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1. 

OMNI-PROTOCOL ENGINE FOR 
RECONFIGURABLE BITSTREAM 

PROCESSING IN HIGH-SPEED NETWORKS 

RELATED APPLICATIONS 

The present invention claims the benefit of priority to U.S. 
Provisional Patent Application No. 60/710,561, entitled 
“Omni-Protocol Engine for Reconfigurable Bit-Stream Pro 
cessing in High-Speed Networks, filed Aug. 23, 2005, U.S. 
Provisional Patent Application No. 60/761,129, entitled 
“Shelf Management Controller with Hardware/Software 
Implemented Dual Redundant Configuration', filed Jan. 23, 
2006, U.S. Provisional Patent Application No. 60/820,243, 
entitled “Telecommunication and Computing Platforms Hav 
ing AdvancedTCA Based Packaging and Ethernet Switched 
Fabric', filed Jul. 25, 2006, and U.S. Provisional Patent 
Application No. 60/822,181, entitled “Enhanced Ethernet 
Protocol for Shortened Data Frames Within a Constrained 
Neighborhood based on Unique ID', filed Aug. 11, 2006, the 
disclosures of each of which are hereby incorporated by ref 
CCC. 

FIELD OF THE INVENTION 

The present invention relates generally to the field of data 
communications in a network. More specifically, the present 
invention relates to a reconfigurable, protocol indifferent bit 
stream-processing engine, and to related systems and data 
communication methodologies, adapted for high-speed net 
works operating at speeds of at least 10 gigabits per second. 

BACKGROUND OF THE INVENTION 

Traditionally, networks have been divided into different 
kinds of infrastructures or fabrics based on the purpose of a 
given network. As a result, different kinds of networks have 
been developed for storage networks, communication net 
works and processor networks, each having different proto 
cols and different network requirements and each designed to 
meet the particular requirements for data communication 
within that fabric. 

In the case of processor networks, network performance is 
a critical element in high-performance cluster computing 
(HPCC) applications. Typically, HPCC applications run for 
extended periods of time and require Sustained I/O of large 
datasets over the network between processors as well as 
between the client and server. Predictably, the infrastructure 
must be capable of Supporting multi-gigabit bandwidth, low 
latency, very high availability services that are an absolute 
requirement for high-end cluster inter-process communica 
tions. Conventionally, HPCC networks utilize Switched 
Gigabit Ethernet. Proprietary protocols such as, for example, 
Myrinet, InfiniBand and Quadrics also find widespread use in 
connecting processing clusters in a HPCC environment. 
The need for massive amounts of data necessitates that the 

networked processors in a HPCC application, for example, be 
efficiently connected to a storage network fabric. Conven 
tionally, HPCC supporting infrastructure includes either a 
storage attached network (SAN) switching fabric Such as a 
Fibre Channel switch, or a Gigabit Ethernet-based network 
attached storage (NAS) environment. Fibre Channel is the 
dominant protocol and transport for a SAN fabric because of 
multi-gigabit speeds and transport protocols that are opti 
mized for moving massive amounts of block storage data 
between clients and storage devices. 
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2 
Internet Protocol (IP) communication networks tend to 

dominate the fabric for communications among different 
HPCC applications, as well as general communications 
among clients and servers over the broader Internet fabric. 
Some storage networks have adopted piggyback protocols 
Suitable for moving block storage data over IP storage net 
works such as Internet SCSI (iSCSI), Internet Fibre Channel 
Protocol (iFCP), and Fibre Channel over IP (FCIP). These 
piggyback protocols, however, do not necessarily permit 
direct inter-operability between communication networks 
and storage networks. 
The goal of providing inter-fabric interoperability across 

these different kinds of network fabrics is a well-known goal. 
While it may be straightforward to achieve this goal in the 
context of low speed networks where all of the processing 
required in the network could be accomplished with standard 
programmable processors, such a solution is simply not 
viable at the high communication speeds required for high 
speed networks operating at 10 gigabits per second and 
higher. For the most part, specialized adapters have been used 
to make the transition between a specific protocol at the fabric 
and a common protocol at a central Switch node. Although 
this approach may be transparent to the end-user, it is readily 
apparent to one skilled in the art that such a patchwork of 
adapters presents an exponentially exploding problem in 
terms of the ever-growing number of protocols. The ability to 
provide a high speed network switch that would be capable of 
handling multiple protocols is a solution that at least some 
network equipment makers do not believe is possible. Silvano 
Gai, “Toward a unified architecture for LAN/WAN/WLAN/ 
SAN switches and routers. pp. 23, HSPR 2003, Cisco Sys 
tems, Inc. (noting the non-availability of a 10 Gb/s cheap 
LAN switch). Accordingly, there is a need to find a solution to 
the goal of providing inter-fabric interoperability among net 
works that is both efficient and scalable for high-speed net 
works. 

SUMMARY OF THE INVENTION 

The present invention provides a reconfigurable, protocol 
indifferent bit stream-processing engine, and related systems 
and data communication methodologies, that are adapted to 
achieve the goal of providing inter-fabric interoperability 
among high-speed networks operating a speeds of at least 10 
gigabits per second. The bit-stream processing engine oper 
ates as an omni-protocol, multi-stage processor that can be 
configured with appropriate Switches and related network 
elements to create a seamless network fabric that permits 
interoperability not only among existing communication pro 
tocols, but also with the ability to accommodate future com 
munication protocols. The method and systems of the present 
invention are applicable to networks that include storage net 
works, communication networks and processor networks. 

In one embodiment of the invention, the omni-protocol 
processing engine operates as a data flow processing engine 
that includes both an ingress portion and an egress portion, 
each portion having at least one bit-stream stage processor. 
Preferably, each stage processor is optimized for a particular 
stage in the data flow. Conceptually, the data flow processing 
engine works much like a production assembly line in that as 
the flow of data moves through the processing engine differ 
ent processing is accomplished as different stages of the 
assembly line, and all of the processing is timed to the flow of 
the data. The flow of data through the processing engine is 
established at a rate that will permit continued operation of 
the processing engine at the line speed of the network(s) to 
which the processing engine is connected. The data flow 
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model utilized in this embodiment avoids the need for deep 
and extensive buffer management in order to keep track of 
data as would be necessary in a conventional protocol pro 
cessor. Furthermore, the engines in any stage are inherently 
cascadable to Support Scalability. 

In one embodiment of the omni-protocol processing 
engine (OPE), the multiple stages include at least an ingress 
stage bit-stream processor, a secondary stage state machine, a 
traffic processor, a scheduler and an egress stage bit-stream 
processor. The ingress stage bit-stream processor interfaces 
with the physical layer of the data flow and establishes frames 
and/or flows for the bit stream in accordance with a protocol 
determined for the bit-stream. The secondary stage state 
machine parses the frames/flows in accordance with the 
determined protocol, preferably using a programmable Very 
Long Instruction Word (VLIW) flow classifier that pipelines 
key generation. Frame/flow processing is handled by the traf 
fic processor. The scheduler manages the data flow output 
from the traffic processor and the egress stage bit-stream 
processor interfaces with the physical layer of the data flow 
out of the omni-protocol processing engine. All of the stages 
are dynamically reconfigurable and reprogrammable to per 
mit the OPE to be protocol indifferent. 

In one embodiment, the secondary stage state machine and 
the traffic processor utilize a novel key lookup arrangement to 
improve the efficiency of the OPE. The traffic processor can 
be implemented as a multiple-segmented data flow processor 
arrangement where the segments in the traffic processor are 
implemented dependent upon the given protocol of a frame/ 
flow. In the embodiment of the traffic processor, the multiple 
segmented data flow processors implement an arbitrated and/ 
or time-division multiplexing (TDM) approach to accessing a 
common shared buffer memory where the data flow of the 
frame/flow resides. In this way, there is no need for each data 
flow processor to copy some or all of the data in the frame/ 
flow into an internal buffer in that processor in order to pro 
cess that data. Moreover, the data flow processors can be 
cascaded and extensible as a result of both stage abstraction 
and clock abstraction. 

In one embodiment of the present invention, an omni 
protocol, 48 port, non-blocking QoS Gigabit Switch is imple 
mented using four OPEs interfaced with a SPI 4.2 digital 
switch. In this embodiment, each OPE is interfaced with 12 
SerDes ports for external connections and three SPI 4.2 ports 
for connection to the SPI 4.2 digital switch. When located in 
the middle of a storage network, HPCC processor cluster, 
intranet and internet communication network, Such a Switch 
effectively operates as a convergent fabric permitting proto 
col indifferent network connections among any or all of these 
networks. This embodiment of the present invention provides 
an intelligent Switching solution in that the Switch is program 
mable-on-the-fly as well as reconfigurable allowing each 
packet to be handled differently (i.e. 100% packet-by-packet 
routing at 10Gbps for example) according to instantaneously 
reprogrammed/reconfigured OPE's that comprise the “port 
processors.” or the digital switch that forms the central 
Switching fabric. In this manner, the Switching Solution pro 
vides a high performance (>=10Gbps per port bandwidth), 
low latency (<5usec Switching), protocol independent, policy 
based Switching that is scalable to thousands of nodes, 
interoperable with existing network infrastructure, provides 
telco reliability/fault tolerance (i.e Five 9’s availability) in a 
cost effective manner. 

In another embodiment of the present invention, the OPEs 
and associated network elements are all dynamically recon 
figurable and programmable using a register access control 
(RAC) and Submodule access control (SAC) arrangement 
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4 
with a GUI management system that manages code genera 
tion, flow control, performance profiling and statistics, as 
well as diagnostics and maintenance for the system. In a 
specific embodiment, the GUI management system includes 
a module for virtually designing the system, a simulation 
engine capable of simulating the expected performance of the 
as-designed architecture in a “WhatYou See Is WhatYou Get 
fashion and a Code Generator (Micro Code Manager) that 
generates the microcode for reprogramming the OPE and any 
other reprogrammable/reconfigurable network device if 
required. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIGS. 1A and 1B are functional block diagrams of an 
Omni-Protocol Engine in accordance with one embodiment 
of the present invention. 

FIG. 2 is a more detailed block diagram of the Ingress Data 
Flow of the OPE of FIG. 1. 
FIG.3 is a state diagram of a Packet State Machine imple 

mented as part of the Ingress Data Flow as shown in FIG. 2. 
FIG. 4 is a more detailed block diagram of the Egress Data 

Flow of the OPE of FIG. 1. 
FIGS. 5 and 6 are schematic representations of a pre 

processor packet framing system comprising an initial por 
tion of the multi-stage engine according to one embodiment 
of the present invention. 

FIG. 7 is a block diagram of one embodiment of a bit 
stream stage processor in accordance with the present inven 
tion that implements a pre-processor. 

FIGS. 8A and 8B are schematic illustrations of the General 
Ethernet Format from XGMII and the General Format of 
Ethernet. 

FIGS. 9-11 are schematic diagram of selected portions of 
the multi-stage OPE. 

FIG. 12 is a schematic diagram of the programmable state 
machine of one embodiment of the present invention. 

FIG. 13 is an exemplary extensible table for the program 
mable state machine of FIG. 12. 

FIG. 14 is an exemplary state diagram for the program 
mable state machine of FIG. 12. 

FIG. 15 is an exemplary table for the programmable 
decode table. 

FIG. 16 shows a more complete figure of the basics func 
tions block of the Pre-Processor framer. 

FIG. 17 illustrates a method of increasing input selection, 
and the ability to have sub state within states. 

FIG. 18 illustrates a method of expanding the output con 
trol coming from the state machine. 

FIG. 19 shows mask compare logic that can be selected by 
the state machine. 

FIG. 20 is an Ethernet flow chart example that could be 
programmed by this state machine. 

FIG. 21 is a block diagram of the overall flow control in 
accordance with one embodiment of the present invention. 

FIG. 22 is a schematic illustrating the operation of the 
RAC/SAC to monitor and control the operation of the inter 
connected Stages of the OPE. 

FIG. 23 is a schematic of a standard Ethernet Frame 
encountered at the ingress device according to the present 
invention. 

FIGS. 24 and 25 are schematic representations illustrating 
the operational configuration of the Programmable State 
Machine and the Mask and Compare circuit according to one 
embodiment of the present invention. 

FIG. 26 schematically depicts an exemplary frame classi 
fier according to one embodiment of the instant invention. 
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FIG. 27 illustrates Stage-0 and Stage-1 engines operating 
in a feedback loop according to an exemplary embodiment of 
the instant invention. 

FIG. 28 is a schematic of an extensible frame processor 
according to a specific embodiment of the invention where 
the frame processor includes P-SerDes and core engines. 

FIGS. 29, 30 and 31 schematically depict a HPC port card 
featuring the Omni Protocol Engine of the instant invention. 

FIG. 32 is an embodiment of an exemplary switch using 
third-party FPGAs to implement a switching fabric. 

FIG. 33 is a schematic of a switch in accordance with a 
general embodiment of the instant invention. 

FIGS. 34A and 34B are schematics illustrating an ATMCA 
mTCAFAT Pipe Switch according to a specific embodiment 
of the instant invention. 

FIGS. 35A and 35B are exemplary of the programming 
model and environment. 

FIGS. 36A and 36B show a block diagram illustrating the 
shelf management controller (ShMC) according to a primary 
embodiment of the present invention. 
FIG.37A illustrates an exemplary I2Chardware finite state 

machine (HFSM) implementation according to the present 
invention. 

FIG. 37B is a block diagram illustrating an exemplary 
implementation of bridging between devices using various 
interfaces. 

FIG.38 illustrates a block diagram of one embodiment of 
a bit stream protocol processor in accordance with one 
embodiment of the present invention. 

FIG. 39 illustrates a block diagram of another embodiment 
of a bit stream protocol processor in accordance with one 
embodiment of the present invention. 

FIG. 40 is a block diagram of the data flow arrangement in 
accordance with one embodiment of the present invention. 

FIG. 41 is a block diagram of the abstraction of the present 
invention in term of different OSI Levels. 

DETAILED DESCRIPTION OF THE PREFERRED 
EMBODIMENTS 

The present invention comprises novel apparatus, system 
and method for wire-speed data path processing in a network. 
FIG. 1A illustrates a block diagram of one embodiment of a 
system in accordance with the present invention. Central to 
this embodiment is an Omni-Protocol Engine (OPE). The 
OPE is a protocol indifferent bit-stream, multi-stage proces 
sor which includes the dual functionality of: 1) assembling 
the bits in the bit-stream into an appropriate defined protocol 
data units according to the relevant protocol, and 2) process 
ing the assembled protocol data units to provide wire-speed 
throughput regardless of the protocol encountered. Unlike the 
specialized adapters prevalent in the prior art, both of these 
functions in the OPE are dynamically programmable. Thus, 
either or both the protocol data units for a given protocol or 
the processing rules that apply to the protocol data units are 
changeable in a dynamic manner. 

For purposes of the present invention unless otherwise 
indicated, the term protocol refers to a serialized packet com 
munication protocol having defined grouping(s) of control 
bits and data or information bits (which may be null), all of 
which follows a set of standard instructions or rules. Table 1 
provides an outline of some of the attributes of one embodi 
ment of the omni-protocol engine of the present invention. 
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TABLE 1 

Attribute Details 

1 On-the-fly in-process redefinition of the machine 
Programmability 

2 Programmable? 
Dynamic Multi 
Protocol Support 

instruction set for example 
“Standard and “Enhanced Ethernet 
Pv4, IPv6, MPLS 
infiniband 
Advanced Switching? PCI-Express 
Fibre Channel 
SONET, ATM 
User-defined, custom protocols 
Layer 2 to 4 programmable classification 
Support for 1M flows down to 64 Kbps 
granularity with aging rules 
Programmable Traffic Mgmt, Shaping & 
Policing 
Protocol Encapsulation 
VLAN, VSAN, VCAN support 
Flow Control, Congestion Management 
Flexible TCPIP Ofload 
iSCSI, iSER, RDMA 
MPLS, DiffServ 
industry Standard management information 
bases i.e. a set of variables that conform to 
he Internet standard MIB II or other 
internet standard MIBs. MIB II is 
documented in RFC 1213, Management 
information Base for Network Management 
of TCP/IP-based Internets: MIB-II. 

3 Programmable 
Higher Layer 
Features 

4 Application 
Support 

5 Industry Standard 
MIBS 

As shown in FIG. 1B, the OPE is a multi-stage processor 
arrangement in that it comprises several unique processing 
blocks. Each block is optimized for omni-protocol flow pro 
cessing functions. Each processing block provides “Gates' 
along the data path for additional processing at wire speed. 
The Gate interfaces use both the High Speed Serial I/O lanes 
as well as the High Speed Parallel lanes to meet the latency 
requirements of the processing blocks. The states, features 
and functional parameter of each processing block are pref 
erably programmable “on-the-fly” as will be described. As a 
result, the OPEs are both re-programmable and re-config 
urable. 

Referring to FIG. 41, at a basic level each stage or process 
ing block can be abstracted in terms of constituent compo 
nents, data flow dependencies between the components and 
control structures that alter the data flow dependencies. At the 
highest level of abstraction, each stage implements a generic 
interface that implements control structures to enable the 
stage to accept an input packet flow object and output a 
processed packet flow object as well as meta data object 
associated with either or both of the input and processed 
packet flows. Each stage is a member of a base class. Each 
base class implements an interface that is specified by the set 
of methods it implements for the base class. At an intermedi 
ate level of abstraction, each base class may be extended by 
adding additional modules that extend the capabilities of the 
base class and form a sub-class. Each sub-class implements 
its own sub-class interface that provides additional methods 
that extend the functionality of the base class methods. At the 
lowest level of abstraction, the interface provided by the 
sub-class can be further extended by providing other methods 
and/or by adding Sub-modules to provide components that 
did not exist in the base class. The class and its Sub-classes are 
reconfigurable by changing the methods and the objects that 
the methods will act on. In this manner, each stage of the bit 
stream processor may be programmably reconfigured to pro 
vide differentiated resources and services. In this manner, the 
various stages are configured into a data (packet) flow 
machine with a protocol independent architecture. 
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The frame is defined as a stream of bits, where the meaning 
of each and every bit is defined by one or more pre-defined 
protocol framing rules. The abstraction model has a method 
to accept as input a stream of bits. The meaning of each and 
every bit is abstracted by the method so that each stage is 
capable of accepting a stream of bits. Protocol processing is 
defined by another method which performs a set of actions 
based on information in one or more bits of the stream of bits, 
located any where with in the bit stream. Any class or sub 
class that can implement such as method can potentially carry 
out the protocol processing step. In an alternate embodiment, 
each class or Sub-class can be programmed to process a par 
ticular protocol by implementing a method in a generic inter 
face presented by the class or sub-class. The details of the 
implementation are can thus be “hidden' behind the method 
or methods to allow code and component reuse. The result of 
the abstraction is that the data flow architecture is essentially 
a series of pipelined, predictable latency stages arranged Such 
that the processing in a given stage is completed in the inter 
packet gap interval i.e. before the next packet arrives. 
The abstraction of each stage permits the addition of one or 

more pipeline Sub-stages to each stage. Each Sub-stage in a 
stage of the pipe line completes its action on the packet in a 
time equal to the packet arrival time divided by the number of 
Sub-stages within a stage. Thus, a first stage may comprise of 
Sub-classes that implement methods for packet decoding i.e 
it creates meta-data about the data packet. The meta-data may 
contain information about the location of certain protocol 
specific bit patterns within an incoming packet stream. In this 
respect, the packet decoder “analyzes the frame (a defined 
stream of bits). Note that the term “implements” is used 
hereinto signify an implementation interms of one or more of 
firmware and hardware. Any firmware, hardware or firm 
ware-hardware combination that implements the basic func 
tions described above may be used to implement the methods 
referenced above. For example, the packet decoding stage 
may be implemented as a programmable state machine with 
compare accelerators. Given a protocol type, the PSM 
extracts the fields in the packet needed by the stage processors 
for address look-up for instance. The packet decoder per 
formsLayer2/Layer3/Layer4 parsing to extract information 
from the headers of these three layers. Therefore, the methods 
that implement this functionality can be tailored to process 
the protocols of these three layers and thus extend the base 
class. 

In one embodiment, an ingress portion and an egress por 
tion of the data flow processing engine each have multiple bit 
stream stage processors that are interfaced with a multi-port 
data flow packet memory. Each bit stream stage processor is 
provided with a unique instruction memory In one embodi 
ment, a first Switch bus is connected between the data flow 
packet memory and a fabric interface and processor interface 
and a second switch bus is connected between the data flow 
packet memory and the multiple bit stream stage processors. 
In this embodiment, a third switch bus is connected between 
the multiple bit stream stage processors and a common 
memory interface. The common memory interface can con 
nect with external memory or with a content-addressable 
memory (CAM) interface. 

In one embodiment, the OPE supports a set of common 
processing blocks that are needed for most commonly 
encountered protocols. Additional features, like compute 
intensive protocol processing, can be implemented by adding 
proprietary programmable, multifunction processing blocks. 
These compute processing blocks are also capable of “on-the 
fly' programmability endowing the OPE with the extensibil 
ity required to operate in any protocol environment without 
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8 
incurring the type of cost or performance penalty that is 
characteristic of prior art attempts to attain a converged net 
work fabric. In effect, the OPE enables a converged fabric by 
providing a multiprotocol processing capability i.e. the abil 
ity to merge dissimilar components of a computing center 
without the need for gateways and Switches among the dif 
ferent high speed protocols. The OPE solution works on OSI 
layers 2-7. 

In one embodiment, the processing blocks of the OPE are 
preferably programmed by means of a GUI based code gen 
erator as described in U.S. Pat. No. 6,671,869 entitled 
“Method and Apparatus for Graphically Programming a Pro 
grammable Circuit, the disclosure of which is hereby incor 
porated by reference. The protocol templates are presented 
and the actions on the specific fields are dragged and dropped 
to the action buckets whereby the system generates Commu 
nication Engine Code. Additionally, the GUI shows the 
expected performance of the engine, in “What You See Is 
What You Get' fashion. The system prompts the user for 
actions needed to get maximum performance. In a chip envi 
ronment these capabilities are used to select the appropriate 
link speeds. In a programmable platform environment, Such 
as for example the FPGA, a higher capacity chip can be 
selected. 

In a specific embodiment of this GUI based code generator 
as illustrated in FIGS. 35A and 35B, the protocol templates 
are presented and the actions on the specific fields are dragged 
and dropped to the action buckets. The system generates 
Communication Engine Code and shows the expected per 
formance of the engine, in “What You See Is What You Get” 
fashion. This system prompts the user for actions needed to 
get maximum performance. In a Chip environment these 
capabilities could be used to select the appropriate link 
speeds. In an Programmable platform environment (like the 
FPGA example earlier) higher Capacity Chip could be 
selected. 
The “on-the-fly” functionality may be provided by, for 

example, by a field-programmable gate array in conjunction 
with one or more general-purpose processors (CPUs) sharing 
a common local bus. One Such approach is disclosed in U.S. 
Pat. No. 6,721,872 titled “Reconfigurable Network Interface 
Architecture, the disclosure of which is hereby incorporated 
by reference. An alternative approach for providing Such "on 
the-fly” functionality is described in “Media Processing with 
Field-Programmable Gate Arrays on a Microprocessors 
Local Bus’, Bove Jr. et al., MIT Media Lab, Cambridge, 
Mass. 02139 USA, the disclosure of which is hereby incor 
porated by reference. 

Referring now to FIG. 2, one embodiment of the Ingress 
Operation of the OPE shown in FIG. 1 will be described. Port 
Aggregation involves physical layer protocol framing typical 
of PHY and MAC devices and translating the media specific 
packet data into SPI4.2 burst frames. Small SPI4.2 bursts 
from multiple ports are passed to the SPI4.2 Engine in round 
robin, Time Division Multiplexed fashion. The SPI4.2 chan 
nel is divided into time slots based upon the number of ports 
being aggregated; an 8 port aggregator divides the SPI4.2 
channel into 8 equal divisions. Idle bursts are generated on the 
bus for slots for ports which are inactive or have no data to 
transfer. 
The MAC devices for this embodiment are 8x1 GbE MAC 

chip (“MAC chip'). The MAC chip will be configured for 
what is termed "burst-interleaved' mode, which means that a 
configurable number of bytes (32 bytes, for example) of Eth 
ernet packet data from each 1GbE MAC will be scheduled, in 
round robin (port 0 to port 9) fashion for transmission to the 
SPI-4.2 interface. Bursts from the 1 GbE MACs are then 
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interleaved and transmitted on the SPI-4.2 bus. Runt bursts 
(bursts smaller than 32 bytes) are possible at the start and end 
of packet delimiters. Operations on the Ethernet Packet per 
formed by the MAC chip include: (1) stripping the preamble 
and Start of Frame Delimiter (SFD) and (2) retaining the FCS. 
The SPI-4.2 Engine preferably includes a core that pro 

vides the material functionality of the SPI-4.2 Engine which 
converts SPI-4.2 framing to an internal framing format simi 
lar to SPI4.1. Data arrives from the SPI4.2 bus in bursts of 16 
bits, the first 16 bit word of the burst contains a control word 
that contains information about the burst; including whether 
the burst is the start of a packet, the end of a packet or the 
continuation of a packet and a channel number from which 
the burst was sourced. Up to eight 16 bit data words from a 
channel areassembled into 64bit words and passed on, while 
the 16 bits of the control word are converted to a Internal 
Routing Tag. 

In this embodiment, Internal Routing Tags are passed on 
the internal bus along with the packet burst data as frames 
move through the forwarding logic. The Internal Routing Tag 
contains a bit for Data Valid, one for Start of Packet, one for 
End of Packet, a bit for Data Error,3 bits for burst size (0 thru 
7 indicates a burst size of 1 thru 8 respectively) and 3 bits for 
Channel Address. Channel Address indicates the port the 
burst is associated with. In another embodiment, the Internal 
Routing Tag may include QOS/COS information based upon 
network layer prioritization or VLAN designated priorities. 

Frame processing by the Frame Processor requires identi 
fying interesting characteristics of the network packet. These 
characteristics include destination and source addresses, 
packet type, layer3 and layer 4 datagram and session address 
ing. In addition the Frame Processor maintains a state 
machine for each packet processed by the forwarding logic. 
As shown in FIG. 3, the Packet State Machine tracks the 

composition of the data steam. For the HPC solution, a data 
stream is composed of multiple bursts of packet data which 
will to be classified based upon bit fields in the SPI4.2 control 
word. A packet state machine is instantiated for each packet 
received at or transmitted from the SPI4.2. A packet enters the 
VALID state when the SPI Valid (PACKET VALID) signal 
asserted. When the SPI Start of Packet signal is asserted the 
packet enters the START OF PACKET state and a SPI End 
of Packet causes a transition to the END OF PACKET state. 
If the error status indicates an error the state machine enters 
the ERROR state otherwise the state machine transitions to 
INIT. 

Referring again to FIG. 2, the responsibility of the Parsing 
Engine (Parser) is to construct a multiple tuple Classifier Key 
from the information provided by the Frame Processor. In one 
embodiment, only the destination address is necessary for 
Classifier Key generation. In alternate embodiments, the 
Lookup Engine may be enhanced to also include any number 
ofpacket characteristics or packet/port states when construct 
ing Classifier Keys thus modifying the behavior of the switch 
as it forwards an individual packet or packet stream. 

Using the Classifier Key generated by the Parser, the 
Lookup Engine will hash into the Forwarding CAM to find 
the egress destination port. The egress destination port is 
placed into the Internal Routing Header. In one embodiment, 
the Internal Routing Header is composed entirely of an egress 
port number. Alternatively, the Internal Routing Header can 
include additional information. The Forwarding CAM entries 
will be accessible to management entities such as SNMP 
based management stations. 

The Traffic Director is responsible for forwarding and/or 
coping frames to the CPU based upon the port address found 
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10 
in the Internal Routing Header. Appropriate interface logic is 
provided between the forwarding logic and the microproces 
Sor in the FPGA. 

Handling the flow of data between the switch fabric and the 
frame processing logic of the Port Card is the responsibility of 
the Queuing Engine. The Queuing Engine contains a virtual 
queue for each 1 GbE MAC in the switch fabric, in an 8 Port 
Card Switch that adds up to virtual queues. Each virtual queue 
is large enough to hold multiple jumbo (9K) packets. An 
index for each virtual queue is maintained to track where in 
the virtual queue the next 64 bits of data are to be placed, that 
index is called the VO enqueue index. The VO dequeue is 
consulted to determine the next 64 bits of data that need to be 
passed to the scheduler. Thus, data from the Traffic Director is 
placed into the destination port's VO at the offset indicated by 
the VO enqueue index. Conversely, the VO dequeue index is 
used to determine what data passed to the Scheduler. The 
Queuing Engine also provides a Rate Change FIFO between 
the switch fabric and the Virtual Queues and a flow control 
mechanism that presents back-pressure between the Switch 
fabric and the forwarding logic. 
The Scheduler uses the dequeue mechanism of the Queu 

ing Engine when passing frames to the Switch fabric. Frames 
are scheduled for to be handed off to the switch fabric in a 
round robin fashion, from port 0 to port 31. Dequeuing 
involves encapsulating the frame in XGMII before the XAUI 
Core converts the frame to XAUI. The Internal Routing Tag 
and Internal Routing Header are used during the conversion. 

Referring now to FIG. 3, one embodiment of the Egress 
Operation of the OPE will be described. The Queuing Engine 
provides queuing on the Egress side that is the reverse of 
Ingress. XAUI frames from the switch fabric are converted to 
XGMII by the XAUI Core. XGMII frames are enqueued to a 
Virtual Queue based upon a port number in the XGMII frame. 
The Scheduler accomplishes egress Scheduling in much 

the same fashion as Ingress. Frames are dequeued in a round 
robin fashion but the egress data frames must be converted to 
the local bus interface and an Internal Routing Tag generated. 
In one embodiment, the Scheduler is designed to be adaptive 
and heuristic so as to reduce out-of-band forwarding CAM 
update by just looking for broadcasts and updating the CAM 
with the source address. 

Egress SPI4.2 conversion as shown in FIG. 4 is the reserve 
of Ingress. The local framing format is converted to SPI4.2 
using the proprietary core. Egress port aggregation involves 
assembling the SPI4.2 frame burst data into media packets 
and transmitting them out through their addressed egress 
interfaces. Again, these preferably are the MAC chip refer 
enced above. Egress operation is the reverse of ingress. Eth 
ernet packet data is received in the Egress FIFO from the 
SPI-4.2 in bursts of interleaved Ethernet packet data (port 0 to 
port 9). When the Egress FIFO receives 5 bursts (or when 
EOParrives depending upon packet length) the Egress FIFO 
will initiate transfer to the 1 GbE MACs. Preferably, egress 
frame handling also maintains a port state machine which 
performs frame status checks such as frame aging, VLAN 
header Stripping, internal forwarding header removal, and 
similar operation. Operations on the Ethernet Packet per 
formed by the MAC chip include: (1) adding the preamble, 
(2) adding the start of frame detector (SFD), and, optionally, 
(3) adding the FCS. 

In an exemplary embodiment illustrated in FIGS. 5 and 6, 
the OPE provides a selected sequence of pipelined stage 
engines denominated Stage-0, Stage-1. Stage-2 . . . Stage-n. 
Each stage engine may have a different, extensible and repro 
grammable architecture based upon the functionality the OPE 
is harnessed for. Therefore, unlike the prior art processors 
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where packets are characterized in terms of the software 
instructions it takes, the instant invention is a data flow archi 
tecture with an assembly-line of specialized stages that can be 
instantiated on-the-fly to reflect changes in data flowing down 
the line. 

Although the invention is not restrictive of the number of 
ports at the ingress, the invention is best described in terms of 
data packets arriving at a single port and tracking the life of 
the packet along a data path through the OPE. It is important 
to note that each of these data bit-streams may be several bits 
wide. The width provides a measure of the processing time (or 
clock cycles) available at each stage engine of the pipeline so 
as to enable wire speed throughput. Each stage engine is 
constrained to operate within the particular time envelope by 
increasing the number of engines comprising each stage if it 
appears likely that the processing at any one stage cannot be 
achieved within the time constraints set in the preliminary 
Stage. 

FIG.7 depicts one of the embodiments of the instant inven 
tion that provides for a Stage-0 engine that is essentially a 
pre-processor packet framer including in part a program 
mable state machine (PSM). As the packet comes in 64-bit 
wide at a time, the framer identifies and distinguishes 
between various frame types as illustrated in FIG. 1. Framer 
consist of a programmable memory base state machine, fast 
memory base lookup table, various comparators along with 
loadable values, and select logic. The state machine selects 
packet fields of interest compares against set values or other 
frame data, which drives the state machine algorithm that 
marks frames of interest as well as determines the frame type. 
This information is then passed on to the parser where it helps 
instruct the parser on how to parse the frame. 

For a more detailed description of this embodiment of the 
pre-processor bit stream processor, reference is made to 
Appendix A, the disclosure of which is hereby incorporated 
by reference. Reference is also made to Appendix B, the 
disclosure of which is hereby incorporated herein by refer 
ence, which defines one embodiment of the Forwarding 
Logic Register File. 
The OPE preferably includes at least one predictable Pro 

grammable State Machines (PSMs). In one embodiment, 
each PSM is a 32 State machine with a 50 ns/PSM at 156MHz 
internal clock equivalent to 5 ns per 10 instructions. Each 
PSM, however, can have a variable number of clocks. The 
Stage-0 engine sets the bandwidth processing dwell time by 
converting the relatively fast serial bit stream to a relatively 
slow parallel n-bit wide data stream. The bandwidth process 
ing dwell time is adjusted to the line speed. For example, for 
processing a data rate of 10Mbps, the dwell time is 50 ns per 
stage of the OPE. 

Preferably, the register base consists of a programmable 
lookup table preset with values loaded as part of the configu 
ration. These registers are then selected for use with mask, 
comparators and counters that are integral to the operation of 
the stage engine. An exemplary configuration of the stage 
engine configuration is illustrated as follows: The program 
mable lookup table contains up to 34 16-bit values to be 
compared. Table output bits correspond to the match if any is 
made. In the example, there may be 48-bit wide comparators, 
two down counters with a maximum loadable value of 8 bits 
for a maximum down count of 256. The packet data select 
width may be a byte and the register value field size repre 
sented by 16, 8-bit wide preset registers. The state machine 
instruction may be a single word instruction (SWI). The set of 
single word instructions may be selected from the set com 
prising of set, test, and branch where each field of each 
instruction may take on multiple stub fields as shown below 
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12 
where each Sub field is separated comma and each main field 
is separated by a semicolon, e.g., SWI: Set1.set2, set3, . . . 
setn:test1, test2...test3, ..., testinbr1,br2.br3, ... brn; 

In operation, the state machine would undertake condi 
tional branching based on selectable vector inputs. Thus for 
example, the condition (Frame byte 2=R2) would compare 
packet location byte 2 of 8 against preset register R2 value. 
The branching would normally determine the next control 
state, but could also be used to change the mode of operation 
of the current state of the programmable state machine. 

Referring now to FIGS. 8A and 8B, an application of the 
pre-processor packet framing method to an incoming Ether 
net packet from the XGMII interface is illustrated. From this, 
the XGMII Interface Block strips the preamble and converts 
the 32-bit interface into the internal 64-bit representation as 
shown in FIG. 8B: General Format of Ethernet. 
As the 64 bit wide packets flow through the pipeline, the 

state-machine selects which 16 bit field it wants to send to the 
programmable decode ram. See FIG.9: Packet TYPE Selec 
tion and FIG. 10: Programmable decode RAM. 
The state machine also selects other information from the 

packet to be compared against programmable registers with 
the results feedback to the state machine as shown in FIG.10. 
FIG. 10 for example shows VLAN and SNAP input being 
selected and compared against selected registers with the 
results feeding back to the state machine for analysis. 
The purpose of the State Machine in accordance with one 

embodiment of the present invention is to control the extrac 
tion of protocol layer header information. This State Machine 
consists of a programmable block memory with 5 output data 
lines feedback into 5 address inputs for next state clocking. 
The state machine other outputs controls various functions for 
example, frame data to capture, frame layer offset detection 
and various input selection for the compare logic, as will as 
the next input to the state machine itself. This state machine is 
shown in FIG. 12. FIG. 13 shows a state machine table 
example to help illustrate this. 
One objective of this Programmable State Machine is to 

control the decode and extraction of packet data. The state 
diagram in FIG. 14 illustrates how this state machine could be 
setup to handle Ethernet Packet. In this example the state 
machine only did Ethernet Layer 2 but could as will continued 
all the way up to Layer 4 for example. 
The Decode Ram provides a method for doing fast pro 

grammable decodes of selected fields. The input into this 
Decode RAM circuit is a selectable 16-bit field coming from 
the packet, and the output is a 4 bit TYPE decode as illustrated 
earlier in FIG. 10. One method of doing this would be first fill 
memory with all Zero's then write the decode bits for the 
Types you want decode. The 16 bit address corresponds to the 
“Type' and the data corresponds to the decode value that is 
desired for that type. Under normal situation only 2 bit are set, 
1 bit for Port-B, and the same for port-A. The decode bits 
should be same value for both Port-B and Port-A. An example 
of this could be if it is desired to have 0x809B AppleTalk 
Phase 1, to be decode value of “1”, 0x8137 IPX (Novell 
Netware) to be decode value of “2, 0x8847 MPLS Unicast to 
be decode value “3, and 0x8848 MPLS Multicast to take on 
decode value “4”. The results of this are shown in FIG. 15. 

FIG. 16 shows a more complete figure of the basics func 
tions block of the Pre-Processor framer. 

FIG. 17. illustrates a method of increasing input selection, 
and the ability to have sub state within states. 

FIG. 18 illustrates a method of expanding the output con 
trol coming from the state machine. 

FIG. 19 shows mask compare logic that can be selected by 
the state machine. 
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FIG. 20 is an Ethernet flow chart example that could be 
programmed by this state machine. 

Referring again to FIGS. 5 and 6, the Pre-Processor framer 
may be configured to provide more flexibility in doing the 
packet selection, or the ability to do a selectable step back in 
the pipeline selection. If a greater capability were desired, it 
could always be provided by adding one or more additional 
state machines and/or programmable decode RAM. Also note 
that the RAM that are shown are imbedded in the XILINX as 
block RAM and can be configured differently and grouped 
etc. and that this design only showed 2 block RAM being used 
one for the State machine and the other for the TYPE decode. 
The smallest Xilinx XC2VP2 has 12 Block RAMS, the next 
size has 28 and the largest XC2VP125 has 556 Block RAMS. 

In a general embodiment of the invention illustrated in FIG. 
26, the datapath of the OPE pipelines from the Stage-0 engine 
to a Stage-1 engine. The stage 1 engine performs a rule-based 
classification of packets. A number of engines can be cas 
caded to obtain the desired results because the classification 
has to occur within the time interval defined at Stage 0 so that 
there is true wire-speed throughput. Each engine is based 
upon a dataflow model instead of the conventional store-and 
forward model. One of the outputs of this stage is key gen 
eration premised on a prior knowledge of the relevant con 
tents of the packet. In the current implementation, this stage 
will require two instruction cycles. Each engine employs a 
single buffer. Unlike a floating-point coprocessor, all engines 
are dynamically programmable, i.e. the instructions are 
reprogrammable so that they can be adapted for specific 
applications. Typically, Stage 1 will comprise at least one 
very long instruction work (VLIW) processor. In an alternate 
embodiment, the Stage-1 engine may be configured in the 
manner of the task-customized processors as previously 
described. 

In a specification embodiment of the invention illustrated 
in FIG. 27 the Stage-0 and Stage-1 engines operate in a feed 
back loop with the state information of the Stage-0 bit-stream 
processing using the PSM being passed onto the Stage-1 
classification engine and the information from the classifier 
being fed back to inform the operation of the Stage-0 engine. 
The feed-forward/feed-backward engine architecture makes 
it possible to take a bit-stream of contents of any given flow, 
from the multiple flows that may be supported by the OPE, 
parse (or classify) the contents as the data flows through the 
engine and feed information obtained by the operation back 
to the previous stage so that the next operation is based on the 
prior state as well as the classification result of the prior state. 

Such an approach can be advantageously used, for 
example, to process variable length/variable protocol pack 
ets, dynamically reorder out of sequence packets or for other 
error control functionality. The elemental unit of data 
becomes a bit with the feed-back and feed-forward providing 
the system memory or glue that allows each bit to relate to 
each bit that has gone before it and that follows it. This 
paradigm can be scaled to inject a “memory into the system 
of macro-elemental data structures Such as a byte, word, a 
frame or an entire session depending upon the particular 
objective of the stage but without incurring the latency and 
hardware overhead of store-and-forward architectures. Such 
macro-elemental data structures could be ephemeral in that 
they persist while the data has a particular characteristic and 
are used to reprogram the behavior of the OPE for all subse 
quent data flows. In this manner, unlike conventional protocol 
processors whose operation is hardwired, the OPE is an 
adaptable hardware device which adapts to an evolving data 
flow but in a deterministic manner i.e. the “state explosion' 
characterizing the prior art attempts to provide a solution by 
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expanding the number of state machines and States to handle 
increased data flows is overcome in the solution provided by 
the present invention. 
One embodiment of a data flow arrangement that imple 

ments an embodiment of the present invention for multiple 
stage bit stream processors is shown in FIG. 40. 
One of the attractive features of the multistage methodol 

ogy is that the parameters of the various Stage engines are 
effectively decoupled. For example, there is no need for a 
common clock between the various stages. This significantly 
simplifies the design of the OPE. Each stage may be popu 
lated with one or more engines that are tailored to the opera 
tional need of that stage at any given time. Each engine may 
be reprogrammed on the fly to endow it with functionality that 
matches the characteristic of a data flow encountered by the 
OPE at the particular point in time. 

In a general embodiment of the invention, the Stage-2 
engine is followed by a Stage-3 engine. The Stage-3 engine 
provides higher level control plane functionalities Such as 
routing, signaling, protocol stack, policy definition, table 
maintenance, interface to the data plane and so forth. Like the 
previous stages, Stage-3 has specialized engines that may be 
replicated to match the processing time and functionality 
requirements imposed on the OPE. FIGS. 28-31 illustrate an 
extensible frame processor with P-SERDES and Core 
engines and a HPC port card featuring the OPE of the instant 
invention. 

In one embodiment, illustrated in the aforementioned fig 
ures for example, a 32 entry by 48 bit CAM on each Port Card 
in the Switch. Each entry represents a particular port in the 
switch. Thus, the first entry in a Port Card forwarding CAM 
represents port one of the switch. It will be noted that these 
CAMS may be increased in size to accommodate multiple 
nodes on attached LAN segments. Preferably, an aging 
mechanism is defined that will keep only practical entries in 
a Port Card’s forwarding CAM. Since HPCC does not utilize 
LAN segments, the aging mechanism may not necessary. 
As one of the design goals is to allow access to the for 

warding CAMs via SNMP, an SNMP agent running on the 
Shelf Manager will need read/write access to the forwarding 
CAM cache resident on the Carrier Card. Changes to the 
forwarding table cache will be pushed down the Port Cards 
via the update CAM IPMI message and processed as 
described above 
Dynamic MAC Address Learning. In order for a switch to 

forward packets between any two Switch ports a lookup must 
be performed on the destination MAC address to find a des 
tination Switch port where the incoming packet will be sent. 
The lookup table (also known as a forwarding table) prefer 
ably will contain a 48 bit value that contains a destination 
MAC address along with a 6 bit switch port identifier. The 
forwarding table maintained by the switch is distributed 
among the forwarding tables managed on the individual Port 
Cards. These forwarding tables (which will be implemented 
in hardware by CAMs) will need to be populated. There are 
two methods for populating forwarding tables; dynamically 
and statically. Static population of these CAMs will be 
achieved by exposing the forwarding CAMS to a management 
entity via an SNMP enterprise MIB similar to the forwarding 
database described in RFC 1493. 
One of the goals of this design is to moderate the use of 

broadcast and multicast packets. This is because broadcast 
frames are expensive in terms of bandwidth and switch 
resources and multicast frames are even more expensive. An 
exhaustive search was performed to find a method for this 
switch to dynamically learn the MAC address(es) on the LAN 
segments attached to each Switch port no matter what topol 
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ogy the switch may be deployed and do this without the use of 
broadcast or multicast packets and no modifications to the 
attached port network logic. At present, there is no single 
method or set of steps that will allow the switch to dynami 
cally, in all cases, determine all MAC addresses that may be 
connected to a Switch port. In short, the Internet oran Intranet 
as defined by IETF RFCs expect the switch/bridge/router to 
either passively learn the MAC address of attached or the 
Switch/bridge/router provides a mechanism for a manage 
ment to statically populate forwarding tables. 

Thus, the Switchinaccordance with this embodiment of the 
present invention will emulate the behavior of a learning 
bridge. Incoming broadcasts, such as a standard Ethernet 
Frame illustrated in FIG. 23, will be parsed and source 
addresses placed into the appropriate forwarding CAMs. This 
will be accomplished by the embedded FPGA microproces 
sors independent of the packet forwarding logic inside the 
FPGAs. The following illustrates the dynamic MAC address 
discovery: 

Abroadcast packet is received at a Switch ingress port. The 
packet is passed through the forwarding logic until the Traffic 
Director hands the frame to the Mobile Management Con 
troller (MMC) via a frame FIFO. 

The MMC will extract the source address of the data link 
layer header. 
The MMC will encapsulate the source address and the 

ingress Switch port number into an IPMI message and for 
ward the message via the SPI based IPMI bus to the micro 
processor on the Carrier Card (IPMC). 
The IPMC will capture the source address and switch port 

number in a forwarding table cache that will be assessable by 
an SNMP based management entity via RAC. 
The IPMC will broadcast the CAM update message to the 

all other MMCs in the Switch. 
The internal microprocessor will receive the CAM update 

message and update its forwarding CAM by placing the MAC 
address of the CAM update message into the CAM entry at 
the offset represented by the switch port number. 

It will be noted that this entire forwarding table procedure 
may need to be modified extensively to support more robust 
topologies. i.e. multiple nodes on attached LAN segments. 

Preferably, a 32 bit wide FIFO that is read by the internal 
microprocessor to access selected frames in the data stream. 
The FIFO will be written by the forwarding logic with the 
Internal Routing Tag and the first 32 bytes of the incoming 
packet. A status register is read to determine when the FIFO is 
empty. 
As previously described, FPGA control and status register 

files are accessible through a Register Access Control mecha 
nism whereby IPMI encapsulated messages are directed to 
the microprocessor in the FPGA who then performs the actual 
register read or write. In one embodiment, the microprocessor 
acts as a Register Access Controller (RAC) who interprets the 
RAC message, determines which forwarding logic element/ 
Sub-module Access Controller (SAC) the message is 
addressed and facilitates the register access with the SAC. 
Resulting status/response is return to the message originator. 
FIG. 22 shows a block diagram of one embodiment of the 
SAC bus. It will be understood that the SAC Bus is unique to 
the Sub-module and may take many forms. 
IEEE specifications state that the destination address of the 

PAUSE packet may be set to either the unique DA of the 
station to be paused, or to the globally assigned multicast 
address 01-80-C2-00-00-01 (hex). In addition, packets with 
the PAUSE packet multicast address will not be forwarded by 
a bridge which ensures the frame can not propagate beyond 
the local link segment. The MAC Control Parameters field 
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designates the number of bit times to pause, from 0 to 65535. 
A PAUSE received before the expiration of a previous PAUSE 
period, results in the new bit time value replacing the current 
PAUSE period value. This allows the PAUSE period to be 
reset to Zero, allowing traffic to resume 

Preferably, the MAC chip accommodates two modes of 
flow control. When configured in full-duplex mode the MAC 
chip can automatically generate PAUSE packets. Back pres 
sure from the SPI-4.2 bus causes the MAC chip ingress FIFO 
to fill, by setting appropriate high and low watermarks the 
MAC chip will manage start and stop PAUSE signaling. The 
second mode bypasses the FIFOs and relies on SPI-4.2 flow 
control messaging to generate PAUSE start and stop packets. 
A port state machine will be maintained for each switch 

port on a Port Card. The state machine will be accessible by 
both the FGPA logic and microprocessor. The state machine 
as explained in this document contains three basic elements; 
an event, a defined State and the action performed when 
entering that state. The events defined above trigger state 
transitions into states which in turn perform actions as the 
diagram in FIG. 24 and the state diagram in FIG. 25 show. 

FIG. 32 illustrates an embodiment where an adaptable 
hardware device, i.e Virtex LX200 communication engine, is 
configured into a 48 port switch by coupling it to Virtex Pro 4 
communication engines which constitute the ingress and 
egress "ports.” The problem with this configuration is that 
Switch arrangement is limited to handling a single protocol 
for data packets Switched through the Switch arrangement 
that would be supported by the Virtex Pro 4 communication 
engines. 

FIG. 33 illustrates a specific architecture of a switch 
according to the present invention where OPE's form the port 
processor engines and the digital Switch may be either a 
Virtex LX 200 communication engine or a special purpose 
OPE forming an intelligent, reprogrammable Switching fab 
ric. Unlike the switch arrangement shown in FIG. 32, the 
embodiment of FIG.33 utilizing the OPE in accordance with 
the present invention provides for an omni-protocol switch/ 
bridge arrangement capable of handling data packets of any 
of a plurality of protocols supported by the OPEs. FIG. 33 
schematically illustrates a specific configuration of the Switch 
of the present invention. 

In addition to the events generated when entering a state the 
microprocessor will need to monitor the MAC chip, the SFPs 
and listen to IPMI events and messages in order to provide the 
events which cause Switch port state transitions. Note that any 
event may occurat any state and must be caught and handled 
appropriately. In the interest of clarity the state diagram does 
not show all potential state transitions. Also, most event tran 
sitions cause IPMI event messages to be generated and poten 
tially SNMP traps. 
The INIT state is the initial state of the switch port at the 

instantiation of the port state machine. When this state is 
entered the first time the SFP is enabled and a TX ENABLE 
event generated unless the port has been administratively 
disable. 

When a switch port enters the ENABLED state, a check is 
performed to determine if the SFP exists. If the SFP exists a 
MOD DETECT event is generated. 
A switch port entering the FAULTED state is considered 

down. Human intervention is required to transition out of this 
State. 

MOD EXISTS A check is performed on the optical sig 
nal when this state is entered. If the signal is normal then a 
SIGNAL DETECT event is generated. 
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Word synchronization is verified at the SIGNAL state. If 
the signal has synchronized a SIGNAL SYNC event is gen 
erated. 
SYNCed. After the signal has synchronized a check is 

performed to determine if Ethernet auto-negotiation has com 
pleted. If Ethernet auto-negotiation has completed an 
AUTO NEG DONE event is generated. 

In the UP state, the switch port is UP and is capable of 
forwarding frames to the switch fabric. However, the MAC 
address of the connected node has not been learned. 

In the READY state the switch port is operational. 
In another embodiment of the present invention, lossless 

packet Switching is implemented along the same lines as the 
discussion of flow routing discussed in The Next Generation 
of IP Flow Routing, by Dr. Lawrence G. Roberts, Founder, 
CTO Caspian Networks at SSGRR 2003S International Con 
ference, L'Aquila Italy, Jul. 29, 2003, but using the omni 
protocol engine configurations as have been described. The 
contents of the document are incorporated herein by refer 
ence. Additionally, the concepts described in the paper can be 
extended to implement an end-to-end flow control in the OPE 
of the present invention to accord with the recommendations 
of the IEEE 802.3 AR task force on flow control and conges 
tion management. 

Applied to the stages comprising one embodiment of the 
OPE disclosed herein, the Pause per QOS level can be imple 
mented with an Engine (consisting of three Stage Processors: 
(a) A Bit Stream Processor attached to each of the two 
required XAUI interfaces; (b) A Look Up Key Generation for 
Flow identification or Rule based Traffic Priority Identifica 
tion Flow Classification Stage; (c) A processor stage forgen 
erating an appropriate back pressure notification to higher 
layer Protocol Stack or buffer manger, to meet prospective 
recommendations of the IEEE 802.3 AR task Force on Flow 
Control and Congestion Management. The need for priority 
identification is underscored in P802.3ar "Congestion Man 
agement Why Priority/Class Based PAUSE is Required?'. 
Asif Hazarika (ahazirik(a)fmafujitsu.com) and Bob Brunner 
(Robert. Brunner(aericsson.com), the contents of which is 
incorporated herein by reference. 
The Block then, has two XAUI interfaces and one or two 

SPI 4.2 interfaces implemented with stage processors. With 
the addition of Traffic Director or the Switching Stage, the 
Block could also be used for Identification of the incoming 
Traffic and Direct to Crypto engine or processing engine 
based on the VLAN tag or any other in band identification. 
This could be implemented with an 8 SerDes Port Xilinx 
(FX-40). Alternately, an AMC could be used. This card also 
meets the third requirement (selecting the XAUI for I/O either 
from RTM or the Front panel). 

It will be understood that in terms offlow processing by the 
OPE of the present invention, a circuit is called program 
mable if the functionality can be changed every clock cycle. 
This is what is normally referred to as a processor. The pro 
cessor is defined by the instruction set architecture (ISA) and 
the register file (RF). This is what is called the programmer's 
view of a processor and that is the interface between the 
hardware that constitutes the processor and the software that 
can be executed on the processor. See, Thomas Henriksson, 
"Intra-Packet Data-Flow Protocol Processor' Linköping 
Studies in Science and Technology, Dissertation No. 813; and 
John L. Henessy and David A. Patterson, “Computer Archi 
tecture: A Quantitative Approach’, Morgan Kaufinan Pub 
lishers, Inc., ISBN 1-55860-329-8, Second Edition 1996, the 
contents of which are incorporated herein by reference. In the 
context of the present invention, Every Cycle becomes—a 
Data arrival interval wherein the data must be processed. 
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Analogizing to an ISA, the stages of the OPE can be defined 
as Flow PSA Flow processing Set architecture- and the RF 
as the Pipe Line Register Files. An ISA, is a set of Micro 
Code, which performs Fetch (Instruction and or Data), 
Decode, Defer (to get more Data), Execute (the instruction on 
the Data), Store Sequence (Von Newman Model). The func 
tionality of the Flow PSA can be similarly denoted. 
An embodiment of the IPMI extension that are used to 

connect all IPM controllers to the chassis in one embodiment 
of the present invention will be described. For a more detailed 
description of this aspect of the embodiment of the present 
invention, reference is made to the previously identified pro 
visional patent application entitled “Shelf Management Con 
troller with Hardware/Software Implemented Dual Redun 
dant Configuration.” 

FIGS. 36A and 36B depict a block diagram illustrating a 
shelf management controller or ShMC 230 according to one 
embodiment of the present invention. As depicted in the block 
diagram of FIGS. 36A and 36B, the present invention pro 
vides a first ShMC 310 communicatively coupled with a 
second ShMC 315 in a symmetrical arrangement to provide a 
redundant shelf management functionality utilizing active/ 
standby architecture with automatic fail-over. In a first 
embodiment, each of ShMCs 310 and 315 are architecturally 
identical. Each ShMC 310(315) includes an independent pro 
cessor 320 running a small footprint operating system (OS) 
325 such as for example, the ucLinux OS with a thin stack. 
The ShMC 310(315) operates on standby power and obtains 
system health variables by autonomously polling the Intelli 
gent Platform Management Controllers (IPMC)s 235. The 
ShMC 310(315) is configured to detect an anomaly, log the 
event, generate and transmit alerts to notify the system of the 
anomaly and initiate recovery actions. 
As depicted to FIG. 36A, each ShMC 310(315) is con 

nected to at least two I2C/IPMB busses IPMB-A 270 and 
IPMB-B 275. ShMC 310(315) may be arranged in an active 
active or active-passive I2C/IPMB failover modes. This 
embodiment of the present invention contemplates a unified 
message system which passes messages on an Abstracted 
Channel (AbCh). In this embodiment of the present inven 
tion, a channel is a physical link Such as for example, I2C, 
JTAG, Update Channel and Free Space. In the AbCh view, 
each channel has attributes such as for example, client server 
channel, peer channel, master slave channel which indicates 
the direction of queries and responses, capacity in terms of 
bandwidth, latency, and CoS or QoS. primary path, alternate 
path, feed back channel. Such as for example, echoing or 
positive acknowledge messaging. The attributes are assumed 
to be programmable or hardware assisted with buffers, for 
instance. All attribute states can be probed at will and so can 
Support registers for example. The AbChallows the messag 
ing system to route the messages at will or as the needs of a 
system change. Preferably, a GUI programming tool can be 
used to create one or more channels for a given hardware 
platform, to pass attributes to the hardware platform and to 
measure performance, run simulations, and so forth. One of 
skill in the art will readily recognize that the capability to 
execute instructions on an EEPROM enables the applications 
to be scaled. 

Referring again to FIG. 36A, the IPMI messaging system 
model according to the present invention is depicted as a dual 
client-server messaging system. The client-server messaging 
scheme among multiple shelf components uses a channel 
abstraction layer to maintain layer independence. The ShMC 
310 is communicatively coupled to ShMC 315 by a dedicated 
update channel 330 and an active control channel 335. The 
update channel 330 is adapted to bi-directionally transmit 
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sanity and state information between the ShMCs 310(315). 
Two instances of the client-server based messaging system 
run on each ShMC10(315). In an exemplary embodiment, the 
active ShMC 310 (for instance) may be designated the server 
on system start-up, for example, without departing from the 
scope of the invention. The ShMC 315 will then be designated 
the client. The active ShMC 310 executes the command sets 
to perform shelf-management functions upon receiving State 
information from the IPMCs 235. 

In the illustration embodiment of FIGS. 36A and 36B, the 
independent processor 320 of the ShMC310(315) is disposed 
in communication with a Bit Stream Processor (BSP) 340 
disposed with at least one processor interface that is generic 
for all physical interface types including without limitation 
IPMI 1.5 over IPMB, Command Line Interface (CLI) over 
Serial Port, Telnet, and SSH Secure Shell. In one embodi 
ment, the ShMC 310(315) includes a RCMP-IPMI bridge 
312, implemented using the BSP 340, for example, that 
bridges over RMCP and IPMI messages. When a RMCP 
message packet is received from the system manager, the 
packet is opened and examined for UDP Port it. If the UDP 
Port it matches the IPMI message the packet is stripped of its 
header and an IPMI header (if any) is encapsulates. Then the 
message is sent to the appropriate interface. The ShMC kernel 
can request a Copy Back. An IPMI message to the System 
Manager is encapsulated and sent over the System Manager 
Physical Port. 

FIGS. 37A and 37B illustrate an exemplary implementa 
tion of the I2C hardware finite state machine (HFSM) 475 
using the BSP 440. In this embodiment, the BSP is the Omni 
protocol Bit Stream Processor as described in accordance 
with the present invention. The BSP is configured for wire 
speed packet data path processing of the bit-stream on the 
IPMB-A 270 and IPMB-B 275 buses. The BSP is adapted to 
assemble the bits in the bit-stream into defined protocol data 
(information) units and process the assembled protocol data 
(information) units to provide wire-speed throughput regard 
less of the protocol encountered. Both of these functions are 
dynamically programmable using, for example, the RAC/ 
SAC (487/489) as discussed below. Thus, either the informa 
tion units of a protocol or the processing rules that apply to the 
protocol data (information) units are inherently changeable in 
a dynamic manner. 

In one embodiment, the HFSM 475 includes the BSP 440 
configured with a selected sequence of pipelined stage 
engines. Each stage engine may have a different, extensible 
and reprogrammable architecture that causes an instantiation 
of a device finite state machine (DFSM) 480 for each IPMC 
235 transmitting a message (e.g. system health, temperature, 
fan revolution etc) to the HFSM 475. The DFSMs 480 are 
advantageously configured for data flow communication to a 
stage engine of the BSP 440 adapted to instantiate a messag 
ing finite state machine (MFSM) 485. Generally, the HFSM 
(as well as the DFSMs and the MFSM) uses three basic 
constructs. The HFSM maintains an action table that contains 
the action to perform when a given event is received while the 
FSM is in a given state, a next state table which contains the 
next state to enter when a given event is received while the 
FSM is in a given state and an event handler which drives the 
event processing when presented with an event, looks up and 
performs the necessary actions and updates the current state 
information. The stage machine (or the BSP or the FPGA) 
control and status register files are accessible through a Reg 
ister Access Control (RAC) 487 mechanism whereby IPMI 
encapsulated messages are directed to the microprocessor in 
the stage machine (or BSP or FPGA) who then performs the 
actual register read or write. The microprocessor acts as a 
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Register Access Controller (RAC) who interprets the RAC 
message, determines which forwarding logic element/Sub 
module Access Controller (SAC) 489 the message is 
addressed and facilitates the register access with the SAC. 
Resulting status/response is return to the message originator. 
The RAC/SAC 487/489 provides a means to set or change the 
messaging methods per device (i.e. IPMC 235) on-the-fly, 
thus providing one mechanism that implements the level of 
programmability and flexibility of the present invention. 

In one embodiment, the HFSM 475 is adapted to detect I2C 
bus failure as well as a device failure. If the failure is deter 
mined to be on a device monitored by one of the IPMCs 235, 
the ShMC 310(315) disables that device from accessing the 
backplane. 

Referring again to FIG. 36A, the client 315 monitors the 
queries and responses of the active ShMC 310 using the 
update channel 330 and computes the states of the transac 
tions and synchronizes these states with the active ShMC 310. 
In case the client ShMC 315 detects an error condition in the 
ShMC 310, it reports the event to the system manager 265 
which acts as the referee and acts to remove the active ShMC 
310 and enable the standby ShMC 315 to complete the 
failover without a time consuming state update. While the 
present embodiment is well suited for operation with 
AdvancedTCA compliant systems, it will also work in a 
MicroTCA environment where a tri-stated standby is pre 
scribed as illustrated in FIG. 36B. 

In another embodiment, the ShMC 310(315) is augmented 
by a thin hardware assisted protocol stack. Another embodi 
ment of the system implements an OS bypass scheme to 
assure a tiny and manageable ShMC implementation. The 
primary embodiment includes a EEPROM to execute instruc 
tions, such as for example an EEPROM with a TINY CHIP 
using system-on-chip (SOC) concepts, that would enable cost 
wise scaling of the capabilities of the ShMC processor 320. 

In one embodiment, the dual redundant ShMC 310(315) 
configuration is used to introduce fault tolerant operation of 
the shelf management controller. In a first embodiment, 
checkpoints are inserted by adding an additional checkpoint 
State in the HFSM 475. When a current State in the HFSM 475 
is the checkpoint state, a checkpoint process may be initiated. 
On errors being indicated, the HFSM 475 may initiate a 
failover to ShMC 315 over the exclusive-use bus 335 and a 
recovery process initiated on ShMC 310 without introducing 
an abnormality in the ATCA shelf. The recovery process may 
be done by restoring faulty states internal to the ShMC 310 by 
replaying the logged states stored on ShMC 315 in their 
original order to recreate ShMC 310's pre-failure state. In 
another embodiment, an additional ShMC492 may be used to 
augment ShMC 310(315) and the correct state is obtained by 
Voting among the three or more copies of the States held 
between the three ore more ShMCs. In one embodiment, the 
voted results are loaded into the registers of each of the 
HFSMs 475 for purposes of resolving any conflicting votes. 

In one embodiment of the present invention illustrated in 
FIG.38, a bit steam protocol processor (alternatively referred 
to as the bit stream protocol processor based bridge or simply 
as the bit stream protocol processor) providing a SPI 4.2 to 
XUAI two-way bridge architecture is shown. The first type of 
serial data transmission interface corresponds to a SPI 4.2 
interface and the second type of serial data transmission inter 
face is the XAUI interface. 
The bit stream protocol processor of this embodiment pro 

vides dual SPI 4.2 to XAUI bridges. SPI 4.2 provides a 
parallel, point-to-point, bidirectional interface. The SPI 4.2 
Framing Supports up to a maximum of 256 ports. Data is sent 
through the SPI-4.2 frame using the 16 LVDS data lanes, as 
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one complete packet or as multiple data bursts per port. A 
control word header appended to the sub-channel data delin 
eates the bursts. The start of packet bit (S) and the end of 
packet status bits (EOPS) in the control word are used to 
identify a complete packet that may be made up of multiple 
bursts. The address 0:7 are used to define a sub-channel. The 
flow control and status information is transported out of band, 
per sub channel. The interface bandwidth can range from 10 
Gbit/s for low overhead applications to 20 Gbit/s for applica 
tions such as switch fabrics that need bandwidth speedup in 
order to Support overhead information. 

It will be seen that for 10 GigE each bit stream protocol 
processor may support 10Gbps full duplex per port, making 
it possible to attain a 2.560 Tbps Switching throughput capac 
ity. For 40 GigE, each bit stream protocol processor may 
Support 40 GbS full duplex per port, making is possible to 
attain a 10 Tbps Switching throughput capacity. In general, it 
will be recognized that the reconfigurable and programmable 
nature of the omni-protocol engine in accordance with the 
present invention permits the processors to be inherently scal 
able over a range of clock speeds. 

It will be recognized that the bit stream protocol processor 
in accordance with one embodiment of the present invention 
can provide Ninterconnects between, for example, the sys 
tem processor (CPU) of the PC and the system memory. Each 
of the Ninterconnects may be configured to transfer data at 10 
Gbps resulting in a scaled throughput of 10N Gbps. The SPI 
4.2 is point to point interface between devices located with in 
a few inches of each other. In a system it is often desirable to 
interconnect SPI 4.2 devices which are located on different 
cards with in a chassis via a back plane (Intra Chassis) or 
located on different chassis (Inter Chassis). Under such cir 
cumstances it is advantageous to use the serial point-to-point 
links of the present invention that provide high bandwidth 
connections in Intra-Chassis or Inter-Chassis environments. 
Exemplary serial links include ASI using PCI-Express, Eth 
ernet using XAUI, and Infiniband using IB. This in effect 
translates to connecting any two out of possible hundreds of 
geographically separated SPI 4.2 devices with a “Virtual 
Wire' interface. In one embodiment, the present invention 
may be configured as a single board computer (PC). In 
another embodiment, the present invention provides for a 
industry standards (such as picoTCA for example) enclosure 
with removably attached blades that support field pay as you 
go end-user upgrades. 

To transport control word, including port address, data and 
the out of band flow control information available on the 
parallel SPI 4.2 interfaces using serial links, or via a virtual 
wire, a tunneling protocol is utilized. To assure high band 
width utility these tunneling protocols are preferably light 
weight. The tunneling features may be embedded into the SPI 
4.2 devices or a bridge chip could be used in conjunction with 
the SPI 4.2 devices to provide this conversion. To support this 
bridging between SPI 4.2 devices using various serial inter 
faces using maturing tunneling protocols, the bridge is pro 
grammable. In this embodiment, the bit stream protocol pro 
cessor based bridge which provides the SPI 4.2 interfaces to 
XAUI and other serial interfaces and flexible means for vari 
ous tunneling protocols. The bit stream protocol processor 
offers dynamic programming and function extensibility as 
described in Appendix A that is incorporated herein in its 
entirety. 

Referring now to FIG. 39, another embodiment of a bit 
stream protocol processor is shown. In this embodiment, the 
bit stream protocol processor directly interfaces with the front 
side bus (FSB), thereby eliminating certain of the translation 
processes in the bit stream protocol processor described in 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

22 
connection with FIG. 38. In addition, the bit stream protocol 
processor of FIG. 39 provides for both lean pipe and fat pipe 
parallel-serial translators, thus permitting selective aggrega 
tion of one or more Ethernet ports for the fat pipe configura 
tions. 

In one embodiment, the bit stream protocol processor 
allows line speed QoS packet switching which is utilized to 
implement a simple token based communication in Ethernet. 
The source address (SA) and destination address (DA) and 
E-type like VLAN Tag is used for negotiating a unique token 
between end points on a communication link. The E-type 
extensions may be, for example, Request for UNIQUE ID or 
TOKEN GRANT: data communication with the granted 
token and request to retire the TOKEN. Once the TOKEN has 
been granted, the SA and DA fields are used along with the 
E-type to pass short date. This may also be extended to 
include large blocks of data for STA, and SAS. In other 
embodiments, once a UNIQUE ID is negotiated between 
end-points and an intermediate node connecting these end 
points, a fixed frame size is used to endow the link with 
predictable performance in transferring the fixed frame and 
consequently meet various latency requirements. For 
example, the SA/DA pair could be used to transmit 12 bytes 
of data, 2 E-Type bytes and 2 bytes TAG, instead of the 
traditional 64 byte payload for a conventional Ethernet 
packet. For a more detailed description of one embodiment of 
this extended Ethernet communication technique, reference 
is made to the previously identified provisional patent appli 
cation entitled “Enhanced Ethernet Protocol for Shortened 
Data Frames Within a Constrained Neighborhood based on 
Unique ID'. 

In another embodiment, the same interface could provide a 
fixed 2K block size frame for Disc—(data follows the E-Type 
and TAG). In this respect, the present invention enables a 
programmable frame size Ethernet construct as opposed to 
the variable frame size construct known to the art. This capa 
bility can be especially useful in iTDM type of applications 
because it enables packetizing TDM traffic within the frame 
work of ATCA. 

In one embodiment, Ethernet VLAN header is used as a 
tunneling protocol to allow the industry standard Ethernet 
Switches to be used to switch between any two SPI 4.2 
devices located in an Intra Chassis or Inter Chassis environ 
ment. The primary embodiment of the present invention uses 
Gigabit Ethernet (GbE) as the second data transmission pro 
tocol. Other protocols may be used without departing from 
the scope of the present invention. The SPI 4.2 control word 
and flow-control information is converted to a standard Eth 
ernet VLAN header. The SPI 4.2 sub-channel data is encap 
sulated with the header information at the ingress. At the 
egress, the header information is stripped from the Ethernet 
frame and converted back to SPI 4.2 frame and the flow 
control information is translated to SPI 4.2 electrical signals. 
Additionally, the bit stream protocol processor provides an 
efficient means to embed the Class of service information and 
programmable means for generating and propagating Con 
gestion Management messages. 

In one embodiment, the bit stream protocol processor is 
configured to support interfaces such as GbE, PCI-Express, 
RGMII, PCI bus and Serial bus to make it an ideal universal 
device for use in ATCA and microTCA systems. One skilled 
in the art will recognize that other interconnect technologies 
such as for example, the XS410 Gigabit Ethernet and HiGig 
SPI4.2 Bridge from Morethan IP to bridge an SPI4.2 interface 
to a XAUI interface to meet multiple design requirements 
such as device Bridging (e.g. NPU to Ethernet Switch), Serial 
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Backplane applications, Packet over SONET/SDH or Ether 
net over SONET/SDH applications. 
The ability provided by the present invention, to intercon 

nect SPI 4.2 devices which are located on different cards with 
in a chassis via a back plane (Intra Chassis) or located on 
different chassis (Inter Chassis) enables one embodiment of 
the present invention to achieve standards based PC such as 
for example, the picoTCA or the microTCA standard based 
PC architecture. 
One embodiment of the bit stream protocol processor illus 

trated in FIGS. 38 and 39 advantageously utilizes the RAC/ 
SAC controller that endows the bit stream protocol processor 
with dynamic programming and function extensibility. The 
RAC/SAC controller structure is used to program the bit 
stream protocol processor on-the-fly. This capability may be 
used to configure the blade (board) on which the bit stream 
protocol processor resides. In one embodiment, the on-the-fly 
dynamic programming capability is used to turn the blade 
(board) on or off thereby including or removing the blade 
from the computer system. In another embodiment the on 
the-fly dynamic programming capability may be used to 
change the character of the bridge so that it bridges between 
SPI 4.2 and PCI-Express for example. Those skilled in the art 
will recognize that other configuration changes may be 
affected within the scope of the present invention using the 
RAC/SAC controller. For example, the programmability may 
be used to implement a real end-to-end QoS for various traffic 
flows through the computer system. 

In another embodiment, the bit stream protocol processor 
enables prioritized Switching. In conjunction with the modu 
lar and scalable picoTCA PC architecture of the previous 
paragraph, the present invention allows the creation of a 
N-layered hierarchy of multiprocessors where N is both hard 
ware independent and dynamically selectable by altering the 
prioritization afforded to different subsets of processors in the 
bit stream protocol processor mediated fabric. This embodi 
ment enables the PC to be configured as a shared memory 
model machine as well as a message passing model multipro 
cessor machine. Alternately, the PC in accordance with one 
embodiment of the present invention may be configured as a 
server, a storage area network controller, a high performance 
network node in a grid computing based model, or a Switch/ 
router in a telecommunication network. It will be recognized 
that the same basic machine may be programmatically or 
manually altered into one or more of the aforementioned 
special purpose machines as and when desired. 

Various modifications to the method may be apparent to 
one of skill in the art upon reading this disclosure. The above 
is not contemplated to limit the scope of the present invention, 
which is limited only by the claims below 

The invention claimed is: 
1. An omni-protocol data packet processing engine for 

managing communication of data packets between a com 
puter processor and a high speed network fabric having a line 
speed of at least 10 Gb/second, the omni-protocol data packet 
processing engine comprising: 

an ingress portion of the data packet processing engine, 
including: 
a first plurality of bit-stream stage processors, each bit 

stream stage processor having a programmable con 
trol memory unique to that bit-stream stage processor, 

an ingress processor-interface to the computer proces 
Sor, 

an ingress network-interface to the network fabric; and 
a first multi-port data flow packet memory operably 

coupled to the first plurality of bit-stream stage pro 
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cessors, the ingress processor-interface, and the 
ingress network-interface; and 

an egress portion of the data packet processing engine 
including: 
a second plurality of bit-stream stage processors, each 

second bit-stream stage processor having a program 
mable control memory unique to that bit-stream stage 
processor; 

an egress processor-interface to the computer processor, 
an egress network-interface to the network fabric; and 
a second multi-port data flow packet memory operably 

coupled to the second plurality of bit-stream stage 
processors, the egress processor-interface, and the 
egress network-interface; 

wherein the control memory of each of the bit-stream 
stage-processors is individually selectively dynamically 
programmable based on one of a plurality of protocols 
determined for a given data flow of one or more data 
packets and the bit-stream stage-processors process the 
given data flow as a flow of bit stream data through the 
multi-port data flow packet memory such that process 
ing of the given data flow by the plurality of bit-stream 
stage processors is timed according to the flow of bit 
stream data and the flow of bit stream data is established 
at a rate that enables continuous operation of the data 
packet processing engine for all of the plurality of pro 
tocols Substantially at a speed that is at least equal to the 
line speed of the high speed network fabric, and 

wherein each of the bit-stream stage processors is config 
ured to programmed to deliver a bit-stream functionality 
and interconnect with other bit-stream stage processors, 
Such that the bit-stream functionality of a single stage is 
deliverable within a dwell time that does not exceed a 
time interval elapsing between the arrival of two con 
secutive data packets from the high speed network fab 
ric. 

2. The data packet processing engine of claim 1 wherein the 
continuous operation characterized in that the data packets 
are transferred through each of the bit-stream stage proces 
sors in less than the dwell time. 

3. An omni-protocol data packet processing engine for 
managing communication of data packets between a com 
puter processor and a high speed network fabric having a line 
speed of at least 10 Gb/second, the omni-protocol data packet 
processing engine comprising: 

an ingress portion of the data packet processing engine, 
including: 
a first plurality of bit-stream stage processors, each bit 

stream stage processor having a programmable con 
trol memory unique to that bit-stream stage processor; 

an ingress processor-interface to the computer proces 
Sor, 

an ingress network-interface to the network fabric; and 
a first multi-port data flow packet memory operably 

coupled to the first plurality of bit-stream stage pro 
cessors, the ingress processor-interface, and the 
ingress network-interface; and 

an egress portion of the data packet processing engine 
including: 
a second plurality of bit-stream stage processors, each 

second bit-stream stage processor having a program 
mable control memory unique to that bit-stream stage 
processor; 

an egress processor-interface to the computer processor, 
an egress network-interface to the network fabric; and 
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a second multi-port data flow packet memory operably tocols Substantially at a speed that is at least equal to the 
coupled to the second plurality of bit-stream stage line speed of the high speed network fabric, and 
processors, the egress processor-interface, and the wherein each bit-stream stage processors further comprise: 
egress network-interface; a plurality of data flow dependencies between components; 

wherein the control memory of each of the bit-stream 5 control structures that alter the plurality of data flow depen 
stage-processors is individually selectively dynamically dencies; and 
programmable based on one of a plurality of protocols a generic interface that implements the control structures to 
determined for a given data flow of one or more data enable the bit-stream stage processors to accept an 
packets and the bit-stream stage-processors process the ingress data flow, and output a processed packet flow and 
given data flow as a flow of bit stream data through the 10 a metadata object associated with the ingress data flow 
multi-port data flow packet memory such that process- and/or the processed packet flow; 
ing of the given data flow by the plurality of bit-stream wherein the bit-stream stage processor is a member of a 
stage processors is timed according to the flow of bit base class that can be grouped into a sub-class providing 
stream data and the flow of bit stream data is established additional functional methods. 
at a rate that enables continuous operation of the data 15 
packet processing engine for all of the plurality of pro- k . . . . 
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