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An Example in Python: 
What Is the 27th Fibonacci Number?
• The simplest way to print Fibonacci numbers is using a while loop in 

Python. 
• We initialize two variables, a and b, with 0 and 1,, representing the 

series' starting numbers. 
• Inside the while loop, we print the current term and update the 

variables by adding them. 
• This continues recursively to generate the sequence
• We will implement this in other ways, then look at how many distinct

Apollo Guidance Computer instructions are needed to implement
each of these



An Example in Python
What Is the 27th Fibonacci Number?
• a, b = 0, 1
• n = 27
• while b < n:
• print(b)
• a, b = b, a+b
• Number of AGC distinct assembly language 

instructions to implement this=7



An Example in Python
Backtracking to Find 27th Fibonacci Number
• def fib(n, a=0, b=1):
• if n == 0:
• return a
• return fib(n-1, b, a+b)
• print(fib(27))
• Number of AGC distinct assembly language 

instructions to implement this=8



An Example in Python
Using Recursion to Find 27th Fibonacci Number
• def fib(n):
• if n <= 1:
• return n
• else:
• return fib(n-1) + fib(n-2)
• print(fib(27))
• Number of AGC distinct assembly language 

instructions to implement this=8



Using Dynamic Programming to Speed Up 
Recursion Calculation of 27th Fibonacci Number
• We can optimize the recursive solution using dynamic programming and 

memoization techniques. The basic idea is to store already computed 
terms in a lookup table. Before adding any term, we check if it exists in the 
lookup table. This avoids recomputing the words and makes the algorithm 
faster.

• memo = {0:0, 1:1}
• def fib_dynamic(n):
• if n in memo:
• return memo[n]
• memo[n] = fib_dynamic(n-1) + fib_dynamic(n-2)
• return memo[n]
• print(fib_dynamic(6))
• Number of AGC distinct assembly language instructions 

to implement this=9



Using Python LRU Cache to Improve 
Performance for 27th Fibonacci Number
• The Python lru_cache decorator can cache and reuse previously computed Fibonacci 

terms. This also prevents redundant calculations.
• from functools import lru_cache
• @lru_cache(maxsize=1000)
• def fib(n):
• if n == 0:
• return 0
• elif n == 1:
• return 1
• else:
• return fib(n-1) + fib(n-2)
• print(fib(5))
• Number of AGC distinct assembly language instructions to implement this=9



Comparing Fibonacci Algorithms
• The various algorithms have their pros and cons for generating the Fibonacci 

sequence.
• The loop method is the simplest to code but becomes slow for significant inputs.
• Recursion provides elegant code but has redundant function calls.
• Dynamic programming improves recursion by storing results.
• Caching further boosts efficiency by reusing prior computation.
• Recursion and dynamic programming follow the mathematical definition closely. 

Caching works best for iterative programs by caching previous results.
• The optimal algorithm depends on the use case, input size, and code complexity 

requirements. A mix of techniques can be used as well.
• Source: https://www.simplilearn.com/tutorials/python-tutorial/fibonacci-

series#:~:text=The%20simplest%20way%20to%20print,recursively%20to%20gene
rate%20the%20sequence.



Apollo Guidance Computer AGC

• The Apollo Guidance Computer (AGC) was a digital 
computer produced for the Apollo program that was installed on 
board each Apollo command module (CM) and Apollo Lunar 
Module (LM). 

• The AGC provided computation and electronic interfaces for 
guidance, navigation, and control of the spacecraft.[3] The AGC 
was the first computer based on silicon integrated circuits. 

• The computer's performance was comparable to the first 
generation of home computers from the late 1970s, such as 
the Apple II, TRS-80, and Commodore PET.[4]
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Apollo Guidance Computer AGC

• The AGC has a 16-bit word length, with 15 data bits and 
one parity bit. Most of the software on the AGC is stored in a 
special read-only memory known as core rope memory, 
fashioned by weaving wires through and around magnetic 
cores, though a small amount of read/write core memory is 
available.

• Astronauts communicated with the AGC using a numeric 
display and keyboard called the DSKY (for "display and 
keyboard", pronounced "DIS-kee"). The AGC and its DSKY user 
interface were developed in the early 1960s for the Apollo 
program by the MIT Instrumentation Laboratory and first flew in 
1966.

https://en.wikipedia.org/wiki/Word_(computer_architecture)
https://en.wikipedia.org/wiki/Parity_bit
https://en.wikipedia.org/wiki/Read-only_memory
https://en.wikipedia.org/wiki/Core_rope_memory
https://en.wikipedia.org/wiki/Magnetic_core
https://en.wikipedia.org/wiki/Magnetic_core
https://en.wikipedia.org/wiki/Core_memory
https://en.wikipedia.org/wiki/MIT_Instrumentation_Laboratory


Apollo Guidance Computer Registers

• The AGC had four 16-bit registers for general computational use, called the 
central registers:

• A: The accumulator, for general computation
• Z: The program counter – the address of the next instruction to be 

executed
• Q: The remainder from the DV instruction, and the return address after TC 

instructions
• LP: The lower product after MP instructions
• There were also four locations in core memory, at addresses 20–23, 

dubbed editing locations because whatever was stored there would 
emerge shifted or rotated by one bit position, except for one that shifted 
right seven bit positions, to extract one of the seven-bit interpretive op. 
codes that were packed two to a word.



Apollo Guidance Computer Instruction Set

• The instruction format used 3 bits for opcode, and 12 bits for address. 
Block I had 11 instructions: TC, CCS, INDEX, XCH, CS, TS, AD, and MASK 
(basic), and SU, MP, and DV (extra). 

• The first eight, called basic instructions, were directly accessed by the 3-bit 
op. code. 

• The final three were denoted as extracode instructions because they were 
accessed by performing a special type of TC instruction (called EXTEND) 
immediately before the instruction.

• Total number of instructions=33
• Total storage=2,048 words erasable magnetic storage + 36,864 words read 

only core rope memory (16 bit word: 15 bits data, 1 bit odd parity)=77.824 
kilobytes total storage



Apollo Guidance Computer Interpreter
• The AGC had a sophisticated software interpreter, developed by the MIT 

Instrumentation Laboratory, that implemented a virtual machine with more 
complex and capable pseudo-instructions than the native AGC. 

• These instructions simplified the navigational programs. Interpreted code, which 
featured double precision trigonometric, scalar and vector arithmetic (16 and 24-
bit), even an MXV (matrix × vector) instruction, could be mixed with native AGC 
code. 

• While the execution time of the pseudo-instructions was increased (due to the 
need to interpret these instructions at runtime) the interpreter provided many 
more instructions than AGC natively supported and the memory requirements 
were much lower than in the case of adding these instructions to the AGC native 
language which would require additional memory built into the computer (at that 
time the memory capacity was very expensive). The average pseudo-instruction 
required about 24 ms to execute. The assembler, named YUL for an early 
prototype Christmas Computer,[ enforced proper transitions between native and 
interpreted code.



Example: System 360 Instruction Set Classes

• Branch Instructions, which jump from one part of a program to another
• Data Transfer Instructions, which move data from one part of memory 

(including registers)
• Control Flow Instructions, which make changes in the scope of execution of 

a program
• Arithmetic Instructions, which do computations
• Logic Instructions, which make comparisons
• Shift and Rotate Instructions, which move bits right or left,
• Privileged Instructions, used by the operating system or other programs 

having special permission, primarily to do input/output or to control the 
operations of the machine, and

• Other Instructions, instructions not otherwise classified



Example: DEC PDP1 Instruction Set
• The PDP-1 (Digital Equipment Corporation Programmed Data Processor – 1) uses the following instruction 

format:
• 1 1 1 1 1 1 1 1
• 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7    bits
• ┌──────┴───┬─┼─────┴─────┴─────┴─────┐
• │  opcode  │i│   address / operand   │   instruction format
• └──────────┴─┴───────────────────────┘
• The standard memory of 4k 18-bit words is in the address space from 00000 to 77777 (octal). Additional 

memory is addressible either by an extended address mode or by bank switching. There are 6 program flags 
and 6 sense switches. The console test word is a normal 18-bit register.

• The PDP-1 uses 1's complement to represent negative numbers. There are two user addressible register, the 
accumulator (AC) and the I/O register (IO), which might be combined to a single 36 bit register for shifts and 
rotates. Further, there is an overflow flag (set in instructions add and sub), a program counter (PC), and an 
internal memory buffer (MB). Addresses and values are usually referred to in octal format (since memory 
words, addresses, and any parameters are multiples of 3 and a nibble of 3 bits is forming a single octal digit).



What Is Code Generation?

• In computing, code generation is part of the process chain of a compiler 
and converts intermediate representation of source code into a form (e.g., 
machine code) that can be readily executed by the target system.

• Sophisticated compilers typically perform multiple passes over various 
intermediate forms. This multi-stage process is used because many 
algorithms for code optimization are easier to apply one at a time, or 
because the input to one optimization relies on the completed processing 
performed by another optimization. 

• This organization also facilitates the creation of a single compiler that can 
target multiple architectures, as only the last of the code generation stages 
(the backend) needs to change from target to target. 



Code Generation Input/Output

• The input to the code generator typically consists of a parse tree or an 
abstract syntax tree.

• The tree is converted into a linear sequence of instructions, usually in 
an intermediate language such as three-address code. 

• Further stages of compilation may or may not be referred to as "code 
generation", depending on whether they involve a significant change 
in the representation of the program.

• For example, a peephole optimization pass would not likely be called "code 
generation", although a code generator might incorporate a peephole 
optimization pass.



Code Generation Basics

• Instruction selection: which instructions to use.
• Instruction scheduling: in which order to put those instructions. 

Scheduling is a speed optimization that can have a critical effect on 
pipelined machines.

• Register allocation: the allocation of variables to processor registers
• Debug data generation if required so the code can be debugged.



Instruction Set Implementation Tradeoffs
• The design of instruction sets is a complex issue. There were two 

stages in history for the microprocessor. The first was the CISC 
(Complex Instruction Set Computer), which had many different 
instructions. 

• In the 1970s, however, places like IBM did research and found that 
many instructions in the set could be eliminated. The result was the 
RISC (Reduced Instruction Set Computer), an architecture that uses a 
smaller set of instructions. 

• A simpler instruction set may offer the potential for higher speeds, 
reduced processor size, and reduced power consumption. 

• However, a more complex set may optimize common operations, 
improve memory and cache efficiency, or simplify programming.



Instruction Set Architecture
• In computer science, an instruction set architecture (ISA) is an abstract model of a 

computer. A device that executes instructions described by that ISA, such as a 
central processing unit (CPU), is called an implementation.

• In general, an ISA defines the supported instructions, data types, registers, the 
hardware support for managing main memory, fundamental features (such as the 
memory consistency, addressing modes, virtual memory), and the input/output 
model of a family of implementations of the ISA.

• An ISA specifies the behavior of machine code running on implementations of 
that ISA in a fashion that does not depend on the characteristics of that 
implementation, providing binary compatibility between implementations. This 
enables multiple implementations of an ISA that differ in characteristics such as 
performance, physical size, and monetary cost (among other things), but that are 
capable of running the same machine code, so that a lower-performance, lower-
cost machine can be replaced with a higher-cost, higher-performance machine 
without having to replace software. It also enables the evolution of the 
microarchitectures of the implementations of that ISA, so that a newer, higher-
performance implementation of an ISA can run software that runs on previous 
generations of implementations.



Instruction Selection

• Instruction selection is typically carried out by doing a recursive postorder
traversal on the abstract syntax tree, matching particular tree configurations 
against templates; for example, the tree W := ADD(X,MUL(Y,Z)) might be 
transformed into a linear sequence of instructions by recursively generating the 
sequences for t1 := X and t2 := MUL(Y,Z), and then emitting the instruction ADD 
W, t1, t2.

• In a compiler that uses an intermediate language, there may be two instruction 
selection stages—one to convert the parse tree into intermediate code, and a 
second phase much later to convert the intermediate code into instructions from 
the instruction set of the target machine. 

• This second phase does not require a tree traversal; it can be done linearly, and 
typically involves a simple replacement of intermediate-language operations with 
their corresponding opcodes. However, if the compiler is actually a language 
translator (for example, one that converts Java to C++), then the second code-
generation phase may involve building a tree from the linear intermediate code.



Runtime Code Generation

• In instances where code generation takes place during runtime, such 
as in just-in-time compilation (JIT), it becomes crucial for the entire 
process to be efficient in terms of both space and time. 

• For instance, when interpreting regular expressions and generating 
code on-the-fly, a non-deterministic finite state machine is frequently 
preferred over a deterministic one. 

• This preference arises because the former can typically be generated 
more swiftly and requires less memory space. Despite the tendency 
to produce less efficient code, JIT code generation can leverage 
profiling information that is accessible only during runtime.



Related Concepts

• The fundamental task of taking input in one language and producing 
output in a non-trivially different language can be understood in terms of 
the core transformational operations of formal language theory. 
Consequently, some techniques that were originally developed for use in 
compilers have come to be employed in other ways as well. 

• For example, YACC (Yet Another Compiler-Compiler) takes input in Backus–
Naur form and converts it to a parser in C. Though it was originally created 
for automatic generation of a parser for a compiler, yacc is also often used 
to automate writing code that needs to be modified each time 
specifications are changed.

• Many integrated development environments (IDEs) support some form of 
automatic source-code generation, often using algorithms in common with 
compiler code generators, although commonly less complicated. 



An Example Revisited

• To implement the example requires 7 out of 33 different machine 
instructions actually available

• This suggests that only a small subset of machine instructions will 
determine performance (e.g., lines of source code compiled per 
second, lines of source code executed per second)



Reflection

• In general, a syntax and semantic analyzer tries to retrieve the 
structure of the program from the source code, while a code 
generator uses this structural information (e.g., data types) to 
produce code. 

• In other words, the former adds information while the latter loses
some of the information. 

• One consequence of this information loss is that reflection becomes 
difficult or even impossible. To counter this problem, code generators 
often embed syntactic and semantic information in addition to the 
code necessary for execution.
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