedia.org/wiki/Scannerless_parsing
https://en.wikipedia.org/wiki/Scannerless_parsing
https://en.wikipedia.org/wiki/Syntax_analysis
https://en.wikipedia.org/wiki/Parsing
https://en.wikipedia.org/wiki/Parse_tree
https://en.wikipedia.org/wiki/Formal_grammar
https://en.wikipedia.org/wiki/Compiler#cite_note-48
https://en.wikipedia.org/wiki/Semantic_analysis_(compilers)
https://en.wikipedia.org/wiki/Parse_tree
https://en.wikipedia.org/wiki/Symbol_table
https://en.wikipedia.org/wiki/Type_checking
https://en.wikipedia.org/wiki/Object_binding
https://en.wikipedia.org/wiki/Definite_assignment_analysis
https://en.wikipedia.org/wiki/Parsing
https://en.wikipedia.org/wiki/Code_generation_(compiler)

Middle of Compiler Implementation

• The middle performs optimizations on the IR that are
independent of the CPU architecture being targeted. This
source code/machine code independence is intended to enable
generic optimizations to be shared between versions of the
compiler supporting different languages and target processors.

• Examples of middle optimizations are removal of useless (dead-
code elimination) or unreachable code (reachability analysis),
discovery and propagation of constant values (constant
propagation), relocation of computation to a less frequently
executed place (e.g., out of a loop), or specialization of
computation based on the context, eventually producing the
"optimized" IR that is used by the back end.

https://en.wikipedia.org/wiki/Dead-code_elimination
https://en.wikipedia.org/wiki/Dead-code_elimination
https://en.wikipedia.org/wiki/Reachability_analysis
https://en.wikipedia.org/wiki/Constant_propagation
https://en.wikipedia.org/wiki/Constant_propagation

Middle Compiler Optimization
• The middle also known as optimizer performs optimizations on the intermediate

representation in order to improve the performance and the quality of the
produced machine code. The middle end contains those optimizations that are
independent of the CPU architecture being targeted.

• The main phases of the middle end include the following:
• Analysis: This is the gathering of program information from the intermediate

representation derived from the input; data-flow analysis is used to build use-
define chains, together with dependence analysis, alias analysis, pointer
analysis, escape analysis, etc. Accurate analysis is the basis for any compiler
optimization. The control-flow graph of every compiled function and the call
graph of the program are usually also built during the analysis phase.

• Optimization: the intermediate language representation is transformed into
functionally equivalent but faster (or smaller) forms. Popular optimizations
are inline expansion, dead-code elimination, constant propagation, loop
transformation and even automatic parallelization.

• Compiler analysis is the prerequisite for any compiler optimization, and they
tightly work together. For example, dependence analysis is crucial for loop
transformation.

https://en.wikipedia.org/wiki/Compiler_analysis
https://en.wikipedia.org/wiki/Data-flow_analysis
https://en.wikipedia.org/wiki/Use-define_chain
https://en.wikipedia.org/wiki/Use-define_chain
https://en.wikipedia.org/wiki/Dependence_analysis
https://en.wikipedia.org/wiki/Alias_analysis
https://en.wikipedia.org/wiki/Pointer_analysis
https://en.wikipedia.org/wiki/Pointer_analysis
https://en.wikipedia.org/wiki/Escape_analysis
https://en.wikipedia.org/wiki/Control-flow_graph
https://en.wikipedia.org/wiki/Call_graph
https://en.wikipedia.org/wiki/Call_graph
https://en.wikipedia.org/wiki/Compiler_optimization
https://en.wikipedia.org/wiki/Inline_expansion
https://en.wikipedia.org/wiki/Dead-code_elimination
https://en.wikipedia.org/wiki/Constant_propagation
https://en.wikipedia.org/wiki/Loop_transformation
https://en.wikipedia.org/wiki/Loop_transformation
https://en.wikipedia.org/wiki/Automatic_parallelization
https://en.wikipedia.org/wiki/Dependence_analysis
https://en.wikipedia.org/wiki/Loop_transformation
https://en.wikipedia.org/wiki/Loop_transformation

Back End of Compiler Interpretation

• The back end takes the optimized IR from the middle end. It may
perform more analysis, transformations and optimizations that are
specific for the target CPU architecture.

• The back end generates the target-dependent assembly code,
performing register allocation in the process.

• The back end performs instruction scheduling, which re-orders
instructions to keep parallel execution units busy by filling delay
slots.

• Although most optimization problems are NP-
hard, heuristic techniques for solving them are well-developed and
implemented in production-quality compilers. Typically the output of a
back end is machine code specialized for a particular processor and
operating system.

https://en.wikipedia.org/wiki/Register_allocation
https://en.wikipedia.org/wiki/Instruction_scheduling
https://en.wikipedia.org/wiki/Execution_unit
https://en.wikipedia.org/wiki/Delay_slot
https://en.wikipedia.org/wiki/Delay_slot
https://en.wikipedia.org/wiki/NP-hardness
https://en.wikipedia.org/wiki/NP-hardness
https://en.wikipedia.org/wiki/Heuristic_(computer_science)

Back End Phases

• Machine dependent optimizations: optimizations that depend on the
details of the CPU architecture that the compiler targets.[A prominent
example is peephole optimizations, which rewrites short sequences
of assembler instructions into more efficient instructions.

• Code generation: the transformed intermediate language is
translated into the output language, usually the native machine
language of the system.

• This involves resource and storage decisions, such as deciding
which variables to fit into registers and memory and
the selection and scheduling of appropriate machine instructions
along with their associated addressing modes (see also Sethi–
Ullman algorithm).

• Debug data may also need to be generated to facilitate debugging.

https://en.wikipedia.org/wiki/Peephole_optimization
https://en.wikipedia.org/wiki/Code_generation_(compiler)
https://en.wikipedia.org/wiki/Machine_language
https://en.wikipedia.org/wiki/Machine_language
https://en.wikipedia.org/wiki/Register_allocation
https://en.wikipedia.org/wiki/Instruction_selection
https://en.wikipedia.org/wiki/Instruction_scheduling
https://en.wikipedia.org/wiki/Addressing_mode
https://en.wikipedia.org/wiki/Sethi%E2%80%93Ullman_algorithm
https://en.wikipedia.org/wiki/Sethi%E2%80%93Ullman_algorithm
https://en.wikipedia.org/wiki/Debugging

Three Stage Compiler Pipeline

• This front/middle/back-end approach makes it possible to
combine front ends for different languages with back ends for
different CPUs while sharing the optimizations of the middle
end.

• Practical examples of this approach are the GNU Compiler
Collection, Clang (LLVM-based C/C++ compiler), and
the Amsterdam Compiler Kit, which have multiple front-ends,
shared optimizations and multiple back-ends.

https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/GNU_Compiler_Collection
https://en.wikipedia.org/wiki/GNU_Compiler_Collection
https://en.wikipedia.org/wiki/Clang
https://en.wikipedia.org/wiki/LLVM
https://en.wikipedia.org/wiki/Amsterdam_Compiler_Kit

	Background Material for�The Engineering of Compilers and Machine Instruction Sets
	Outline
	What Is A Compiler?
	Many Types of Compilers
	Steps in Running a Compiler
	Compiler vs Interpreter
	High Level Language
	Initial High Level Languages
	Early Milestones in Compiler Technology
	Operating Systems Move to �High Level Languages
	Multics and UNIX High Level Languages
	Evolution of C and C++ �Higher Level Languages
	DARPA and Ada High Level Language
	Ada Programming Language Evolution
	High Level Language Evolution Drives Compiler Technology Evolution
	Compiler Design and Implementation
	One Pass vs Multi-Pass Compilers
	Three Stage Compiler Structure
	Front End of Compiler
	Front End Example: Lexer and Parser for C
	Front End Activities
	Middle of Compiler Implementation
	Middle Compiler Optimization
	Back End of Compiler Interpretation
	Back End Phases
	Three Stage Compiler Pipeline

