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Hence we choose zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB =  N ,  where N is the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn matrix  such that dreAhN= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0. Unknown elements of N are obtained from (10H12). 

Construction of B zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan also be obtained from  the  following  equivalent 
equations.  Let L(z )=  -Z( t ) eA( ' -" )  be a solution of (6). Then it follows 
from (6) and (9) that 

i(Z)=(AZ-ZA)-B 

dT(eAhZ(h) -z (2h)eAh+eZAh)=O.  

Let us assume a series  solution of Z(Z) of the form 

From (14),  it  follows that 

B zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= (AZO- Z d )  - z, 
Z i = ( A Z i - , - Z j - , A ) ,  i=2,3,4;..,w. 

From (IO), (I]), and (16), it  follows that 

d' (A"Zo-Zdi" -Z(" )+eA*A")B=O 

dreAh(AnZ0-Zd in -Z ( " ) )B=O,  n = O , I , 2 , 3 ; . . , w  

where Z(") are given  by  the  following  recurrence relations: 

Z ( " ) = A " - ' Z , + Z ( " - ' ) A ,  n = 1 , 2 , 3 ; - . , ~  
Z(")=O, n G 0. 

Hence,  to  find B we choose Z ,  Z , ,  satisfying (15) and (17) containing 
unknown parameters, and these unknown parameters are determined 
from (18) and (19), and finally E is determined  from (16). 

Example 

Let h= 1, d T = ( l ,  -2, - l,O), 

Then from (15H19) we find 

D =AL0-  L.@ - 

Popov's construction in  this  case  gives B as 

r o  o o 01 
B = 1 0 0 0  

I o  2 o o J  
O b 0 0  

where b, b,, b2, b3, b4 are arbitrary. 

V. CONCLUSIOXS 

The  above method of construction of degenerate systems  is more 
general than earlier constructions and gives zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAall possible  solutions. It can 
be  shown that if the  system is regular,  then  the  foregoing method of 
construction reduces to Popov's  method. 
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Minimum Error Dispersion Linear Filtering of Scalar 
Symmetric Stable Processes 

B. W. STUCK 

Abstrm-ne well-known Kalman-Bucy linear-Wring theory for 
Gaussian  Markov  processes is generalized to cover  a partidar class of 
non-Gaussian Markov processes, the scalar symmetric stable Markov 

processes. Results are presented only for discrete time because of  certain 
pathologies that arise in the amtinuons-time analog (except in the Gans- 

sian case). Attention is confined to the scalar case kcawe of technical 
problems arising in chru;lcterizing multivariate  stable  distributions  (except 
in the  Gaussian case). 

I. INTRODUCTION 

Since  the  original  work  by  Wiener [I], [2],  using spectral factorization 
techniques, and Kalman and Bucy [3], [4],  using  time domain methods, 
linear  filtering of Gaussian Markov random processes with rational 
spectra has been  extensively studied in both the engineering [5] and 
information-theoretic [6] literature. 

Here we deal with a natural extension of the  Kalman-Bucy technique 
to  linear  filtering of a particular class of scalar Markov random 
processes that include the Gaussian as a special  case, the symmetric 
stable random  processes  in  discrete  time. The motivation for this work  is 
drawn from  problems  associated with noise on telephone  lines [q, 
extremely  low-frequency  electromagnetic communication [8], and the 
random-walk  model of stock-market  prices [9],  [IO]. 

One  reason for the popularity of Gaussian random processes in 
modeling uncertainty is that often a large  number of independent 
disturbances contribute to the uncertainty in a measurement, and  at that 
point  the Central Limit  Theorem of probability theory is invoked to 
claim that the noise is Gaussian. It is often overlooked that the Gaussian 
is only one member of a family of distributions, the stable distributions, 
that arise  from  examining  the  limiting distributions of suitable normal- 
ized and translated sums of random variables. In an engineering situa- 
tion, one would  like  to  be able to combat uncertainty in a manner 
independent of the choice of a particular stable distribution. 

Two  main  reasons  have contributed to attention being  confined to the 
Gaussian rather than non-Gaussian stable case. First, only  in the Gaus- 
sian  case  does  there  exist a closed-form analytic expression for the 
probability  density function; in the non-Gaussian stable case one must 
resort to power  series and asymptotic series.  However,  with the availabil- 
ity of digital computers that are inexpensive to use, numerid calculd- 

tions of error probabilities are straight-forward to carry out. The  second 
main  reason that non-Gaussian stable distributions have not been 
studied  or used as widely as Gaussian stable distributions is that only the 
Gaussian distribution has a finite second moment, and hence a finite 
variance, and infinite variance is  felt to be  physically inappropriate. 
While  superficially  appealing,  this  reason is inadequate because the 
Gaussian distribution is unbounded, which  is clearly  physically inap 
propriate. The question  here  is  over  what  range  the  model  should  fit 
observed data: it may  well be that a finite-variance Gaussian model is 
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adequate over a limited  range of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdata, while an infinite-variance stable- 
distribution model is adequate over a larger  range of data, but both 
models are inappropriate outside of a given  range of observations, 
although the infinite-variance model  is better than the  finite-variance 
model in terms of matching  observed data over a wider  range. For 
sufficiently  large  deviations  from  the  model nonlinearities and limiting 
operations would  become  sigmficant and make  either  model inap 
propriate. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL 

Three items are particularly interesting about these  results. 
1) At  the  present  time, no analogous Wiener-Hopf spectral factoriza- 

tion  theory  exists for the  problems  considered  here.  Hopefully,  they zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwill 
provide  stimulus for clarifying  the  role  played  by  Hilbert  space  orthogc- 
nal  projection  techniques [ 11, [2], 161. 

2) The generalization to the  multivariate  case  is  nontrivial  because of 
the  complicated nature of multivariate stable distributions 1121; an 
Appendix gives the reader who is not zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfamiliar with stable distributions a 
brief summary of their properties in the scalar case.  Only in the Gaus- 
sian case  is it seemingly  straightforward to extend  these  results to 
multivariate distributions. Because of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthis we deal only  with the scalar 
case. 

3) The extension of these  results to continuous time  results in a 
degenerate  problem,  because of certain pathologies in the sample paths 
of stable processes [l  I]. In particular, we zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan discriminate  perfectly 
between  two stable processes  with  differing parameters in any finite time 
interval  because the associated path space probability measures are 
orthogonal [ 111. The intuitive reason for this is that continuous-time 
stable processes  have  sample paths that are left continuous with  right- 
hand limits everywhere  defined and are constant except  for jumps of 
random amplitudes at random time epochs; however, the jump time 
epochs, while countable in any finite time interval, are dense, and thus 
there is a countably infiite set of jumps available for processing. It may 
not be not surprising that with an infinite amount of data, i.e., observa- 
tions of the jump epochs and  jump amplitudes, perfect  filtering and 
discrimination is possible. In the Gaussian case the sample paths consist 
of jumps of zero amplitude, and perfect filtering and discrimination is 
not possible in all cases. This reasoning is only  meant as a plausibility 
argument to suggest  why attention is confined here solely to the discrete 
time  case;  the  diligent reader should  consult the references  for the 
detailed  technical arguments substantiating these  claims [ 111. 

11. THE RESULT 
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This encompasses both autoregressive and moving  average  models, 
which are currently quite popular in applications. 

We  now  closely  follow the  original  Kalman-Bucy  [3],  [4]  work.  We 
seek a linear  signal estimate using a recursive  algorithm  such that the 
error  sequence has minimum  dispersion for each  value of  time. Thus, we 
denote by (x,) the signal estimate sequence, and {e, E x, - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi k )  denotes 
the error sequence. 

Proposition 

Given the preceding  assumptions, the minimum error-dqersion linear 
signal-estimate  recursive  sequence and error sequence  satisfy the follow- 
ing  relations: 

where for I < a < 2 

Proof: The method of proof is straightforward. The basic idea is to 
minimize the error dqersion for each  successive datum or observation 
as much as possible and thus minimize the pointwise error dispersion. 
The question of whether or not there  exists a solution to this problem, 

The reader is referred to the  Appendix for a brief  &cussion  of and whether it is unique, Ca l l  be exhibiting the unique 
of stable distributions. The Appendix &o fjes the notation explicitly. The error menion is given 

and nomenclature  used throughout this note. 

stable random variables  with the same characteristic exponent a,O < a < 
2, but  differing  dispersion  parameters,  denoted by y,, and yw,  respec-  Two zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcases arise. For 1 < a  < 2, this is a convex function of G,; thus it is 
tively,  where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk is the discrete  time parameter. necessary to compute the derivative of ye+, with  respect to G,, set it 

equal to zero, and solve for the resulting  recursive  gain. For O <  a < 1, 

E(e'W)=exp(-y,,lwl") E(eiww*)=exp(-ywlo~), k=O,l, .... the error dispersion is not a strictly  convex function of  G,, and we must 
examine  the  extreme points of the  interval  (O,A/C). Depending on the 

Here we have  explicitly a s s u m e d  { u,}, { w, 1 are sequences of symmetric values of yw,yu, and ICI, one or the other of these  extrema will minimize 

stable random variables. The dispersion  plays  the  same  role as the the error masion. 
variance in the Gaussian case, and thus y ~ / u  plays the Same role as the Having  solved for the  recursive gain for one particular value of k, the 

deviation in the Gaussian case. For if x is a stable  result is substituted into the recursion for the error dispersion and the 

random  variable  with  dispersion y, then if we scale x by yll', we see process  is repeated. The results are summarized in the above formulas. 

that with location parameter zero, Q.E.D. 
Note that the  recursive  gain  sequence { G,} is a continuous function of 

the characteristic exponent a in the neighborhood of a = 2, the Gaussian 
case.  Prehminary  evidence  strongly indicates that nonlinear filtering 
offers performance  superior to linear filtering, as seen by  [I31 and the 

Let {u,), {w,), k=O, 1,. .. , be  sequences of mutually independent ~ e ~ + l = ~ - G k ~ ~ ' Y ~ + ~ B ~ ' Y u + ~ G k ~ ' ~ ~ ~  

~[exp(ioxy-'/~)]=exp(-lo~) 

and hence  the natural units of x are in terms of Y'/'. For simplicity of references therein. We leave that subject for future work. 
exposition, we omit the  case of asymmetric or skewed stable distribu- 
tions. 

assumed  to be of the form 
The model of the  signal  process (x,) and observation  process { Y k }  is 

APPENDIX 

A BFUEF SUMMARY OF PROPERTIES  OF STABLE ! & T M B W O N S  

Suitable  references on stable distributions are Feller  [14] or Gnedenko 
xk+,=Axk+Bu, E(eiuo)=exp(-y,lwl') yk=Cxk+wk. and Kolmogorov [ 151 from which this material is taken. 
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Definition. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A probability distribution P ( x )  is  said  to be stable if for all a,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA>O,b,, 
a2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> 0, b2 there  exis? zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAconstants a > O,b such that 

P ( a l x + b l ) * P ( a 2 x + b 2 ) = P ( u x + b ) .  

fieorem 

The characteristic function of a stable distribution can be  put in the 
following  canonical  form 

where - I < p < l , y > O ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-co<<<w. 

distribution P ( x ) :  for - 1 < p < 1 
The parameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa is called the characteristic index of the stable 

X+oC lim ( x l a P ( - x ) = k - > O   x l m I X I a [ I - P ( X ) ] = k + > O  

From this it is easy to see that E( lx lp)  is finite forp<a,  - 1 < p <  1, or, 
in particular, that for O <  a < 1 stable distributions possess no mean, 
while for 1 < a < 2 stable distributions possess a mean but no variance. 
The parameter p is  associated  with  the  skewness of the distribution: 
when ,f3 = 0, the distribution is symmetric about x = 6, while for p# 0 

y is associated  with  the  dispersion of the distribution; when (Y = 2 we see 
that y equals twice the variance of the distribution. 6 is a centering or 
location parameter; for a > 1 the location parameter is also the mean. 

Only  three analytic closed-form  expressions for stable probabilityden- 
sity  functions are known at present; the Gaussian (a=2), the Cauchy 
( a =  1,8=0), and the  Pearson V ( a =  i , p =  - 1). Otherwise, one must 
resort to series  expansions [14]. 
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Comments on “The  Multivariable  Servomechanism 
Problem  from  the Input-Output Viewpoint” 

F. M. CALLIER 

Abstmcr--‘Zbe purpose of this correspondence is to point out that some 

results of the above paper’ are not new and can be viewed as special cases 
of more general results. 

In the above paper’ some  general  results  were  presented, and B. 
Francis deserves congratulations for  their  simplicity and generality, as 
well as the elegance of his derivations. Unfortunately, his Theorems 1A 

and 1B are special cases of results submitted in 1974 and published in 
1975 [l] and 1976 [2]. Furthermore Francis’  expression (6) is one of four 
possible  expressions  [I], [2]. Theorem 1B  was also  covered  in a review 
paper  devoted to lumped  systems [3]. For the more  general zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcase of 
arbitrary interconnections, corresponding stability results are also known 
[4], [ 5 ,  theorem I1 and corollary 11.11. 
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Comments on Finding the Generic Rank of a Structural 
Matrix 

MANFRED MORARI AND GEORGE STEPHANOPOULOS 

The appendix of Shields and Pearson’s  paper’  suggests an algorithm to 
determine the generic rank of a structural matrix.  Consider the following 
example: 

[i t ; y’ 
o o x x x  
o o x x x  
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