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A new algorithm is presented for simulating stable random variables
on a digital computer for arbitrary 0<a<?)

functxon However, thl.s step is expensive, and any in-

and skewness parameter f(—1 <8< 1). The algorithm involves a
nonlinear transformation of two independent uniform random vari-
ables into one stable random variable.: This stable random variable
is a continuous function of each of the uniform random variables, and
of « and a modified skewness parameter 8 throughout their respec-
tive permissible ranges.

1. INTRODUCTION

In recent years there has been growing interest in the
properties and uses of stable distributions, which are
those distributions that arise as limits of suitably scaled
and translated sums of iid random variables. An excellent
reference for this theory is Feller [9, e.g., pp. 165-73;
540-97]. This note presents a new solution to the problem
of how to simulate stable random variables on a digital
computer.

To fix notation, we take the characteristic function
f(t; @, B) (with a location parameter of zero and a scale
or dispersion parameter of unity) to be

J(t; @, B) =exp [— |¢]= exp (—4wiBl(a) sign ()] ,

0<a<2, a®l,
2
=exp|:-—\li(l+fiﬁln\t[sign(t))],
T
. X a=1,
where —1<8<1, k(@) =1—[1—a|]. For a1

this is a slight modification of [9, p. 548, Eqgs. (6.1) and.

(6.2)]. Feller [9, p. 542, Eq. (4.10)] incorrectly omits the
factor (2/x) for @ = 1. (The reader should also consult
Zolotarev [19].)

* Previously, st-able random vs.nahles have been mmu—
lated by
distributed uniformly on the mterva.l (0, 1) and calcu-
lating the (app: inverse d ion function at
each value, the result being a sequence of iid stable
pseudorandom variables (see [5, 8, 15]). DuMouchel
[6, pp. 121-4] has considered a number of variations on
this method. Such methods are reasonable when the
number of simulations needed is large, for a single (a, 8)
pair, since it is then practicable to put much eﬂ’ort mto

d will be d to the Monte
Carlo results. For problems of small or moderate size,
especially when many different (e, 8) parameter values
are of interest, the algorithm developed here will be more
efficient and convenient.

In several cases, special methods can be used. Three
of these are the Gaussian, S(2, 0), the Cauchy, S(1, 0)
and the Pearson V, S(4, 1). Our method reduces to well-
known formulas in these cases. A procedure for a set of
special cases is given by Brown and Tukey [3]: they
take m iid Gaussian random variables (X3, ..., Xu),
with zero mean and unit variance, and form 8(2~™, 1)
from -

8=, 1) =TT &)
J=1

Further cases can be generated from the preceding by
usmg the following relationships, all of which follow
diately from the ipulation of the ch
function f(¢; @, B) plus elementary Fourier transform
properties (we use the notation “~” to mean “has the
same distribution as”):
i. 8(a, p) ~—8(a, —6)
ii. 8(a, ) ~ pS1—¢S: ,
where 8y, S are iid, 8; ~ 8, ~ 8(«, 1), and
p* = sin (drk(a)(1 + B))/sin (vk(a))
¢* = sin (3xk(a)(1 — B))/sin (xk(a))

i, S(a”, ) ~ 8(a, HS(a, DI, a=1,o <1,
where o = aa’, B’ = fk(a)a'/k(ac’). (See also [9,
p. 336])

The method presented here is an extension of an
observation of Kanter [13, 14]. The manuseript [13]
contains a recipe for simulating positive (8 = 1) stable
random variables (0 < « < 1); it appears at (2.2). This
was found by interpreting an integral representation
given (slightly incorrectly) by Ibragimov and Chernin
[12] for a positive stable probability density function. A
single stable random vmable can then be generated

the preliminary calculation of the inverse

with a via (ii) in the di
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Here we give similar rocipes for sll stable random
of index &(0 < a < 2) and skewnoss
parsmeter 5(—1 %< # < 1), (23) and (24).

In Monte Carlo studies of various location and scale
parsmeter estimates [1, lqll]hmdm
of theform 8§ = NV where N i Mtd'
¥, have led to sub i i
studies can muﬂymmmmﬂh
family, using the algorithm presented here.

1 THE NEW FORMULAS

ForthecaseO <a<l f= l.ll*-vﬂ(l--*
[12] derived s formuls for the density of S(e, 1); this
can ba integrated to yield, for z > 0,

PiS D <31

 Noticing that for a standard exponential varisbie W
welave PIW 2 w] = e~=(w 2 0), Kanter [13] deduced
representation

fram (&.1) the

S 1) = (a(@)/Mo=e, 3
wImObI*--nrjﬂ'imq-
Mnﬂﬂ-ﬂl"mmm

[19] gave exp similar to (21) in
‘the gencral case ; henoe, dedu

sin o(® — &)
e {con )=

(’—(l' e H))

lﬂ-»--(unm-m

-relieiae)) o8

where W is as before and # is uniform on (— jr, jo); slse
@y == jwfi(k(a)/a), Notice that (2.3) reduces to (2.9)
when 8 — (s ——jw), @ <1 (8 = j»r +#).
Certain special tases of (2.3) and (2.4) are interesting.
Witha = 2, # = 0, we have
5(8,0) = Whsin 3/ecos® = JWisin® ,

which i the Box-Muller representation of s Nornial
nﬂ&nﬂlﬂnmm--l,j-mnﬂﬂ‘
ithe Canchy case,

_—

5(L,0) = tand .
With & = §, 8 = 1{# == jr), we have
B3, 1) = (AW sin® (H(® — §))) ~ (4W coo® 8) .
Thia demonstraten the well-known fact that S(i, 1) in
distributed fike 1/5%(2, 0).

3. TRANSITIONAL BEHAVIOR IN THE
NEIGHBORHOOD OF o=1

In this section we study the behavior of (2.3) sa— 1.

=3 [ e mmio-sugiian, 0<as1, @) /-0
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we claim that we must translate and rescale S(a, 8), and
must also let 8 — 1 and a — 1.

To see this, it is convenient to define
§'(a, B) = tan a®o + (cos a®o)V/*S(a, B), @1, (3.1)
which has characteristic function f’ given by
f'(t; @ 8) = exp {—[t|* + (1 — [¢|*) tan (as)} .
We define §'(1, 6) = S(1, 8), §'(2, 0) = S(2, 0). The
limiting behavior of $'(a, ) as « — 1 can be deduced
from its characteristic function. To obtain the standard
form (2.4) at @ = 1, § must depend on « as follows.

Theorem: Let ¢ = 1 — a,¢ ==1,\ > 0be given. Take
B =0(1 — \e|). Then

i 85 |0, 8'(a, 8) = 8'(1, 8*) with g* = o/(1+ 1)

ii. as €10, 8'(a, 8) — 8’(1, %) with g* =—0/(1 +)) .
The proof is elementary and is omitted.

This discontinuity in limiting behavior is awkward
in applications that extend over an interval of values of
a in the nmghborhood of a = 1. For such purposes, and
to retain n is
reparameterize the family of stable ik
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reduce the trigonometric computations to the tangent
function of half angles. To retain accuracy throughout
the range, the algorithm uses two auxiliary functions,

Da(z) = (exp (z) — 1)/z
and (42)
tans (z) =

Although these are
tions to them may be developed from existing approxi-
m.nhons to D(z) = exp (z) — 1 and tan (z). The latter
are often d by functi of the form
zR(z), where R(z) is a rational function of special form;
thus, we can use R(z) to approximate the funcuons in
(4.2). (Note, h , that dard range red

may not carry over.) In the appendix, FORTRAN approxi-
mations to Dy(z) and tan, (z) are given, based on
approximations 1801 and 4283, respectively, of [11].
These are adequate for precision of about 27 bits. Readers
may adapt more or less precise routines from the same
source for their own needs. In our algorithm, the quan-
tities shown in the table are explicitly evaluated.

tan (z)/z .

dard fi

Expressions for Computation

replno-
ing 8 by B’, where Symbol Computation
(e, ) = —tan (3x(1 — a)) tan (aBo) , a1, Bl tan, () > —ctna,
(3.2) B -ty ({1 - ) €< =89
FL,p =8, =1. 10 tan, 49) tan o)
(Recall ®, was defined after (2.4)). In thisnotation, the tan, (jed) tan (1e®)/(jed)
characteristic function of 8'(a, 8') is f'(¢; , £'), o8 tan (e®)
I‘(t.a,ﬁ’)=axp(—|l]‘—lt(l— l¢| =18’ tan (}ra)} , Lesho -t o) goseb ~lanubyom o
W1 -1 + ") Weos &
a1, (33) oy g
FELD = f618) a=1. e B -
Both f'(¢; a, 8) and 8'(e, B) are continuous functions
of a in the neighborhood of « = 1. Thus, this new An of (4.1) is
parameterization of the family of stable distributions is A o
continuous in both a and g, as claimed. 8 = (m 22 —tan ady (M il 1)) gl G-a)
cos & cos &

4. COMPUTATION

The computation of S(a, 8) from (2.3), (2.4) is straight-
forward, except in the limiting case as « — 1 and in the
degenerate case «0. In this section, we discuss one
approach for computing S'(a, 8’) using the revised
parameterization (a, ') of (3.2). Again, we emphasize
that this permits accurate representation near a = 1, and
that 8 is a continuous function of all its arguments.

We begin by noting that S’(a, ) can be written as

sin a® — tan a®; cos a®

8’ = tan ad +
cos &

2e10=0

(CB)]

where e = 1 — a,
2 = [(cos e® — tan a®,sin b)/(W cos ®)] .

Because e — 0 and tan a®, — = as ¢ — 0, it is necessary
to rearrange the calculations. At the same time, one can

+ tan a®(l — 2/0=9) ,
which, in terms of the symbols in the table, is evaluated as
2 _ (2(a — b)(1 + ab) — @rB(b(1 — a?) — 2.;))

(1 —a)(1+6%)

S+ ed) +1d .

The FORTRAN function RSTAB in the Appendix implements
this calculation.

5. COMPARISONS: ACCURACY, SPEED
AND CONVENIENCE

The alj ibed here pi a very con-
venient general method of simulating random variables
from any stable distribution, and for most: purposes is
believed to be equal or superior to all known existing
procedures in accuracy and speed. For many applications,
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the generality and ease of use may well be the most
important criteria. The FORTRAN function ReTAB may be
used wmh any hlgh—quahty generators of uniform and
(If a specw.l ex-
is not ilable, an I ran-
dom variable may be generated as minus the natural
logarithm of a second uniform:)
Two alternative methods are the special case (2.2)
of a most n.symmetnc stable dlstnbutlon, and the use of
ion of the ch igtic function as in
the work of DuMouchel [6, pp. 35-42]. As noted in
Section 1, the former applies only for « < 1. For this
range, an arbitrary S(e, 8) can be computed by a suitable
linear combination of two S(a, 1) values. However, the
implementation of (2.2) appears to require nearly as
much computation as the more general case ; in particular,

<o
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For each of e(e = 1 — a), §, u and w/(w =—In ),
we chose five values (27, 2,271, 1 — 2%, 1 — 2% and
computed 8’ and Sp'. The relative differences were
typically of the order of 10-%; all calculations were carried
out on a Honeywell 6070, with a single precision relative
accuracy of 2 X 10~°. A few of the 625 values were
significantly larger, with the four largebt between 10—%
and 5 X 10~* (the large values occurred for large ¢, i.e.,
small a) ; these results are available on request.

Some simple timing tests were performed on the same

. The average ion time for a call to RsTAB
was about one millisecond (less for special cases, such as
8’ = 0). This can be compared to the typical floating-
point operation times on this machine of two to eight
microseconds, and also with the typical execution time
of about 23 and 73 microseconds for the uniform and
used here.

an accurately computable form of (2. 2), obtained by
specializing the formula for §’ in Section 4, still Tequires
all the special functions calls (three to ‘“‘tany” two to

Finally, & word on the monetary cost. To generate
1,000 stable pseudorandom variables on this machine at

“log”, and one to “Dy”). Thus, the direct eval of

the general case should be nearly twice as fast. In addi-

tlon, the linear combination required may be numerieally
for a sk close to zero.

Direct evaluation of the stable distribution by inver-
sion of the characteristic function is a complicated
procedure, requiring a Fast Founer t.ra.nsform plus a
method for ing the W There-
fore, very setup caleulati involved
which would have to be repeated for every c.hauge in the
parameters. It is possible that this effort might be repaid
in an extremely large Monte Carlo sa.mple with fixed
parameters, but for most applications it is felt the present
method of nonlinearly transforming two uniform random
variables will be cheaper as well as much simpler to
implement.

Paulson ef al. [15], report suceess with approximating
the inverse distribution using Zolotarev’s integral repre-
sentations for the distribution [19]. Again, in our opinion
the present approach will be cheaper as well as much
simpler to implement

l estimate of wag ob d by
codmg the algorithm a second time, using double pre-
cision arithmetic and to\mnes with double precmon

for the tri ic and
Suppose §'(a, #, %, w) denotes the staudard function, as
computed in the rorTRAN function reTaB; let Sp and
8z be the corresponding double precision and true (i.e.,
exact) values of the function. If

80—~ 87| < |8 ~ 82| ,

then
[8 — 8p| 2|8 - 8],

80 that a comparison of &' and Sp’ is & useful test of
accuracy. In our case, these estimates may be pessimistic,
sinee the standard algorithm employs some double pre-
cision arithmetic and Sp does not increase the precision
of these calculations.

tandard (presently ilabl ial rates costs
about 35 cents.

6. CLOSING REMARK

It is t to that the repr
(2.3) and (2.4) must have simple direct interpretations,
80 that (when properly viewed) the stable character of
the variables they define would be immediately evident.
However, after some effort, we have been unable to make
any such direct interp: ion of the ion, even
in the Cauchy case.

APPENDIX: FORTRAN PROGRAMS *

cramAB RANDOW 5 STANDARDIZED
FUNCTION RoTAB (ALPWAS SPATNEL 5.
© ARausENTS
ALPUA'= CHARACTERISTIC EXPONENT
BPRINE = SKEWSESS IN REVISED 2aTION
, FIEIRo-
= BXPONINTIALLY DISTRISOTED VARTATE

<
. PARANETERT:
c U » UNIPORN VARIATE ON (0., fs), POR EXAMPLE FRGM A OMIFORN
¢
c
c

nnw smms/ P1BYAS. 75390163/
ara TiRI/0.

=3 a.ss;-mr-umw( ANZ (EPSOPIBY2) ¢PIBY2)
0. 39) AR BFRIMBDIRTIS Zras (1. - £b8) STARS((1.-E08) SPLBY2)
SONE WECRASARY SUBEXi:
€ IF PRI MEAR BT BY 2, DOUBLE PRECIEION.
P4, 6T, muao 70 50
© SINGLE PRECISTON
Aaeasez
Azpet.enz

o0 z-mmmz -mnz-n-nmumu--m
© CONPUTZ TME EXPOMENTIAL-TIPE EXPRESOX(
=A10G {8}
DaD2 (EPSYALOGE/ (14-EPS} ) * (ALOG/ {1, -RD8} |
< STASLE
RETAB=(1, 4EPSSD) # 2.%((A~B) {1, %AB) ~ PHIBYZOTAUSBDS (RAZ-2.%A}}
5 /(a2eman) .
& v1aven
RETURR

* The reader is cautioned that the appendix has not béen chosked by a reforos.
Comments by A. D. Schumaker aro gratefully acknowledged,



EVALUATE (BXP(X)~1) /X
Furcrion D2 (%)
BLE PRECISICN P1,P2,01,02,03,PV,3%
A P1,P2,01,02,03/.84006 68525 36483 239 D3
50220001 11015”89568 565 D3
6801 33705 07926 648 Du
801 33704 07390 023 D3

5, 1,00/
APPROXIMATION 1001 FROM HART BT AL (1968, P, 213)
1F(ABS(3).GT.0,1)G0 TO 100

zzuge l
PV=P14;
D2=2, DO'WI (Q14229 (Q2¢32Q3) -29PV)

RETURN
100 D2w (2P (%) ~1.0} /%
RETORN

TANGENT FUNCTION
FUNCTION nn(xua)
LoG:lcu. nm

DATA PO Qo o1,
& /. lZ!ZZlO)SBQJ, .081662311!",.52.6!!!56!-1.
5. 16452933283, 513205618+42,1.0/

© THE APPROXIMATION 4283 PRON HART ET AL({1968, P. 251)
DATA PIBYM/. 785398163/, PIBY2/1.57079633/
DATA PI/3.18159265/

REDUCTION 1F NECESSARY
IP(x. u.nnn)ao TO 50
X=AMOD (X,
Ir(x.u ruyz)oo TO 30
m

P
30 II(X.!..!.PI"G)W 0 S0
1NVs, TRUE.
XePIBY2-X
50 X=X/P1BYN
© CONVERT To RANGE OP RATIOFAL
XXux:
Tluhxt (PO+XX¥ (P14XX#P2) )7 (Q0 $XX+ (Q14XX9Q2} }
IF (NEG) TAN=-TAN

1F (INV} TANa1, /TAN
RETURN
END

cTANZ AN (X) /1

c FUCTION DEFLAED GULY FOR AB 8 (XARG)

¢ 708 OTHER | mnnnu RETURMS TAN(X) 1x, FooKPUTD DIRRCTLY
FTNCTION

DATA PO, rl n.m.eh 2
& /,129221035843, -, 8076621778+ 1, 520685 6E- 1,
51220861843, 1.0/ 1

o0 ET AL{1968, P.
nsy il i
DATA Firs nisaaear
X®ABS (XARG)
IP(X.CEPIBYNIGO 0 200
X=X/PIB!

C CONVERT TO RANGE OF RATICMAL
XX=XoX
TANZ= (POSXX® (P14XXWDP2) } / (PIBY4S (QOPXX# (Q14XX#Q2) }}

RETURN
200 TAN2=TAN(KARG) /¥ARG
RETURS
END
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