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OMNI-PROTOCOL ENGINE FOR
RECONFIGURABLE BIT-STREAM
PROCESSING IN HIGH-SPEED NETWORKS

RELATED APPLICATIONS

The present invention claims the benefit of priority to U.S.
Provisional Patent Application No. 60/710,561, entitled
“Omni-Protocol Engine for Reconfigurable Bit-Stream Pro-
cessing in High-Speed Networks,” filed Aug. 23, 2005, U.S.
Provisional Patent Application No. 60/761,129, entitled
“Shelf Management Controller with Hardware/Software
Implemented Dual Redundant Configuration”, filed Jan. 23,
2006, U.S. Provisional Patent Application No. 60/820,243,
entitled “Telecommunication and Computing Platforms Hav-
ing Advanced TCA Based Packaging and Ethernet Switched
Fabric”, filed Jul. 25, 2006, and U.S. Provisional Patent
Application No. 60/822,181, entitled “Enhanced Ethernet
Protocol for Shortened Data Frames Within a Constrained
Neighborhood based on Unique ID”, filed Aug. 11, 2006, the
disclosures of each of which are hereby incorporated by ref-
erence.

FIELD OF THE INVENTION

The present invention relates generally to the field of data
communications in a network. More specifically, the present
invention relates to a reconfigurable, protocol indifferent bit
stream-processing engine, and to related systems and data
communication methodologies, adapted for high-speed net-
works operating at speeds of at least 10 gigabits per second.

BACKGROUND OF THE INVENTION

Traditionally, networks have been divided into different
kinds of infrastructures or fabrics based on the purpose of a
given network. As a result, different kinds of networks have
been developed for storage networks, communication net-
works and processor networks, each having different proto-
cols and different network requirements and each designed to
meet the particular requirements for data communication
within that fabric.

In the case of processor networks, network performance is
a critical element in high-performance cluster computing
(HPCC) applications. Typically, HPCC applications run for
extended periods of time and require sustained 1/O of large
datasets over the network between processors as well as
between the client and server. Predictably, the infrastructure
must be capable of supporting multi-gigabit bandwidth, low-
latency, very high availability services that are an absolute
requirement for high-end cluster inter-process communica-
tions. Conventionally, HPCC networks utilize Switched
Gigabit Ethernet. Proprietary protocols such as, for example,
Myrinet, InfiniBand and Quadrics also find widespread use in
connecting processing clusters in a HPCC environment.

The need for massive amounts of data necessitates that the
networked processors in a HPCC application, for example, be
efficiently connected to a storage network fabric. Conven-
tionally, HPCC supporting infrastructure includes either a
storage attached network (SAN) switching fabric such as a
Fibre Channel switch, or a Gigabit Ethernet-based network
attached storage (NAS) environment. Fibre Channel is the
dominant protocol and transport for a SAN fabric because of
multi-gigabit speeds and transport protocols that are opti-
mized for moving massive amounts of block storage data
between clients and storage devices.
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Internet Protocol (IP) communication networks tend to
dominate the fabric for communications among different
HPCC applications, as well as general communications
among clients and servers over the broader Internet fabric.
Some storage networks have adopted piggyback protocols
suitable for moving block storage data over IP storage net-
works such as Internet SCSI (iSCSI), Internet Fibre Channel
Protocol (iFCP), and Fibre Channel over IP (FCIP). These
piggyback protocols, however, do not necessarily permit
direct inter-operability between communication networks
and storage networks.

The goal of providing inter-fabric interoperability across
these different kinds of network fabrics is a well-known goal.
While it may be straightforward to achieve this goal in the
context of low speed networks where all of the processing
required in the network could be accomplished with standard
programmable processors, such a solution is simply not
viable at the high communication speeds required for high
speed networks operating at 10 gigabits per second and
higher. For the most part, specialized adapters have been used
to make the transition between a specific protocol at the fabric
and a common protocol at a central switch node. Although
this approach may be transparent to the end-user, it is readily
apparent to one skilled in the art that such a patchwork of
adapters presents an exponentially exploding problem in
terms of the ever-growing number of protocols. The ability to
provide a high speed network switch that would be capable of
handling multiple protocols is a solution that at least some
network equipment makers do not believe is possible. Silvano
Gai, “Toward a unified architecture for LAN/WAN/WLAN/
SAN switches and routers,” pp. 23, HSPR 2003, Cisco Sys-
tems, Inc. (noting the non-availability of a 10 Gb/s cheap
LAN switch). Accordingly, there is aneed to find a solution to
the goal of providing inter-fabric interoperability among net-
works that is both efficient and scalable for high-speed net-
works.

SUMMARY OF THE INVENTION

The present invention provides a reconfigurable, protocol
indifferent bit stream-processing engine, and related systems
and data communication methodologies, that are adapted to
achieve the goal of providing inter-fabric interoperability
among high-speed networks operating a speeds of at least 10
gigabits per second. The bit-stream processing engine oper-
ates as an omni-protocol, multi-stage processor that can be
configured with appropriate switches and related network
elements to create a seamless network fabric that permits
interoperability not only among existing communication pro-
tocols, but also with the ability to accommodate future com-
munication protocols. The method and systems of the present
invention are applicable to networks that include storage net-
works, communication networks and processor networks.

In one embodiment of the invention, the omni-protocol
processing engine operates as a data flow processing engine
that includes both an ingress portion and an egress portion,
each portion having at least one bit-stream stage processor.
Preferably, each stage processor is optimized for a particular
stage in the data flow. Conceptually, the data flow processing
engine works much like a production assembly line in that as
the flow of data moves through the processing engine differ-
ent processing is accomplished as different stages of the
assembly line, and all of the processing is timed to the flow of
the data. The flow of data through the processing engine is
established at a rate that will permit continued operation of
the processing engine at the line speed of the network(s) to
which the processing engine is connected. The data flow
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model utilized in this embodiment avoids the need for deep
and extensive buffer management in order to keep track of
data as would be necessary in a conventional protocol pro-
cessor. Furthermore, the engines in any stage are inherently
cascadable to support scalability.

In one embodiment of the omni-protocol processing
engine (OPE), the multiple stages include at least an ingress
stage bit-stream processor, a secondary stage state machine, a
traffic processor, a scheduler and an egress stage bit-stream
processor. The ingress stage bit-stream processor interfaces
with the physical layer of the data flow and establishes frames
and/or flows for the bit stream in accordance with a protocol
determined for the bit-stream. The secondary stage state
machine parses the frames/flows in accordance with the
determined protocol, preferably using a programmable Very
Long Instruction Word (VLIW) flow classifier that pipelines
key generation. Frame/flow processing is handled by the traf-
fic processor. The scheduler manages the data flow output
from the traffic processor and the egress stage bit-stream
processor interfaces with the physical layer of the data flow
out of the omni-protocol processing engine. All of the stages
are dynamically reconfigurable and reprogrammable to per-
mit the OPE to be protocol indifferent.

In one embodiment, the secondary stage state machine and
the traffic processor utilize a novel key lookup arrangement to
improve the efficiency of the OPE. The traffic processor can
be implemented as a multiple-segmented data flow processor
arrangement where the segments in the traffic processor are
implemented dependent upon the given protocol of a frame/
flow. In the embodiment of'the traffic processor, the multiple-
segmented data flow processors implement an arbitrated and/
ortime-division multiplexing (TDM) approach to accessing a
common shared buffer memory where the data flow of the
frame/flow resides. In this way, there is no need for each data
flow processor to copy some or all of the data in the frame/
flow into an internal buffer in that processor in order to pro-
cess that data. Moreover, the data flow processors can be
cascaded and extensible as a result of both stage abstraction
and clock abstraction.

In one embodiment of the present invention, an omni-
protocol, 48 port, non-blocking QoS Gigabit switch is imple-
mented using four OPEs interfaced with a SPI 4.2 digital
switch. In this embodiment, each OPE is interfaced with 12
SerDes ports for external connections and three SPI 4.2 ports
for connection to the SPI 4.2 digital switch. When located in
the middle of a storage network, HPCC processor cluster,
intranet and internet communication network, such a switch
effectively operates as a convergent fabric permitting proto-
col indifferent network connections among any or all of these
networks. This embodiment of the present invention provides
anintelligent switching solution in that the switch is program-
mable-on-the-fly as well as reconfigurable allowing each
packet to be handled differently (i.e. 100% packet-by-packet
routing at 10 Gbps for example) according to instantaneously
reprogrammed/reconfigured OPE’s that comprise the “port
processors,” or the digital switch that forms the central
switching fabric. In this manner, the switching solution pro-
vides a high performance (>=10 Gbps per port bandwidth),
low latency (<5 usec switching), protocol independent, policy
based switching that is scalable to thousands of nodes,
interoperable with existing network infrastructure, provides
telco reliability/fault tolerance (i.e Five 9’s availability) in a
cost effective manner.

In another embodiment of the present invention, the OPEs
and associated network elements are all dynamically recon-
figurable and programmable using a register access control
(RAC) and submodule access control (SAC) arrangement
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with a GUI management system that manages code genera-
tion, flow control, performance profiling and statistics, as
well as diagnostics and maintenance for the system. In a
specific embodiment, the GUI management system includes
a module for virtually designing the system, a simulation
engine capable of simulating the expected performance ofthe
as-designed architecture in a “What You See Is What You Get”
fashion and a Code Generator (Micro Code Manager) that
generates the microcode for reprogramming the OPE and any
other reprogrammable/reconfigurable network device if
required.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1A and 1B are functional block diagrams of an
Omni-Protocol Engine in accordance with one embodiment
of the present invention.

FIG. 2 is a more detailed block diagram of the Ingress Data
Flow of the OPE of FIG. 1.

FIG. 3 is a state diagram of a Packet State Machine imple-
mented as part of the Ingress Data Flow as shown in FIG. 2.

FIG. 4 is a more detailed block diagram of the Egress Data
Flow of the OPE of FIG. 1.

FIGS. 5 and 6 are schematic representations of a pre-
processor packet framing system comprising an initial por-
tion of the multi-stage engine according to one embodiment
of the present invention.

FIG. 7 is a block diagram of one embodiment of a bit
stream stage processor in accordance with the present inven-
tion that implements a pre-processor.

FIGS. 8A and 8B are schematic illustrations of the General
Ethernet Format from XGMII and the General Format of
Ethernet.

FIGS. 9-11 are schematic diagram of selected portions of
the multi-stage OPE.

FIG. 12 is a schematic diagram of the programmable state
machine of one embodiment of the present invention.

FIG. 13 is an exemplary extensible table for the program-
mable state machine of FIG. 12.

FIG. 14 is an exemplary state diagram for the program-
mable state machine of FIG. 12.

FIG. 15 is an exemplary table for the programmable
decode table.

FIG. 16 shows a more complete figure of the basics func-
tions block of the Pre-Processor framer.

FIG. 17 illustrates a method of increasing input selection,
and the ability to have sub state within states.

FIG. 18 illustrates a method of expanding the output con-
trol coming from the state machine.

FIG. 19 shows mask compare logic that can be selected by
the state machine.

FIG. 20 is an Ethernet flow chart example that could be
programmed by this state machine.

FIG. 21 is a block diagram of the overall flow control in
accordance with one embodiment of the present invention.

FIG. 22 is a schematic illustrating the operation of the
RAC/SAC to monitor and control the operation of the inter-
connected Stages of the OPE.

FIG. 23 is a schematic of a standard Ethernet Frame
encountered at the ingress device according to the present
invention.

FIGS. 24 and 25 are schematic representations illustrating
the operational configuration of the Programmable State
Machine and the Mask and Compare circuit according to one
embodiment of the present invention.

FIG. 26 schematically depicts an exemplary frame classi-
fier according to one embodiment of the instant invention.
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FIG. 27 illustrates Stage-0 and Stage-1 engines operating
in a feed back loop according to an exemplary embodiment of
the instant invention.

FIG. 28 is a schematic of an extensible frame processor
according to a specific embodiment of the invention where
the frame processor includes P-SerDes and core engines.

FIGS. 29, 30 and 31 schematically depict a HPC port card
featuring the Omni Protocol Engine of the instant invention.

FIG. 32 is an embodiment of an exemplary switch using
third-party FPGA’s to implement a switching fabric.

FIG. 33 is a schematic of a switch in accordance with a
general embodiment of the instant invention.

FIGS. 34A and 34B are schematics illustrating an ATMCA
mTCA FAT Pipe Switch according to a specific embodiment
of the instant invention.

FIGS. 35A and 35B are exemplary of the programming
model and environment.

FIGS. 36A and 36B show a block diagram illustrating the
shelf management controller (ShMC) according to a primary
embodiment of the present invention.

FIG. 37A illustrates an exemplary 12C hardware finite state
machine (HFSM) implementation according to the present
invention.

FIG. 37B is a block diagram illustrating an exemplary
implementation of bridging between devices using various
interfaces.

FIG. 38 illustrates a block diagram of one embodiment of
a bit stream protocol processor in accordance with one
embodiment of the present invention.

FIG. 39 illustrates a block diagram of another embodiment
of a bit stream protocol processor in accordance with one
embodiment of the present invention.

FIG. 40 is a block diagram of the data flow arrangement in
accordance with one embodiment of the present invention.

FIG. 41 is a block diagram of the abstraction of the present
invention in term of different OSI Levels.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

The present invention comprises novel apparatus, system
and method for wire-speed data path processing in a network.
FIG. 1A illustrates a block diagram of one embodiment of a
system in accordance with the present invention. Central to
this embodiment is an Omni-Protocol Engine (OPE). The
OPE is a protocol indifferent bit-stream, multi-stage proces-
sor which includes the dual functionality of: 1) assembling
the bits in the bit-stream into an appropriate defined protocol
data units according to the relevant protocol, and 2) process-
ing the assembled protocol data units to provide wire-speed
throughput regardless of the protocol encountered. Unlike the
specialized adapters prevalent in the prior art, both of these
functions in the OPE are dynamically programmable. Thus,
either or both the protocol data units for a given protocol or
the processing rules that apply to the protocol data units are
changeable in a dynamic manner.

For purposes of the present invention unless otherwise
indicated, the term protocol refers to a serialized packet com-
munication protocol having defined grouping(s) of control
bits and data or information bits (which may be null), all of
which follows a set of standard instructions or rules. Table 1
provides an outline of some of the attributes of one embodi-
ment of the omni-protocol engine of the present invention.
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TABLE 1
Attribute Details
1 On-the-fly in-process redefinition of the machine

Programmability
2 Programmable/

Dynamic Multi-

Protocol Support

instruction set for example

“Standard” and “Enhanced” Ethernet
IPv4, IPv6, MPLS

Infiniband

Advanced Switching/PCI-Express

Fibre Channel

SONET/ATM

User-defined, custom protocols

Layer 2 to 4 programmable classification
Support for 1M flows down to 64 Kbps
granularity with aging rules
Programmable Traffic Mgmt, Shaping &
Policing

Protocol Encapsulation

VLAN, VSAN, VCAN support

Flow Control, Congestion Management
Flexible TCP/IP Offload

iSCSI, iSER, RDMA

MPLS, DiffServ

Industry Standard management information
bases i.e. a set of variables that conform to
the Internet standard MIB II or other
Internet standard MIBs. MIB Il is
documented in RFC 1213, Management
Information Base for Network Management
of TCP/IP-based Internets: MIB-II.

3 Programmable
Higher Layer
Features

4 Application
Support

5 Industry Standard
MIBs

As shown in FIG. 1B, the OPE is a multi-stage processor
arrangement in that it comprises several unique processing
blocks. Each block is optimized for omni-protocol flow pro-
cessing functions. Each processing block provides “Gates”
along the data path for additional processing at wire speed.
The Gate interfaces use both the High Speed Serial 1/0 lanes
as well as the High Speed Parallel lanes to meet the latency
requirements of the processing blocks. The states, features
and functional parameter of each processing block are pref-
erably programmable “on-the-fly” as will be described. As a
result, the OPEs are both re-programmable and re-config-
urable.

Referring to FIG. 41, at a basic level each stage or process-
ing block can be abstracted in terms of constituent compo-
nents, data flow dependencies between the components and
control structures that alter the data flow dependencies. Atthe
highest level of abstraction, each stage implements a generic
interface that implements control structures to enable the
stage to accept an input packet flow object and output a
processed packet flow object as well as meta data object
associated with either or both of the input and processed
packet flows. Each stage is a member of a base class. Each
base class implements an interface that is specified by the set
of methods it implements for the base class. At an intermedi-
ate level of abstraction, each base class may be extended by
adding additional modules that extend the capabilities of the
base class and form a sub-class. Each sub-class implements
its own sub-class interface that provides additional methods
that extend the functionality of the base class methods. At the
lowest level of abstraction, the interface provided by the
sub-class can be further extended by providing other methods
and/or by adding sub-modules to provide components that
did not exist in the base class. The class and its sub-classes are
reconfigurable by changing the methods and the objects that
the methods will act on. In this manner, each stage of the bit
stream processor may be programmably reconfigured to pro-
vide differentiated resources and services. In this manner, the
various stages are configured into a data (packet) flow
machine with a protocol independent architecture.
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The frame is defined as a stream of bits, where the meaning
of each and every bit is defined by one or more pre-defined
protocol framing rules. The abstraction model has a method
to accept as input a stream of bits. The meaning of each and
every bit is abstracted by the method so that each stage is
capable of accepting a stream of bits. Protocol processing is
defined by another method which performs a set of actions
based on information in one or more bits of the stream of bits,
located any where with in the bit stream. Any class or sub-
class that can implement such as method can potentially carry
out the protocol processing step. In an alternate embodiment,
each class or sub-class can be programmed to process a par-
ticular protocol by implementing a method in a generic inter-
face presented by the class or sub-class. The details of the
implementation are can thus be “hidden” behind the method
or methods to allow code and component reuse. The result of
the abstraction is that the data flow architecture is essentially
aseries of pipe lined, predictable latency stages arranged such
that the processing in a given stage is completed in the inter-
packet gap interval i.e. before the next packet arrives.

The abstraction of each stage permits the addition of one or
more pipe line sub-stages to each stage. Each sub-stage in a
stage of the pipe line completes its action on the packet in a
time equal to the packet arrival time divided by the number of
sub-stages with in a stage. Thus, a first stage may comprise of
sub-classes that implement methods for packet decoding—i.e
it creates meta-data about the data packet. The meta-data may
contain information about the location of certain protocol
specific bit patterns within an incoming packet stream. In this
respect, the packet decoder “analyzes” the frame (a defined
stream of bits). Note that the term “implements” is used
herein to signify an implementation in terms of one or more of
firmware and hardware. Any firmware, hardware or firm-
ware-hardware combination that implements the basic func-
tions described above may be used to implement the methods
referenced above. For example, the packet decoding stage
may be implemented as a programmable state machine with
compare accelerators. Given a protocol type, the PSM
extracts the fields in the packet needed by the stage processors
for address look-up for instance. The packet decoder per-
formsLayer2/Layer3/Layerd parsing to extract information
from the headers of these three layers. Therefore, the methods
that implement this functionality can be tailored to process
the protocols of these three layers and thus extend the base
class.

In one embodiment, an ingress portion and an egress por-
tion of the data flow processing engine each have multiple bit
stream stage processors that are interfaced with a multi-port
data flow packet memory. Each bit stream stage processor is
provided with a unique instruction memory In one embodi-
ment, a first switch bus is connected between the data flow
packet memory and a fabric interface and processor interface
and a second switch bus is connected between the data flow
packet memory and the multiple bit stream stage processors.
In this embodiment, a third switch bus is connected between
the multiple bit stream stage processors and a common
memory interface. The common memory interface can con-
nect with external memory or with a content-addressable-
memory (CAM) interface.

In one embodiment, the OPE supports a set of common
processing blocks that are needed for most commonly
encountered protocols. Additional features, like compute-
intensive protocol processing, can be implemented by adding
proprietary programmable, multi function processing blocks.
These compute processing blocks are also capable of “on-the-
fly” programmability endowing the OPE with the extensibil-
ity required to operate in any protocol environment without
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incurring the type of cost or performance penalty that is
characteristic of prior art attempts to attain a converged net-
work fabric. In effect, the OPE enables a converged fabric by
providing a multiprotocol processing capability i.e. the abil-
ity to merge dissimilar components of a computing center
without the need for gateways and switches among the dif-
ferent high speed protocols. The OPE solution works on OSI
layers 2-7.

In one embodiment, the processing blocks of the OPE are
preferably programmed by means of a GUI based code gen-
erator as described in U.S. Pat. No. 6,671,869 entitled
“Method and Apparatus for Graphically Programming a Pro-
grammable Circuit,” the disclosure of which is hereby incor-
porated by reference. The protocol templates are presented
and the actions on the specific fields are dragged and dropped
to the action buckets whereby the system generates Commu-
nication Engine Code. Additionally, the GUI shows the
expected performance of the engine, in “What You See Is
What You Get” fashion. The system prompts the user for
actions needed to get maximum performance. In a chip envi-
ronment these capabilities are used to select the appropriate
link speeds. In a programmable platform environment, such
as for example the FPGA, a higher capacity chip can be
selected.

In a specific embodiment of this GUI based code generator
as illustrated in FIGS. 35A and 35B, the protocol templates
are presented and the actions on the specific fields are dragged
and dropped to the action buckets. The system generates
Communication Engine Code and shows the expected per-
formance of the engine, in “What You See Is What You Get”
fashion. This system prompts the user for actions needed to
get maximum performance. In a Chip environment these
capabilities could be used to select the appropriate link
speeds. In an Programmable platform environment (like the
FPGA example earlier) higher Capacity Chip could be
selected.

The “on-the-fly” functionality may be provided by, for
example, by a field-programmable gate array in conjunction
with one or more general-purpose processors (CPUs) sharing
a common local bus. One such approach is disclosed in U.S.
Pat. No. 6,721,872 titled “Reconfigurable Network Interface
Architecture,” the disclosure of which is hereby incorporated
by reference. An alternative approach for providing such “on-
the-fly” functionality is described in “Media Processing with
Field-Programmable Gate Arrays on a Microprocessor’s
Local Bus”, Bove Jr. et. al., MIT Media Lab, Cambridge,
Mass. 02139 USA, the disclosure of which is hereby incor-
porated by reference.

Referring now to FIG. 2, one embodiment of the Ingress
Operation of the OPE shown in FIG. 1 will be described. Port
Aggregation involves physical layer protocol framing typical
of PHY and MAC devices and translating the media specific
packet data into SPI4.2 burst frames. Small SPI4.2 bursts
from multiple ports are passed to the SPI4.2 Engine in round
robin, Time Division Multiplexed fashion. The SP14.2 chan-
nel is divided into time slots based upon the number of ports
being aggregated; an 8 port aggregator divides the SP14.2
channel into 8 equal divisions. Idle bursts are generated on the
bus for slots for ports which are inactive or have no data to
transfer.

The MAC devices for this embodiment are 8x1 GbE MAC
chip (“MAC chip”). The MAC chip will be configured for
what is termed “‘burst-interleaved” mode, which means that a
configurable number of bytes (32 bytes, for example) of Eth-
ernet packet data from each 1GbE MAC will be scheduled, in
round robin (port 0 to port 9) fashion for transmission to the
SPI-4.2 interface. Bursts from the 1 GbE MACs are then
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interleaved and transmitted on the SPI-4.2 bus. Runt bursts
(bursts smaller than 32 bytes) are possible at the start and end
of packet delimiters. Operations on the Ethernet Packet per-
formed by the MAC chip include: (1) stripping the preamble
and Start of Frame Delimiter (SFD) and (2) retaining the FCS.

The SPI-4.2 Engine preferably includes a core that pro-
vides the material functionality of the SPI-4.2 Engine which
converts SPI1-4.2 framing to an internal framing format simi-
lar to SPI4.1. Data arrives from the SPI4.2 bus in bursts of 16
bits, the first 16 bit word of the burst contains a control word
that contains information about the burst; including whether
the burst is the start of a packet, the end of a packet or the
continuation of a packet and a channel number from which
the burst was sourced. Up to eight 16 bit data words from a
channel are assembled into 64 bit words and passed on, while
the 16 bits of the control word are converted to a Internal
Routing Tag.

In this embodiment, Internal Routing Tags are passed on
the internal bus along with the packet burst data as frames
move through the forwarding logic. The Internal Routing Tag
contains a bit for Data Valid, one for Start of Packet, one for
End of Packet, a bit for Data Error, 3 bits for burst size (0 thru
7 indicates a burst size of 1 thru 8 respectively) and 3 bits for
Channel Address. Channel Address indicates the port the
burst is associated with. In another embodiment, the Internal
Routing Tag may include QOS/COS information based upon
network layer prioritization or VLAN designated priorities.

Frame processing by the Frame Processor requires identi-
fying interesting characteristics of the network packet. These
characteristics include destination and source addresses,
packettype, layer 3 and layer 4 datagram and session address-
ing. In addition the Frame Processor maintains a state
machine for each packet processed by the forwarding logic.

As shown in FIG. 3, the Packet State Machine tracks the
composition of the data steam. For the HPC solution, a data
stream is composed of multiple bursts of packet data which
will to be classified based upon bit fields in the SP14.2 control
word. A packet state machine is instantiated for each packet
received at or transmitted from the SP14.2. A packet enters the
VALID state when the SPI Valid (PACKET_VALID) signal
asserted. When the SPI Start of Packet signal is asserted the
packet enters the START_OF_PACKET state and a SPI End
of Packet causes a transition to the END_OF_PACKET state.
If the error status indicates an error the state machine enters
the ERROR state otherwise the state machine transitions to
INIT.

Referring again to FIG. 2, the responsibility of the Parsing
Engine (Parser) is to construct a multiple tuple Classifier Key
from the information provided by the Frame Processor. In one
embodiment, only the destination address is necessary for
Classifier Key generation. In alternate embodiments, the
Lookup Engine may be enhanced to also include any number
of packet characteristics or packet/port states when construct-
ing Classifier Keys thus modifying the behavior of the switch
as it forwards an individual packet or packet stream.

Using the Classifier Key generated by the Parser, the
Lookup Engine will hash into the Forwarding CAM to find
the egress destination port. The egress destination port is
placed into the Internal Routing Header. In one embodiment,
the Internal Routing Header is composed entirely of an egress
port number. Alternatively, the Internal Routing Header can
include additional information. The Forwarding CAM entries
will be accessible to management entities such as SNMP
based management stations.

The Traffic Director is responsible for forwarding and/or
coping frames to the CPU based upon the port address found
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in the Internal Routing Header. Appropriate interface logic is
provided between the forwarding logic and the microproces-
sor in the FPGA.

Handling the flow of data between the switch fabric and the
frame processing logic of the Port Card is the responsibility of
the Queuing Engine. The Queuing Engine contains a virtual
queue for each 1 GbE MAC in the switch fabric, in an 8 Port
Card switch that adds up to virtual queues. Each virtual queue
is large enough to hold multiple jumbo (9K) packets. An
index for each virtual queue is maintained to track where in
the virtual queue the next 64 bits of data are to be placed, that
index is called the VQ enqueue index. The VQ dequeue is
consulted to determine the next 64 bits of data that need to be
passed to the scheduler. Thus, data from the Traffic Director is
placed into the destination port’s VQ at the offset indicated by
the VQ enqueue index. Conversely, the VQ dequeue index is
used to determine what data passed to the Scheduler. The
Queuing Engine also provides a Rate Change FIFO between
the switch fabric and the Virtual Queues and a flow control
mechanism that presents back-pressure between the switch
fabric and the forwarding logic.

The Scheduler uses the dequeue mechanism of the Queu-
ing Engine when passing frames to the switch fabric. Frames
are scheduled for to be handed off to the switch fabric in a
round robin fashion, from port 0 to port 31. Dequeuing
involves encapsulating the frame in XGMII before the XAUI
Core converts the frame to XAUI. The Internal Routing Tag
and Internal Routing Header are used during the conversion.

Referring now to FIG. 3, one embodiment of the Egress
Operation of the OPE will be described. The Queuing Engine
provides queuing on the Egress side that is the reverse of
Ingress. XAUI frames from the switch fabric are converted to
XGMII by the XAUI Core. XGMII frames are enqueued to a
Virtual Queue based upon a port number in the XGMII frame.

The Scheduler accomplishes egress scheduling in much
the same fashion as Ingress. Frames are dequeued in a round
robin fashion but the egress data frames must be converted to
the local bus interface and an Internal Routing Tag generated.
In one embodiment, the Scheduler is designed to be adaptive
and heuristic so as to reduce out-of-band forwarding CAM
update by just looking for broadcasts and updating the CAM
with the source address.

Egress SP14.2 conversion as shown in FIG. 4 is the reserve
of Ingress. The local framing format is converted to SPI4.2
using the proprietary core. Egress port aggregation involves
assembling the SP14.2 frame burst data into media packets
and transmitting them out through their addressed egress
interfaces. Again, these preferably are the MAC chip refer-
enced above. Egress operation is the reverse of ingress. Eth-
ernet packet data is received in the Egress FIFO from the
SPI-4.2 in bursts of interleaved Ethernet packet data (port 0 to
port 9). When the Egress FIFO receives 5 bursts (or when
EOP arrives depending upon packet length) the Egress FIFO
will initiate transfer to the 1 GbE MACs. Preferably, egress
frame handling also maintains a port state machine which
performs frame status checks such as frame aging, VLAN
header stripping, internal forwarding header removal, and
similar operation. Operations on the Ethernet Packet per-
formed by the MAC chip include: (1) adding the preamble,
(2) adding the start of frame detector (SFD), and, optionally,
(3) adding the FCS.

In an exemplary embodiment illustrated in FIGS. 5 and 6,
the OPE provides a selected sequence of pipelined stage
engines denominated Stage-0, Stage-1, Stage-2 . . . Stage-n.
Each stage engine may have a different, extensible and repro-
grammable architecture based upon the functionality the OPE
is harnessed for. Therefore, unlike the prior art processors
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where packets are characterized in terms of the software
instructions it takes, the instant invention is a data flow archi-
tecture with an assembly-line of specialized stages that can be
instantiated on-the-fly to reflect changes in data flowing down
the line.

Although the invention is not restrictive of the number of
ports at the ingress, the invention is best described in terms of
data packets arriving at a single port and tracking the life of
the packet along a data path through the OPE. It is important
to note that each of these data bit-streams may be several bits
wide. The width provides a measure of the processing time (or
clock cycles) available at each stage engine of the pipeline so
as to enable wire speed throughput. Each stage engine is
constrained to operate within the particular time envelope by
increasing the number of engines comprising each stage if it
appears likely that the processing at any one stage cannot be
achieved within the time constraints set in the preliminary
stage.

FIG. 7 depicts one of the embodiments of the instant inven-
tion that provides for a Stage-0 engine that is essentially a
pre-processor packet framer including in part a program-
mable state machine (PSM). As the packet comes in 64-bit
wide at a time, the framer identifies and distinguishes
between various frame types as illustrated in FIG. 1. Framer
consist of a programmable memory base state machine, fast
memory base lookup table, various comparators along with
loadable values, and select logic. The state machine selects
packet fields of interest compares against set values or other
frame data, which drives the state machine algorithm that
marks frames of interest as well as determines the frame type.
This information is then passed on to the parser where it helps
instruct the parser on how to parse the frame.

For a more detailed description of this embodiment of the
pre-processor bit stream processor, reference is made to
Appendix A, the disclosure of which is hereby incorporated
by reference. Reference is also made to Appendix B, the
disclosure of which is hereby incorporated herein by refer-
ence, which defines one embodiment of the Forwarding
Logic Register File.

The OPE preferably includes at least one predictable Pro-
grammable State Machines (PSMs). In one embodiment,
each PSM is a 32 state machine with a 50 ns/PSM at 156 MHz
internal clock equivalent to 5 ns per 10 instructions. Each
PSM, however, can have a variable number of clocks. The
Stage-0 engine sets the bandwidth processing dwell time by
converting the relatively fast serial bit stream to a relatively
slow parallel n-bit wide data stream. The bandwidth process-
ing dwell time is adjusted to the line speed. For example, for
processing a data rate of 10 Mbps, the dwell time is 50 ns per
stage of the OPE.

Preferably, the register base consists of a programmable
lookup table preset with values loaded as part of the configu-
ration. These registers are then selected for use with mask,
comparators and counters that are integral to the operation of
the stage engine. An exemplary configuration of the stage
engine configuration is illustrated as follows: The program-
mable lookup table contains up to 34 16-bit values to be
compared. Table output bits correspond to the match if any is
made. In the example, there may be 4 8-bit wide comparators,
two down counters with a maximum loadable value of 8 bits
for a maximum down count of 256. The packet data select
width may be a byte and the register value field size repre-
sented by 16, 8-bit wide preset registers. The state machine
instruction may be a single word instruction (SWI). The setof
single word instructions may be selected from the set com-
prising of set, test, and branch where each field of each
instruction may take on multiple stub fields as shown below
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where each sub field is separated comma and each main field
is separated by a semicolon, e.g., SWI: setl,set2,set3, . . .
setn;test],test2,test3, . . ., testn;brl,br2,br3, . . . b,

In operation, the state machine would undertake condi-
tional branching based on selectable vector inputs. Thus for
example, the condition (Frame byte 2==R2) would compare
packet location byte 2 of 8 against preset register R2 value.
The branching would normally determine the next control
state, but could also be used to change the mode of operation
of the current state of the programmable state machine.

Referring now to FIGS. 8A and 8B, an application of the
pre-processor packet framing method to an incoming Ether-
net packet from the XGMII interface is illustrated. From this,
the XGMII Interface Block strips the preamble and converts
the 32-bit interface into the internal 64-bit representation as
shown in FIG. 8B: General Format of Ethernet.

As the 64 bit wide packets flow through the pipeline, the
state-machine selects which 16 bit field it wants to send to the
programmable decode ram. See FIG. 9: Packet TYPE Selec-
tion and FIG. 10: Programmable decode RAM.

The state machine also selects other information from the
packet to be compared against programmable registers with
the results feed back to the state machine as shown in FIG. 10.
FIG. 10 for example shows VLAN and SNAP input being
selected and compared against selected registers with the
results feeding back to the state machine for analysis.

The purpose of the State Machine in accordance with one
embodiment of the present invention is to control the extrac-
tion of protocol layer header information. This State Machine
consists of a programmable block memory with 5 output data
lines feed back into 5 address inputs for next state clocking.
The state machine other outputs controls various functions for
example, frame data to capture, frame layer offset detection
and various input selection for the compare logic, as will as
the next input to the state machine itself. This state machine is
shown in FIG. 12. FIG. 13 shows a state machine table
example to help illustrate this.

One objective of this Programmable State Machine is to
control the decode and extraction of packet data. The state
diagram in F1G. 14 illustrates how this state machine could be
setup to handle Ethernet Packet. In this example the state
machine only did Ethernet Layer 2 but could as will continued
all the way up to Layer 4 for example.

The Decode Ram provides a method for doing fast pro-
grammable decodes of selected fields. The input into this
Decode RAM circuit is a selectable 16-bit field coming from
the packet, and the output is a 4 bit TYPE decode as illustrated
earlier in FIG. 10. One method of doing this would be first fill
memory with all Zero’s then write the decode bits for the
Types you want decode. The 16 bit address corresponds to the
“Type” and the data corresponds to the decode value that is
desired for that type. Under normal situation only 2 bit are set,
1 bit for Port-B, and the same for port-A. The decode bits
should be same value for both Port-B and Port-A. An example
of this could be if it is desired to have 0x809B AppleTalk
Phase 1, to be decode value of “1”, 0x8137 IPX (Novell
Netware) to be decode value of “2”, 0x8847 MPLS Unicast to
be decode value “3”, and 0x8848 MPLS Multicast to take on
decode value “4”. The results of this are shown in FIG. 15.

FIG. 16 shows a more complete figure of the basics func-
tions block of the Pre-Processor framer.

FIG. 17. illustrates a method of increasing input selection,
and the ability to have sub state within states.

FIG. 18 illustrates a method of expanding the output con-
trol coming from the state machine.

FIG. 19 shows mask compare logic that can be selected by
the state machine.
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FIG. 20 is an Ethernet flow chart example that could be
programmed by this state machine.

Referring again to FIGS. 5 and 6, the Pre-Processor framer
may be configured to provide more flexibility in doing the
packet selection, or the ability to do a selectable step back in
the pipe line selection. If a greater capability were desired, it
could always be provided by adding one or more additional
state machines and/or programmable decode RAM. Also note
that the RAM that are shown are imbedded in the XILINX as
block RAM and can be configured differently and grouped
etc. and that this design only showed 2 block RAM being used
one for the State machine and the other for the TYPE decode.
The smallest Xilinx XC2VP2 has 12 Block RAMS, the next
size has 28 and the largest XC2VP125 has 556 Block RAMS.

Ina general embodiment of the invention illustrated in FIG.
26, the datapath of'the OPE pipelines from the Stage-0 engine
to a Stage-1 engine. The stage 1 engine performs a rule-based
classification of packets. A number of engines can be cas-
caded to obtain the desired results because the classification
has to occur within the time interval defined at Stage_0 so that
there is true wire-speed throughput. Each engine is based
upon a dataflow model instead of the conventional store-and-
forward model. One of the outputs of this stage is key gen-
eration premised on a prior knowledge of the relevant con-
tents of the packet. In the current implementation, this stage
will require two instruction cycles. Each engine employs a
single buffer. Unlike a floating-point coprocessor, all engines
are dynamically programmable, i.e. the instructions are
reprogrammable so that they can be adapted for specific
applications. Typically, Stage_1 will comprise at least one
very long instruction work (VLIW) processor. In an alternate
embodiment, the Stage-1 engine may be configured in the
manner of the task-customized processors as previously
described.

In a specification embodiment of the invention illustrated
in FIG. 27 the Stage-0 and Stage-1 engines operate in a feed
back loop with the state information of the Stage-0 bit-stream
processing using the PSM being passed onto the Stage-1
classification engine and the information from the classifier
being fed back to inform the operation of the Stage-0 engine.
The feed-forward/feed-backward engine architecture makes
it possible to take a bit-stream of contents of any given flow,
from the multiple flows that may be supported by the OPE,
parse (or classify) the contents as the data flows through the
engine and feed information obtained by the operation back
to the previous stage so that the next operation is based on the
prior state as well as the classification result of the prior state.

Such an approach can be advantageously used, for
example, to process variable length/variable protocol pack-
ets, dynamically reorder out of sequence packets or for other
error control functionality. The elemental unit of data
becomes a bit with the feed-back and feed-forward providing
the system memory or glue that allows each bit to relate to
each bit that has gone before it and that follows it. This
paradigm can be scaled to inject a “memory” into the system
of macro-elemental data structures such as a byte, word, a
frame or an entire session depending upon the particular
objective of the stage but without incurring the latency and
hardware overhead of store-and-forward architectures. Such
macro-elemental data structures could be ephemeral in that
they persist while the data has a particular characteristic and
are used to reprogram the behavior of the OPE for all subse-
quent data flows. In this manner, unlike conventional protocol
processors whose operation is hardwired, the OPE is an
adaptable hardware device which adapts to an evolving data
flow but in a deterministic manner i.e. the “state explosion”
characterizing the prior art attempts to provide a solution by
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expanding the number of state machines and states to handle
increased data flows is overcome in the solution provided by
the present invention.

One embodiment of a data flow arrangement that imple-
ments an embodiment of the present invention for multiple
stage bit stream processors is shown in FIG. 40.

One of the attractive features of the multistage methodol-
ogy is that the parameters of the various Stage engines are
effectively decoupled. For example, there is no need for a
common clock between the various stages. This significantly
simplifies the design of the OPE. Each stage may be popu-
lated with one or more engines that are tailored to the opera-
tional need of that stage at any given time. Each engine may
be reprogrammed on the fly to endow it with functionality that
matches the characteristic of a data flow encountered by the
OPE at the particular point in time.

In a general embodiment of the invention, the Stage-2
engine is followed by a Stage-3 engine. The Stage-3 engine
provides higher level control plane functionalities such as
routing, signaling, protocol stack, policy definition, table
maintenance, interface to the data plane and so forth. Like the
previous stages, Stage-3 has specialized engines that may be
replicated to match the processing time and functionality
requirements imposed on the OPE. FIGS. 28-31 illustrate an
extensible frame processor with P-SERDES and Core
engines and a HPC port card featuring the OPE of the instant
invention.

In one embodiment, illustrated in the aforementioned fig-
ures for example, a 32 entry by 48 bit CAM on each Port Card
in the switch. Each entry represents a particular port in the
switch. Thus, the first entry in a Port Card forwarding CAM
represents port one of the switch. It will be noted that these
CAMs may be increased in size to accommodate multiple
nodes on attached LAN segments. Preferably, an aging
mechanism is defined that will keep only practical entries in
a Port Card’s forwarding CAM. Since HPCC does not utilize
LAN segments, the aging mechanism may not necessary.

As one of the design goals is to allow access to the for-
warding CAMs via SNMP, an SNMP agent running on the
Shelf Manager will need read/write access to the forwarding
CAM cache resident on the Carrier Card. Changes to the
forwarding table cache will be pushed down the Port Cards
via the update CAM IPMI message and processed as
described above

Dynamic MAC Address Learning. In order for a switch to
forward packets between any two switch ports a lookup must
be performed on the destination MAC address to find a des-
tination switch port where the incoming packet will be sent.
The lookup table (also known as a forwarding table) prefer-
ably will contain a 48 bit value that contains a destination
MAC address along with a 6 bit switch port identifier. The
forwarding table maintained by the switch is distributed
among the forwarding tables managed on the individual Port
Cards. These forwarding tables (which will be implemented
in hardware by CAMs) will need to be populated. There are
two methods for populating forwarding tables; dynamically
and statically. Static population of these CAMs will be
achieved by exposing the forwarding CAMs to a management
entity via an SNMP enterprise MIB similar to the forwarding
database described in RFC 1493.

One of the goals of this design is to moderate the use of
broadcast and multicast packets. This is because broadcast
frames are expensive in terms of bandwidth and switch
resources and multicast frames are even more expensive. An
exhaustive search was performed to find a method for this
switch to dynamically learnthe MAC address(es) on the LAN
segments attached to each switch port no matter what topol-
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ogy the switch may be deployed and do this without the use of
broadcast or multicast packets and no modifications to the
attached port network logic. At present, there is no single
method or set of steps that will allow the switch to dynami-
cally, in all cases, determine all MAC addresses that may be
connected to a switch port. In short, the Internet or an Intranet
as defined by IETF RFCs expect the switch/bridge/router to
either passively learn the MAC address of attached or the
switch/bridge/router provides a mechanism for a manage-
ment to statically populate forwarding tables.

Thus, the switch in accordance with this embodiment of the
present invention will emulate the behavior of a learning
bridge. Incoming broadcasts, such as a standard Ethernet
Frame illustrated in FIG. 23, will be parsed and source
addresses placed into the appropriate forwarding CAMs. This
will be accomplished by the embedded FPGA microproces-
sors independent of the packet forwarding logic inside the
FPGAs. The following illustrates the dynamic MAC address
discovery:

A broadcast packet is received at a switch ingress port. The
packet is passed through the forwarding logic until the Traffic
Director hands the frame to the Mobile Management Con-
troller (MMC) via a frame FIFO.

The MMC will extract the source address of the data link
layer header.

The MMC will encapsulate the source address and the
ingress switch port number into an IPMI message and for-
ward the message via the SPI based IPMI bus to the micro-
processor on the Carrier Card (IPMC).

The IPMC will capture the source address and switch port
number in a forwarding table cache that will be assessable by
an SNMP based management entity via RAC.

The IPMC will broadcast the CAM update message to the
all other MMCs in the switch.

The internal microprocessor will receive the CAM update
message and update its forwarding CAM by placing the MAC
address of the CAM update message into the CAM entry at
the offset represented by the switch port number.

It will be noted that this entire forwarding table procedure
may need to be modified extensively to support more robust
topologies. i.e. multiple nodes on attached LAN segments.

Preferably, a 32 bit wide FIFO that is read by the internal
microprocessor to access selected frames in the data stream.
The FIFO will be written by the forwarding logic with the
Internal Routing Tag and the first 32 bytes of the incoming
packet. A status register is read to determine when the FIFO is
empty.

As previously described, FPGA control and status register
files are accessible through a Register Access Control mecha-
nism whereby IPMI encapsulated messages are directed to
the microprocessor in the FPGA who then performs the actual
register read or write. In one embodiment, the microprocessor
acts as a Register Access Controller (RAC) who interprets the
RAC message, determines which forwarding logic element/
Sub-module Access Controller (SAC) the message is
addressed and facilitates the register access with the SAC.
Resulting status/response is return to the message originator.
FIG. 22 shows a block diagram of one embodiment of the
SAC bus. It will be understood that the SAC Bus is unique to
the sub-module and may take many forms.

IEEE specifications state that the destination address of the
PAUSE packet may be set to either the unique DA of the
station to be paused, or to the globally assigned multicast
address 01-80-C2-00-00-01 (hex). In addition, packets with
the PAUSE packet multicast address will not be forwarded by
a bridge which ensures the frame can not propagate beyond
the local link segment. The MAC Control Parameters field
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designates the number of bit times to pause, from 0 to 65535.
A PAUSE received before the expiration of a previous PAUSE
period, results in the new bit time value replacing the current
PAUSE period value. This allows the PAUSE period to be
reset to zero, allowing traffic to resume

Preferably, the MAC chip accommodates two modes of
flow control. When configured in full-duplex mode the MAC
chip can automatically generate PAUSE packets. Back pres-
sure from the SPI-4.2 bus causes the MAC chip ingress FIFO
to fill, by setting appropriate high and low watermarks the
MAC chip will manage start and stop PAUSE signaling. The
second mode bypasses the FIFOs and relies on SPI-4.2 flow
control messaging to generate PAUSE start and stop packets.

A port state machine will be maintained for each switch
port on a Port Card. The state machine will be accessible by
both the FGPA logic and microprocessor. The state machine
as explained in this document contains three basic elements;
an event, a defined state and the action performed when
entering that state. The events defined above trigger state
transitions into states which in turn perform actions as the
diagram in FIG. 24 and the state diagram in FIG. 25 show.

FIG. 32 illustrates an embodiment where an adaptable
hardware device, i.e Virtex LX 200 communication engine, is
configured into a 48 port switch by coupling it to Virtex Pro 4
communication engines which constitute the ingress and
egress “ports.” The problem with this configuration is that
switch arrangement is limited to handling a single protocol
for data packets switched through the switch arrangement
that would be supported by the Virtex Pro 4 communication
engines.

FIG. 33 illustrates a specific architecture of a switch
according to the present invention where OPE’s form the port
processor engines and the digital switch may be either a
Virtex LX 200 communication engine or a special purpose
OPE forming an intelligent, reprogrammable switching fab-
ric. Unlike the switch arrangement shown in FIG. 32, the
embodiment of FIG. 33 utilizing the OPE in accordance with
the present invention provides for an omni-protocol switch/
bridge arrangement capable of handling data packets of any
of a plurality of protocols supported by the OPEs. FIG. 33
schematically illustrates a specific configuration of the switch
of the present invention.

Inaddition to the events generated when entering a state the
microprocessor will need to monitor the MAC chip, the SFPs
and listen to IPMI events and messages in order to provide the
events which cause switch port state transitions. Note that any
event may occur at any state and must be caught and handled
appropriately. In the interest of clarity the state diagram does
not show all potential state transitions. Also, most event tran-
sitions cause IPMI event messages to be generated and poten-
tially SNMP traps.

The INIT state is the initial state of the switch port at the
instantiation of the port state machine. When this state is
entered the first time the SFP is enabled and a TX_ENABLE
event generated unless the port has been administratively
disable.

When a switch port enters the ENABLED state, a check is
performed to determine if the SFP exists. If the SFP exists a
MOD_DETECT event is generated.

A switch port entering the FAULTED state is considered
down. Human intervention is required to transition out of this
state.

MOD_EXISTS—A check is performed on the optical sig-
nal when this state is entered. If the signal is normal then a
SIGNAL_DETECT event is generated.
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Word synchronization is verified at the SIGNAL state. If
the signal has synchronized a SIGNAL_SYNC event is gen-
erated.

SYNCed. After the signal has synchronized a check is
performed to determine if Ethernet auto-negotiation has com-
pleted. If Ethernet auto-negotiation has completed an
AUTO_NEG_DONE event is generated.

In the UP state, the switch port is UP and is capable of
forwarding frames to the switch fabric. However, the MAC
address of the connected node has not been learned.

In the READY state the switch port is operational.

In another embodiment of the present invention, lossless
packet switching is implemented along the same lines as the
discussion of flow routing discussed in The Next Generation
of IP—Flow Routing, by Dr. Lawrence G. Roberts, Founder,
CTO Caspian Networks at SSGRR 20038 International Con-
ference, [’ Aquila Italy, Jul. 29, 2003, but using the omni-
protocol engine configurations as have been described. The
contents of the document are incorporated herein by refer-
ence. Additionally, the concepts described in the paper can be
extended to implement an end-to-end flow control in the OPE
of the present invention to accord with the recommendations
of'the IEEE 802.3 AR task force on flow control and conges-
tion management.

Applied to the stages comprising one embodiment of the
OPE disclosed herein, the Pause per QOS level can be imple-
mented with an Engine (consisting of three Stage Processors:
(a) A Bit Stream Processor attached to each of the two
required X AUT interfaces; (b) A Look Up Key Generation for
Flow identification or Rule based Traffic Priority Identifica-
tion Flow Classification Stage; (c) A processor stage for gen-
erating an appropriate back pressure notification to higher
layer Protocol Stack or buffer manger, to meet prospective
recommendations of the IEEE 802.3 AR task Force on Flow
Control and Congestion Management. The need for priority
identification is underscored in P802.3ar “Congestion Man-
agement Why Priority/Class Based PAUSE is Required?”,
Asif Hazarika (ahazirik@fma.fujitsu.com) and Bob Brunner
(Robert. Brunner@ericsson.com), the contents of which is
incorporated herein by reference.

The Block then, has two XAUI interfaces and one or two
SPI 4.2 interfaces implemented with stage processors. With
the addition of Traffic Director or the Switching Stage, the
Block could also be used for Identification of the incoming
Traffic and Direct to Crypto engine or processing engine
based on the VL AN tag or any other in band identification.
This could be implemented with an 8 SerDes Port Xilinx
(FX-40). Alternately, an AMC could be used. This card also
meets the third requirement (selecting the X AUT for I/O either
from RTM or the Front panel).

It will be understood that in terms of flow processing by the
OPE of the present invention, a circuit is called program-
mable if the functionality can be changed every clock cycle.
This is what is normally referred to as a processor. The pro-
cessor is defined by the instruction set architecture (ISA) and
the register file (RF). This is what is called the programmer’s
view of a processor and that is the interface between the
hardware that constitutes the processor and the software that
can be executed on the processor. See, Thomas Henriksson,
“Intra-Packet Data-Flow Protocol Processor,” Linkdping
Studies in Science and Technology, Dissertation No. 813; and
John L. Henessy and David A. Patterson, “Computer Archi-
tecture: A Quantitative Approach”, Morgan Kaufinan Pub-
lishers, Inc., ISBN 1-55860-329-8, Second Edition 1996, the
contents of which are incorporated herein by reference. In the
context of the present invention, Every Cycle becomes—a
Data arrival interval—wherein the data must be processed.
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Analogizing to an ISA, the stages of the OPE can be defined
as Flow PSA—Flow processing Set architecture- and the RF
as the Pipe Line Register Files. An ISA, is a set of Micro
Code, which performs Fetch (Instruction and or Data),
Decode, Defer (to get more Data), Execute (the instruction on
the Data), Store Sequence (Von Newman Model). The func-
tionality of the Flow PSA can be similarly denoted.

An embodiment of the IPMI extension that are used to
connect all IPM controllers to the chassis in one embodiment
of'the present invention will be described. For a more detailed
description of this aspect of the embodiment of the present
invention, reference is made to the previously identified pro-
visional patent application entitled “Shelf Management Con-
troller with Hardware/Software Implemented Dual Redun-
dant Configuration.”

FIGS. 36A and 36B depict a block diagram illustrating a
shelf management controller or ShAMC 230 according to one
embodiment of the present invention. As depicted in the block
diagram of FIGS. 36A and 36B, the present invention pro-
vides a first ShAMC 310 communicatively coupled with a
second ShMC 315 in a symmetrical arrangement to provide a
redundant shelf management functionality utilizing active/
standby architecture with automatic fail-over. In a first
embodiment, each of ShAMCs 310 and 315 are architecturally
identical. Each ShMC 310(315) includes an independent pro-
cessor 320 running a small footprint operating system (OS)
325 such as for example, the ucLinux OS with a thin stack.
The ShMC 310(315) operates on standby power and obtains
system health variables by autonomously polling the Intelli-
gent Platform Management Controllers (IPMC)s 235. The
ShMC 310(315) is configured to detect an anomaly, log the
event, generate and transmit alerts to notify the system of the
anomaly and initiate recovery actions.

As depicted to FIG. 36A, each ShMC 310(315) is con-
nected to at least two 12C/IPMB busses IPMB-A 270 and
IPMB-B 275. ShMC 310(315) may be arranged in an active-
active or active-passive 12C/IPMB failover modes. This
embodiment of the present invention contemplates a unified
message system which passes messages on an Abstracted
Channel (AbCh). In this embodiment of the present inven-
tion, a channel is a physical link such as for example, 12C,
JTAG, Update Channel and Free Space. In the AbCh view,
each channel has attributes such as for example, client server
channel, peer channel, master slave channel which indicates
the direction of queries and responses, capacity in terms of
bandwidth, latency, and CoS or QoS, primary path, alternate
path, feed back channel, such as for example, echoing or
positive acknowledge messaging. The attributes are assumed
to be programmable or hardware assisted with buffers, for
instance. All attribute states can be probed at will and so can
support registers for example. The AbCh allows the messag-
ing system to route the messages at will or as the needs of a
system change. Preferably, a GUI programming tool can be
used to create one or more channels for a given hardware
platform, to pass attributes to the hardware platform and to
measure performance, run simulations, and so forth. One of
skill in the art will readily recognize that the capability to
execute instructions on an EEPROM enables the applications
to be scaled.

Referring again to FIG. 36A, the IPMI messaging system
model according to the present invention is depicted as a dual
client-server messaging system. The client-server messaging
scheme among multiple shelf components uses a channel
abstraction layer to maintain layer independence. The ShMC
310 is communicatively coupled to ShAMC 315 by a dedicated
update channel 330 and an active control channel 335. The
update channel 330 is adapted to bi-directionally transmit
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sanity and state information between the ShMCs 310(315).
Two instances of the client-server based messaging system
run on each ShAMC 10(315). In an exemplary embodiment, the
active ShMC 310 (for instance) may be designated the server
on system start-up, for example, without departing from the
scope ofthe invention. The ShMC 315 will then be designated
the client. The active ShMC 310 executes the command sets
to perform shelf-management functions upon receiving state
information from the IPMCs 235.

In the illustration embodiment of FIGS. 36A and 36B, the
independent processor 320 of the ShMC 310(315) is disposed
in communication with a Bit Stream Processor (BSP) 340
disposed with at least one processor interface that is generic
for all physical interface types including without limitation
IPMI 1.5 over IPMB, Command Line Interface (CLI) over
Serial Port, Telnet, and SSH Secure Shell. In one embodi-
ment, the ShAMC 310(315) includes a RCMP-IPMI bridge
312, implemented using the BSP 340, for example, that
bridges over RMCP and IPMI messages. When a RMCP
message packet is received from the system manager, the
packet is opened and examined for UDP Port #. If the UDP
Port # matches the IPMI message the packet is stripped of its
header and an IPMI header (if any) is encapsulates. Then the
message is sent to the appropriate interface. The ShMC kernel
can request a Copy Back. An IPMI message to the System
Manager is encapsulated and sent over the System Manager
Physical Port.

FIGS. 37A and 378 illustrate an exemplary implementa-
tion of the 12C hardware finite state machine (HFSM) 475
using the BSP 440. In this embodiment, the BSP is the Omni-
protocol Bit Stream Processor as described in accordance
with the present invention. The BSP is configured for wire
speed packet data path processing of the bit-stream on the
IPMB-A 270 and IPMB-B 275 buses. The BSP is adapted to
assemble the bits in the bit-stream into defined protocol data
(information) units and process the assembled protocol data
(information) units to provide wire-speed throughput regard-
less of the protocol encountered. Both of these functions are
dynamically programmable using, for example, the RAC/
SAC (487/489) as discussed below. Thus, either the informa-
tion units of a protocol or the processing rules that apply to the
protocol data (information) units are inherently changeable in
a dynamic manner.

In one embodiment, the HFSM 475 includes the BSP 440
configured with a selected sequence of pipelined stage
engines. Each stage engine may have a different, extensible
and reprogrammable architecture that causes an instantiation
of a device finite state machine (DFSM) 480 for each IPMC
235 transmitting a message (e.g. system health, temperature,
fan revolution etc) to the HFSM 475. The DFSMs 480 are
advantageously configured for data flow communication to a
stage engine of the BSP 440 adapted to instantiate a messag-
ing finite state machine (MFSM) 485. Generally, the HFSM
(as well as the DFSMs and the MFSM) uses three basic
constructs. The HFSM maintains an action table that contains
the action to perform when a given event is received while the
FSM is in a given state, a next state table which contains the
next state to enter when a given event is received while the
FSM is in a given state and an event handler which drives the
event processing when presented with an event, looks up and
performs the necessary actions and updates the current state
information. The stage machine (or the BSP or the FPGA)
control and status register files are accessible through a Reg-
ister Access Control (RAC) 487 mechanism whereby IPMI
encapsulated messages are directed to the microprocessor in
the stage machine (or BSP or FPGA) who then performs the
actual register read or write. The microprocessor acts as a
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Register Access Controller (RAC) who interprets the RAC
message, determines which forwarding logic element/Sub-
module Access Controller (SAC) 489 the message is
addressed and facilitates the register access with the SAC.
Resulting status/response is return to the message originator.
The RAC/SAC 487/489 provides a means to set or change the
messaging methods per device (i.e. IPMC 235) on-the-fly,
thus providing one mechanism that implements the level of
programmability and flexibility of the present invention.

Inone embodiment, the HFSM 475 is adapted to detect 12C
bus failure as well as a device failure. If the failure is deter-
mined to be on a device monitored by one of the IPMCs 235,
the ShMC 310(315) disables that device from accessing the
backplane.

Referring again to FIG. 36A, the client 315 monitors the
queries and responses of the active ShMC 310 using the
update channel 330 and computes the states of the transac-
tions and synchronizes these states with the active ShMC 310.
In case the client ShAMC 315 detects an error condition in the
ShMC 310, it reports the event to the system manager 265
which acts as the referee and acts to remove the active ShMC
310 and enable the standby ShMC 315 to complete the
failover without a time consuming state update. While the
present embodiment is well suited for operation with
AdvancedTCA compliant systems, it will also work in a
MicroTCA environment where a tri-stated standby is pre-
scribed as illustrated in FIG. 36B.

In another embodiment, the ShAMC 310(315) is augmented
by a thin hardware assisted protocol stack. Another embodi-
ment of the system implements an OS bypass scheme to
assure a tiny and manageable ShMC implementation. The
primary embodiment includes a EEPROM to execute instruc-
tions, such as for example an EEPROM with a TINY CHIP
using system-on-chip (SOC) concepts, that would enable cost
wise scaling of the capabilities of the ShMC processor 320.

In one embodiment, the dual redundant ShMC 310(315)
configuration is used to introduce fault tolerant operation of
the shelf management controller. In a first embodiment,
checkpoints are inserted by adding an additional checkpoint
state in the HFSM 475. When a current state in the HFSM 475
is the checkpoint state, a checkpoint process may be initiated.
On errors being indicated, the HFSM 475 may initiate a
failover to ShMC 315 over the exclusive-use bus 335 and a
recovery process initiated on ShMC 310 without introducing
an abnormality in the ATCA shelf. The recovery process may
be done by restoring faulty states internal to the ShMC 310 by
replaying the logged states stored on ShMC 315 in their
original order to recreate ShMC 310’s pre-failure state. In
another embodiment, an additional ShAMC 492 may beused to
augment ShMC 310(315) and the correct state is obtained by
voting among the three or more copies of the states held
between the three ore more ShMCs. In one embodiment, the
voted results are loaded into the registers of each of the
HFSMs 475 for purposes of resolving any conflicting votes.

In one embodiment of the present invention illustrated in
FIG. 38, a bit steam protocol processor (alternatively referred
to as the bit stream protocol processor based bridge or simply
as the bit stream protocol processor) providing a SP1 4.2 to
XUAI two-way bridge architecture is shown. The first type of
serial data transmission interface corresponds to a SPI 4.2
interface and the second type of serial data transmission inter-
face is the XAUT interface.

The bit stream protocol processor of this embodiment pro-
vides dual SPI 4.2 to XAUI bridges. SPI 4.2 provides a
parallel, point-to-point, bidirectional interface. The SPI 4.2
Framing supports up to a maximum of 256 ports. Data is sent
through the SPI1-4.2 frame using the 16 LVDS data lanes, as
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one complete packet or as multiple data bursts per port. A
control word header appended to the sub-channel data delin-
eates the bursts. The start of packet bit (S) and the end of
packet status bits (EOPS) in the control word are used to
identify a complete packet that may be made up of multiple
bursts. The address [0:7] are used to define a sub-channel. The
flow control and status information is transported out of band,
per sub channel. The interface bandwidth can range from 10
Gbit/s for low overhead applications to 20 Gbit/s for applica-
tions such as switch fabrics that need bandwidth speedup in
order to support overhead information.

It will be seen that for 10 GigE each bit stream protocol
processor may support 10 Gbps full duplex per port, making
it possible to attain a 2.560 Tbps switching throughput capac-
ity. For 40 GigE, each bit stream protocol processor may
support 40 Gbs full duplex per port, making is possible to
attain a 10 Tbps switching throughput capacity. In general, it
will be recognized that the reconfigurable and programmable
nature of the omni-protocol engine in accordance with the
present invention permits the processors to be inherently scal-
able over a range of clock speeds.

It will be recognized that the bit stream protocol processor
in accordance with one embodiment of the present invention
can provide N interconnects between, for example, the sys-
tem processor (CPU) of the PC and the system memory. Each
of'the N interconnects may be configured to transfer data at 10
Gbps resulting in a scaled throughput of 10N Gbps. The SPI
4.2 is point to point interface between devices located with in
a few inches of each other. In a system it is often desirable to
interconnect SPI 4.2 devices which are located on different
cards with in a chassis via a back plane (Intra Chassis) or
located on different chassis (Inter Chassis). Under such cir-
cumstances it is advantageous to use the serial point-to-point
links of the present invention that provide high bandwidth
connections in Intra-Chassis or Inter-Chassis environments.
Exemplary serial links include ASI using PCI-Express, Eth-
ernet using XAUI, and Infiniband using IB. This in effect
translates to connecting any two out of possible hundreds of
geographically separated SPI 4.2 devices with a “Virtual
Wire” interface. In one embodiment, the present invention
may be configured as a single board computer (PC). In
another embodiment, the present invention provides for a
industry standards (such as picoTCA for example) enclosure
with removably attached blades that support field pay as you
go end-user upgrades.

To transport control word, including port address, data and
the out of band flow control information available on the
parallel SPI 4.2 interfaces using serial links, or via a virtual
wire, a tunneling protocol is utilized. To assure high band-
width utility these tunneling protocols are preferably light
weight. The tunneling features may be embedded in to the SPI
4.2 devices or a bridge chip could be used in conjunction with
the SPI14.2 devices to provide this conversion. To support this
bridging between SPI 4.2 devices using various serial inter-
faces using maturing tunneling protocols, the bridge is pro-
grammable. In this embodiment, the bit stream protocol pro-
cessor based bridge which provides the SPI 4.2 interfaces to
XAUI and other serial interfaces and flexible means for vari-
ous tunneling protocols. The bit stream protocol processor
offers dynamic programming and function extensibility as
described in Appendix A that is incorporated herein in its
entirety.

Referring now to FIG. 39, another embodiment of a bit
stream protocol processor is shown. In this embodiment, the
bit stream protocol processor directly interfaces with the front
side bus (FSB), thereby eliminating certain of the translation
processes in the bit stream protocol processor described in
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connection with FIG. 38. In addition, the bit stream protocol
processor of FIG. 39 provides for both lean pipe and fat pipe
parallel-serial translators, thus permitting selective aggrega-
tion of one or more Ethernet ports for the fat pipe configura-
tions.

In one embodiment, the bit stream protocol processor
allows line speed QoS packet switching which is utilized to
implement a simple token based communication in Ethernet.
The source address (SA) and destination address (DA) and
E-type like VLAN Tag is used for negotiating a unique token
between end points on a communication link. The E-type
extensions may be, for example, Request for UNIQUE ID or
TOKEN GRANT; data communication with the granted
token and request to retire the TOKEN. Once the TOKEN has
been granted, the SA and DA fields are used along with the
E-type to pass short date. This may also be extended to
include large blocks of data for STA, and SAS. In other
embodiments, once a UNIQUE ID is negotiated between
end-points and an intermediate node connecting these end-
points, a fixed frame size is used to endow the link with
predictable performance in transferring the fixed frame and
consequently meet various latency requirements. For
example, the SA/DA pair could be used to transmit 12 bytes
of data, 2 E-Type bytes and 2 bytes TAG, instead of the
traditional 64 byte payload for a conventional Ethernet
packet. For a more detailed description of one embodiment of
this extended Ethernet communication technique, reference
is made to the previously identified provisional patent appli-
cation entitled “Enhanced Ethernet Protocol for Shortened
Data Frames Within a Constrained Neighborhood based on
Unique ID”.

In another embodiment, the same interface could provide a
fixed 2K block size frame for Disc—(data follows the E-Type
and TAG). In this respect, the present invention enables a
programmable frame size Ethernet construct as opposed to
the variable frame size construct known to the art. This capa-
bility can be especially useful in iTDM type of applications
because it enables packetizing TDM traffic within the frame-
work of ATCA.

In one embodiment, Ethernet VLAN header is used as a
tunneling protocol to allow the industry standard Ethernet
Switches to be used to switch between any two SPI 4.2
devices located in an Intra Chassis or Inter Chassis environ-
ment. The primary embodiment of the present invention uses
Gigabit Ethernet (GbE) as the second data transmission pro-
tocol. Other protocols may be used without departing from
the scope of the present invention. The SPI 4.2 control word
and flow-control information is converted to a standard Eth-
ernet VLAN header. The SPI 4.2 sub-channel data is encap-
sulated with the header information at the ingress. At the
egress, the header information is stripped from the Ethernet
frame and converted back to SPI 4.2 frame and the flow
control information is translated to SPI 4.2 electrical signals.
Additionally, the bit stream protocol processor provides an
efficient means to embed the Class of service information and
programmable means for generating and propagating Con-
gestion Management messages.

In one embodiment, the bit stream protocol processor is
configured to support interfaces such as GbE, PCI-Express,
RGMII, PCI bus and Serial bus to make it an ideal universal
device for use in ATCA and microTCA systems. One skilled
in the art will recognize that other interconnect technologies
such as for example, the XS4 10 Gigabit Ethernet and HiGig
SPI4.2 Bridge from MorethanlP, to bridge an SPI4.2 interface
to a XAUI interface to meet multiple design requirements
such as device Bridging (e.g. NPU to Ethernet Switch), Serial
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Backplane applications, Packet over SONET/SDH or Ether-
net over SONET/SDH applications.

The ability provided by the present invention, to intercon-
nect SP14.2 devices which are located on different cards with
in a chassis via a back plane (Intra Chassis) or located on
different chassis (Inter Chassis) enables one embodiment of
the present invention to achieve standards based PC such as
for example, the picoTCA or the microTCA standard based
PC architecture.

One embodiment of the bit stream protocol processor illus-
trated in FIGS. 38 and 39 advantageously utilizes the RAC/
SAC controller that endows the bit stream protocol processor
with dynamic programming and function extensibility. The
RAC/SAC controller structure is used to program the bit
stream protocol processor on-the-fly. This capability may be
used to configure the blade (board) on which the bit stream
protocol processor resides. In one embodiment, the on-the-fly
dynamic programming capability is used to turn the blade
(board) on or off thereby including or removing the blade
from the computer system. In another embodiment the on-
the-fly dynamic programming capability may be used to
change the character of the bridge so that it bridges between
SPI 4.2 and PCI-Express for example. Those skilled in the art
will recognize that other configuration changes may be
affected within the scope of the present invention using the
RAC/SAC controller. For example, the programmability may
be used to implement a real end-to-end QoS for various traffic
flows through the computer system.

In another embodiment, the bit stream protocol processor
enables prioritized switching. In conjunction with the modu-
lar and scalable picoTCA PC architecture of the previous
paragraph, the present invention allows the creation of a
N-layered hierarchy of multiprocessors where N is both hard-
ware independent and dynamically selectable by altering the
prioritization afforded to different subsets of processors in the
bit stream protocol processor mediated fabric. This embodi-
ment enables the PC to be configured as a shared memory
model machine as well as a message passing model multipro-
cessor machine. Alternately, the PC in accordance with one
embodiment of the present invention may be configured as a
server, a storage area network controller, a high performance
network node in a grid computing based model, or a switch/
router in a telecommunication network. It will be recognized
that the same basic machine may be programmatically or
manually altered into one or more of the aforementioned
special purpose machines as and when desired.

Various modifications to the method may be apparent to
one of skill in the art upon reading this disclosure. The above
is not contemplated to limit the scope of the present invention,
which is limited only by the claims below

The invention claimed is:

1. An omni-protocol data packet processing engine for
managing communication of data packets between a com-
puter processor and a high speed network fabric having a line
speed of at least 10 Gb/second, the omni-protocol data packet
processing engine comprising:

an ingress portion of the data packet processing engine,

including:

a first plurality of bit-stream stage processors, each bit-
stream stage processor having a programmable con-
trol memory unique to that bit-stream stage processor;

an ingress processor-interface to the computer proces-
sor;

an ingress network-interface to the network fabric; and

a first multi-port data flow packet memory operably
coupled to the first plurality of bit-stream stage pro-
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cessors, the ingress processor-interface, and the
ingress network-interface; and

an egress portion of the data packet processing engine

including:

a second plurality of bit-stream stage processors, each
second bit-stream stage processor having a program-
mable control memory unique to that bit-stream stage
processor;

an egress processor-interface to the computer processor;

an egress network-interface to the network fabric; and

a second multi-port data flow packet memory operably
coupled to the second plurality of bit-stream stage
processors, the egress processor-interface, and the
egress network-interface;

wherein the control memory of each of the bit-stream

stage-processors is individually selectively dynamically

programmable based on one of a plurality of protocols
determined for a given data flow of one or more data
packets and the bit-stream stage-processors process the
given data flow as a flow of bit stream data through the
multi-port data flow packet memory such that process-
ing of the given data flow by the plurality of bit-stream
stage processors is timed according to the flow of bit
stream data and the flow of bit stream data is established
at a rate that enables continuous operation of the data
packet processing engine for all of the plurality of pro-
tocols substantially at a speed that is at least equal to the
line speed of the high speed network fabric, and
wherein each of the bit-stream stage processors is config-
ured to programmed to deliver a bit-stream functionality
and interconnect with other bit-stream stage processors,
such that the bit-stream functionality of a single stage is

deliverable within a dwell time that does not exceed a

time interval elapsing between the arrival of two con-

secutive data packets from the high speed network fab-
ric.

2. The data packet processing engine of claim 1 wherein the
continuous operation characterized in that the data packets
are transferred through each of the bit-stream stage proces-
sors in less than the dwell time.

3. An omni-protocol data packet processing engine for
managing communication of data packets between a com-
puter processor and a high speed network fabric having a line
speed of at least 10 Gb/second, the omni-protocol data packet
processing engine comprising:

an ingress portion of the data packet processing engine,

including:

a first plurality of bit-stream stage processors, each bit-
stream stage processor having a programmable con-
trol memory unique to that bit-stream stage processor;

an ingress processor-interface to the computer proces-
sor;

an ingress network-interface to the network fabric; and

a first multi-port data flow packet memory operably
coupled to the first plurality of bit-stream stage pro-
cessors, the ingress processor-interface, and the
ingress network-interface; and

an egress portion of the data packet processing engine

including:

a second plurality of bit-stream stage processors, each
second bit-stream stage processor having a program-
mable control memory unique to that bit-stream stage
processor;

an egress processor-interface to the computer processor;

an egress network-interface to the network fabric; and
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a second multi-port data flow packet memory operably tocols substantially at a speed that is at least equal to the
coupled to the second plurality of bit-stream stage line speed of the high speed network fabric, and
processors, the egress processor-interface, and the wherein each bit-stream stage processors further comprise:
egress network-interface; aplurality of data flow dependencies between components;
wherein the control memory of each of the bit-stream 5 control structures that alter the plurality of data flow depen-
stage-processors is individually selectively dynamically dencies; and
programmable based on one of a plurality of protocols a generic interface that implements the control structures to
determined for a given data flow of one or more data enable the bit-stream stage processors to accept an
packets and the bit-stream stage-processors process the ingress data flow, and output a processed packet flow and
given data flow as a flow of bit stream data through the 10 a meta data object associated with the ingress data flow
multi-port data flow packet memory such that process- and/or the processed packet flow;
ing of the given data flow by the plurality of bit-stream wherein the bit-stream stage processor is a member of a
stage processors is timed according to the flow of bit base class that can be grouped into a sub-class providing
stream data and the flow of bit stream data is established additional functional methods.

at a rate that enables continuous operation of the data 15
packet processing engine for all of the plurality of pro- ¥ % % % %



UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 7,782,873 B2 Page 1 of 1
APPLICATION NO. : 11/466367

DATED : August 24, 2010

INVENTOR(S) : Sharma

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Title Page, Item (60), please delete “60/822,181” and insert in its place --60/822,171--
Column 1, Line 18, please delete “60/822,181” and insert in its place --60/822,171,--

Signed and Sealed this

David J. Kappos
Director of the United States Patent and Trademark Office



