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[15], [12], [13], [14]). The problem of estimating error probabilities when
the data is observed discretely in time (for continuous time processes) has
apparently not been treated previously, although results in [16] are closely
related, and yet it is of great interest in many applications where the
sampling rate and the total number of observations are parameters that
must be chosen by the experimenter in some reasonably efficient way. The
relevance of this problem is most apparent in those cases where p and p’
are mi ly orth (for i time), even though the discrete
time error probabilities are nonzero.

From this point on we suppose that our observed random process is
sampled at N equally spaced time instants, t=A, 2A, 3A,..., NA, and
consider the problem of determining, for fixed N, the optimal choice of A
to minimize some particular error probability. This optimal sampling
problem is clearly a difficult one to treat in complete generality; here we
are concerned with a qualitative solution of the problem, and only for a
specific class of processes.

Our solution is a qualitative one in that we investigate only the limiting

error probabilities as A—0 (respectively, A— o). These limiting values are
important for two reasons. First, they will eventually be needed in a
determination of the optimal value of A. Second, they give important
partial information to the experimenter; for example, if the limiting error
probability is zero as A—0 (respectively, A—o0), the experimenter is
justified in choosing A as small (respectively, as large) as possible, while
limiting values of one as A—0, 0 suggest some intermediate choice of A
should be made. Our presentation is qualitative in a further way, since we
actually do not evaluate the error probabilities themselves, but rather (for
technical convenience and ease of exposition) the Kakutani product (a
generalized Hellinger integral, see, e.g. Brody (1971)) between the two
discrete time probability measures. The Kakutani product is defined
below, but for our purposes here it suffices to note that it is often an
adequate estimate of various error probabilities (see the Appendix as well
as [4], [8], [9], [14], [19]) and moreover, that if it tends to zero or one
(as A—0, or as A— co), then so do the error probabilities.
The specific processes we deal with here are real-valued - time-
b ind dent i p With the further assump-
tion of right continuity, and that x(0)=x'(0)=0 a.s., such a process is
determined by its characteristic functional

E (¢St - xts0) HQGTH I&AEE —1Sw?

+f
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for 0Ss<t<T, where
EN
1+u?
There is a similar formula for x'(t) with corresponding parameters (a’, S,
M).

Recall that if pu’ are arbitrary o-finite measures with a product
measure on a measure space (Q,A), then the Kakutani product, with
parameter re(0,1), between u and y' is denoted h,(uu’),

by (op')={ (dp/dvy (dpefav)* ~"dy a2

where pu’ <v [the definition is independent of the choice of v, and many
such v exist; a class of examples is v=c(u+u’) where c is a positive real
constant]; r=4% is the classical Hellinger integral. From Holder’s in-
equality it is straightforward to show 0<h,(uu')<1, with h=1iffu=y,
and h,=0iffu 1 4. In our optimal sampling problem, we consider h,(uu’)
with y the joint distribution on R" of {x(A), x(24), x(3A),..., x(NA)}, and
with ' similarly related to x'. It is easily seen that for independent
increment processes, we have
. I )=[h(papi)]"

where p, i pL) is the distribution on R of x(A) (respectively
(*'(4)).

After bounding the actual error probabilities by the Kakutani product,
we see that with N fixed, our task is to choose A so as to minimize G(A)
=h,(pa,P4)- As explained above, our main focus here is to evaluate (when
they exist)

—<a<+00, $20,and [,4o dM ()< 0

G(0)=1imG(A) and G(co)=lim G(A).

A=0 A-wo

The existence and evaluation of these limits is intimately connected with
the notion of domains of attraction which involves generalizations of the
central limit theorem. In the case A— oo, this is a well-studied area, with

i in Gnedenko and Kol [6] and Feller [5].
The case A—0 has apparently not been previously studied. The idea is
that under appropriate regularity assumptions there exist (unique) con-
stants ¢ and 4 so that for some appropriate choice of centering constants
©(A) and O(A), the following limits exist and have nontrivial
distributions:

mnwﬁxﬁv\%:lmﬁw (1.3a)
%= lim x(AYA""—©(A) (13b)

A=
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x and X are necessarily stable random variables with exponents ¢ and &
(which we shall define below), and one expects intuitively that G(0)=0 if «
and the corresponding o' differ, or if @=a’ but @(A)—@'(A)> + . In
other words, two with  suffici different ling/ ing
can be easily discri between. On the other hand, if g
=a' and §(A)—@'(A)-9, for some finite 5, then we expect G(0) to equal
the Kakutani product between the distributions of x+ and x'. Analogous
statements apply to G(co). 2
In this section, limits of random variables will always denote weak
of G(0) and G(co). Since it is not our primary purpose here to give a
complete analysis of domains of attraction, our results (with the exception
of Theorem 1 below which treats the special case «=2), will not be stated
for general independent increment processes. Instead, we will consider (in
Theorems 2 and 3) a restricted class of processes (finite sums of inde-
pendent stable processes), which is sufficiently rich to exhibit most
h one might in general. These theorems and their
proofs can be easily extended to processes satisfying (1.3). This results in
the statements of the theorems being quite long compared to the proofs,
because of a great many special cases that must be considered in a
thorough treatment. Section two also includes tables intended to provide
the experimenter with useful partial information as to how to best choose
a sampling interval A given the parameters of x and x’. In Section 3 we
give the proofs of all our results.

2. THE MAIN RESULTS

In this section, limits of random variables will always denote weak
limits, ie. x,—x wh E iox,)—>E(exp(iwx)), for all real w. We
will also use the notation h,(Z,Z’) to denote the Kakutani product
between the distributions of the random variables z2.

THEOREM 1 If the characteristic functional of x(t) is as given by (1.1),
then x(A)/AY?—Zgs as A0, where Zs is a Gaussian random variable with
mean zero and variance S(Zs=0 a.s. when S=0). It follows that if either S
or §' is nonzero, then G(0)=h,(Zs,Zs.); in particular, we have that

(o : if §=048
0 if $£0=5'

GO=1 (su-ngrpaensersTir<t its45; 5550 @Y
1 if§=5>0

Given any «e(0,2], Be[—1,1], and >0, we consider Y(aBy), the
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(possibly - asymmetric) stable random variable of exponent o, which
satisfies

Elexp(ioY (2,8,7))] =exp[¥(w;x,8,7)]

where

By |~ MO TL+iBtan(ra/2)sign(@)], as oy
HOBN= ol + iBlnfafsign@),  am1. @
When a=2, Y(2,8,y) is a Gaussian random variable with mean zero and
variance 2y, and is independent of . Each Y(&B,y) has an absolutely
continuous distribution on the real line with strictly positive density unless
a<1 and f=+1 in which case the density vanishes on either the left (for
B=+1) or the right (for =—1) half line and is strictly positive on the
other half line [see Lukacs (1970)].

To simplify the statement of the next theorem, we note that the above
properties imply for 7,5'>0 and —0 <5,8'< o0,

[0 ita<ip=—f=11

h(Y@BY@ET D= 1 B=p,y=ylor az2and =y O
Hnma.c otherwise
N (B S
By)+9, ) va‘wmm: ) otherwise @4

In the next two theorems, we assume that x(t) and X'(t) are finite sums
of independent stable processes and a pure drift process so that (1.1) is
replaced by

N
E{explio(x(t)-x()I} ma&:la_ﬂ&s*. X P@pBn) ¢ (29)
Jj=1
with
—0 <<, 220, >0,> ... Say>0, Bie[~1,1], and'y;>0 for all j;

a similar formula applies to x'(t) |with parameters &', aj, B, 7}, and N'. If
either N=0 or N'=0, then G(A)=0 for all A unless N=N'=0 and 6=9"
=0, in which case G(A)=1 for all A; thus, we will assume from this point
on that N,N'21. We then define &,8,y)=(a1,81,71) and (&8,7)=(ctn,By:7n)
and similarly for x'(t). We also note that now G(A)<1 for all A unless all
the parameters of x'(t) are identical to those of x(t) and that G(A)>0 for
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all A unless g2’ <1 and also B;= —pj=1 for all j, while —8'=0 (or else
B,= —B;=—1 for all j while 5—5'<0).

THEOREM 2. If x(t) satisfies (2.5), then as A0,

X(A)AVi-@(A)»x=Y (@By), 126
where SAYYE for g1 ,
£ T +38In(8) fora=1. @
If a=g, we define
=lim (@A)~ @A) =9 ¢ @8)
A=0 E
+ o0, otherwise.
Then
0 ifg#a G%

G(0)=4 0 ifa=a’, butd=+oo.
Unx+8x) otherwise.
Thus, G(0) is either zero, one, or in the open interval (0,1), according to
(2.3) and (24).
THEOREM 3. If x(t) satisfies (2.5), then as A— 0,
X(A)/A-B()»x=Y(@B7), 2.10)
where
SA'TIE for g1
mBTrinE for =1 @1
If a=a, we define
0 ifg=a'<1
. 0 ifg=&>1and 6=0'
5= lim (BA)~&'@N= 5 5" it5_z 1 and FB=7B
+o0 otherwise. i

@12)

Then

0" ifg=a but §=+o0

cmmﬁm ;
sa.u * Eu.v
h,(X+58,%) otherwise.
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In order to unravel the conditions of Theorems 2 and 3, we present
tables below which tell when G(0) (Table 1) and G(co) (Table 2) are
either zero, one, or in the open interval (0,1). The nine possibilities are
arranged graphically in the final table (Table 3), where we suggest how to
choose A: either as small as possible (denoted S), as large as possible
(denoted L), or at some intermediate value (denoted I). Note .that no
suggestion can be made when both G(0) and G(co) are in the open
interval (0,1).

TABLE 1

Parameters

ata

a=g'<1, 545

€=a'<1,6=5, f= g »‘
e=d=1pr#py !
g=a'<1, f=p,y=y,5=4"

a=a>1 p=f,p=y

g=g'=2,y=y b i
Otherwise : te@1)

e o

TABLE I

G(x)
Parameters 6()

ard 0
E=E> 1,048

@=@<l, f=—F'=+1
a=a'=1, fj#+f7

d=a <1, B=F, j=7
E=a21, p=P,j=7,5=¢
nlmuﬁwlﬂ.alu\ i
Otherwise

———oae

{e@n

TABLE III
_ Qualitative results concerning optimal choice of A S
G(0)=0 G(0)e(0,1) GO)=1

G(w0)=0 S,L L L
G(w)e(0,1) s — LL
G(w)=1 s s 1
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3. PROOF OF MAIN RESULTS

The main technical tools we need are developed in the following lemmas,
in which we write x,=x to mean that x,—x (weak convergence), while
_munul.,ex..x_ is bounded by some fixed L, function of w, independent of
n. In the proofs of these lemmas, we will use the equality k,(ax + b,ax’ + b)
=h,(x,x') for real a+0, b, which follows by a change of variables in the
LEMMA 1. Ifx,»x and X, —>X', then
Lim'sup k, (x,,x;) < b, (x,x'); [E3)]

o
if x,=x and x,=Xx', then

lim b, (x,x;) =h, (x,x"). (32)

e
Proof. (3.1) is a standard result concerning Kakutani products; see for
example [1], [13]. To derive (32), we note that E(exp(iwx,))
—E(exp(iwx)) in L, (by the Lebesgue dominated convergence theorem) so
that by taking inverse Fourier transforms, we see that x, has an absolutely
continuous distribution with density denoted by f, which is continuous
and converges uniformly to the density f of x; a similar result applies to
X, It is then clear from the definition of h, that (3.2) follows. QED.

LEMMA 2 If x,=x and x,=x' and ~00 <4, 8, <00, with
lim (5,=48;)=48
o

then

lim  (x, +8,%, +5;) =
o i

o

F?.?va.vt.hnumuﬁh:&»mmﬂwn
0 if =+,

Proof. First, suppose § exists and is finite. Then Xn+ 8, =8, =>x+38,
since ‘m?xv_”me?.}&uv_ has the same L, bound as _Enuvmmex..”_v_. The
desired conclusion now follows from Lemma 1 and. the fact that hy(x,+38,
X +8,)=h,(x,+(3,~3,), x;). Now suppose §= + oo. Since the density of x
tends to zero at + oo (by the Riemann-Lebesgue lemma), it follows that
on any bounded interval the density of X+ (8,—3;) must tend uniformly
a n—ooo to zero. A standard argument yields the desired
conclusion. Q.E.D.

LEMMA 3 If x,=x and x,—0, then for any &, — o <é, <00,

lim h,(x,,x, +8;)=(

o
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Proof By considering subsequences, we may assume that either o~
+ 00 or §,~0d". If 5,4, then the result follows by (3.1) and the proof of
Lemma 1. If §,— + o, then the result follows by the equality b, (xp%;,+8;)
=h,(x,—0,,x,) together with the proof of Lemma 2 and standard
arguments. Q.E.D.
Proof of Theorem 1 From Lemma 1 and the equality h,(x(A)x'(A))
=h,(x(A)/A"?x'(A)A"?), it suffices to prove that x(A)A*=Z as

A—0 when §>0, and x(A)/A'?—0 as A—0 when S=0. Since
|ELexpliax(A)A}2))|se™ 55"
independently of A by (1.1), we need only show that {iwA'2 + AF (w/A'?)

—0} pointwise as A—0, where

E&T-.;A«...LI .zs v M(u). (33)

We define
Fo(@)=fospuse (€™ — 1 —iou)dM()

and observe that since iwA'2—0 and A[F(w/A'?)—F ()]0 (as can be

seen by simple estimates), it suffices to show that .

lim lim sup|AF,(w/A?)[=0

=0 A-0
This in turn follows by observing that there exists a real positive constant
C>0 such that

le*—1 - iwu| < Cleou)?

for all real wu, so that

IFL@)| SCo™ oy < 42 dM ()
with

Jormiset’?dM ()0 as e—0
since

e

furop M@ <o

which has been shown elsewhere in a different contextt

18ee N. S. Landkof, Foundations of Modern Potential Theory, Lemma 6.10, Springer-
Verlag, NY, 1972.
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Proofs of Theorem 2 and 3 We first show that as A0,

X(A)/AYs— O (Ay=>x (34)
This is a consequence of the simple estimate (obtained from (2.2)) that
Elexpliox(A)/AM)] Sexp(~1lw |9

together with the fact that
W(w;npy) forg=a#1

A¥(/A 50 py)=  P(@apy)+ifynB)o for a=a=
-—0 as A—0for a<a.

(33)

The conclusions of Theorem 2 (for the case a=g’) now follow from

Lemmas 1 and 2. If g #&’ (say &' <g), we note from (3.5) that
S(RYAVE §AT= Va5 36)

The fact that G(0)=0 in this case is a consequence of Lemma 3
The proof of Theorem 3 is essentially identical. Q.E.D.
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Appendix

APPLICATION OF CHERNOFF TYPE BOUNDS
TO THE BOUNDING OF ERRORS IN STATISTICAL
HYPOTHESIS TESTING

In this Appendix we summarize some well known properties concerning a
very simple and useful technique due to H. Chernoff for bounding errors
arising in statistical hyp is testing See [4], [7], [8], [9],
[10], [15], [16], [19] and the references therein for more information.

Let x,(t),x,(t) be separable versions of two different stochastic pro-
cesses taking values in a common state space, where ¢ is time, teE, E a
bounded set. Time will be either discrete, E= {0,1,..., N}, or continuous, E
=[0,T). p and v denote the respective probability measures of the two
processes on D, the space of right continuous paths with left hand limits
everywhere defined. All probability measures are defined on the measure
space (Q,4), where Q is the set of elementary events, and A is the ¢
algebra or Borel measurable subsets of Q. The observation is denoted
r(tw), teE; 0eQ where under hypothesis j, r(t,w)=x;(t.w). We use the
Lebesque decomposition to write Q as a disjoint union of measurable
subsets {Q,0,.0,,}, such that p(Q,)=v(2,)=0 and such that p~v when
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