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Numerical approximations are presented for the expected utility of wealth over a single time 

period for a small investor who proportions her or his available capital bctlreen a risk-free 

asset and a risky stock. The stock price is assumed to be a log-sfnble random variable. The 

utility functional is logarithmic or isoeleastic (p/v* Q ~1 0). Analytic results are presented for 

special choices of model parameters, and for large and small time periods. 

1. Introduction 

Over the past decade statistical evidence has been accumulated which indi- 

cates prices of certain stocks can bc adequntcly modeled as a geometric random 

walk: logarithms of successive prices, when diffcrcnccd. appear to be adcquatcly 

modeled as independent identically distributed random varinblcs [e.g.. Mandcl- 

brot (1963), Fama (196%. 1965b. 1970), Fielitz (1972, 1976). Blatrhcrg and 

Gonedcs (1974), Uarnca and Downes (l973), Paulson et al. (1975), Lcitch and 

Paulson (1975), and the review by Samuclson (1973)J. The underlying proba- 

bility distribution is known to be distinctly non-Gaussian [e.g., Fama (1965s), 

Leitch and Paulson (1975)]; some of the evidence available at prccent indicates 

this distribution can bc adequately modeled using stable distributions, distri- 

butions which arise from the central limit theorem of probability theory (c.g., 

Fama (1965a). Fielitz (1972, 1976), Paulson et al. (1975). Leitch and Paulson 

(1975)]. For well established companies the characteristic index 2 of the under- 

lying stabledistribution lies in Ihe neighborhood of I .8 to I .9 [e.g., Fama (1965a) 

Lcitch and Paulson (1975)). close to fhe Gaussian characteristic index of 2.0. 

Unfortunately, the non-Gaussian slable distributions huvc not been as ex- 

tensively studied as the Gaussian distributions in the mathematical litcrclturc 

[suitable references on stable distributions are Fcllcr (I966), Gncdenko and 

Kolmogorov (1968), and Lukacs (l970)]. For exam@. at present on!y power 

series expansions are known for stable probability density functions, and in 

only three cases (one of which is the Gaussian) do these scrics reduce IO closed 

form analytic expressions. Furthermore. in order IO treat the many interesting 

problemsassocintcd ivith stock portfolios [e.g.. hlarko\ritz( 1959). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb’~l~nn ( 1965b), 

Samuelson (1967a, 1967b), Ohlson (1972)], it is neccs\ary to hare an adequate 
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theory of multivariate stable distributions, and again this machinery only exists 

in the Gaussian case. These two problems, as well as others, have probably 

hindered investors in applying the log-stable random walk model in investment 

strategies, and have led to renewed interest in models with time varying para- 

meters [e.g., Barnea and Downes (1973)J and in models with analytically 

tractable probability distributions [e.g., Blattberg and Gonedes (1974)]. This 

issue will be briefly revisited later in this work. 

Here a well known problem [Mossin (1968), Samuelson (1969), Hakansson 

(1970)] in finance theory is examined, where an investor must decide what 

proportion of available capital should be invested in a risky log-stable stock 

versus in a risk-free asset with a guaranteed rate of return. Within this narrow 

framework a number of interesting new results are obtained. 

Throughout, the emphasis is on using numerical methods to study the quali- 

tative nature of the solution to a simple problem [see also Ziemba et al. (1974) 

for work similar in spirit]. The issues addressed here are where the maximum of 

the expected utility functional occurs as a fraction of capital invested in the 

risky asset, and how flat the expected utility is in the neighborhood of its maxi- 

mum. The absolute of the expected utility functional at its maximum is not of 

immediate interest, since the conclusions reached should be independent of any 

affinc transformation of the utility. For this reason, the reader should keep in 

mind that no scales are shown for the expected utility functional in the figures to 

follow. 

One reason for using numerical methods is that analytic methods appear to 

lead to insurmountable algebriac complexity and obscure basic features of the 

expected utility functional as a function of the various parameters in the problem 

(at least for the problems studied here). A second reason for attempting this is 

that numerical results often tend to give substance to theory, and sometimes 

suggest unsuspected avenues for constructive rebcarch. These reasons were the 

primary motivation for this work. 

The paper is outlined as follows. In the next section the problem is precisely 

formulated. The following section discusses the results of numerically approxi- 

mating the solution to the problem, and develops analytic results in special 

casts. An appendix details the numerical methods used in approximating the 

expected utility functionals. 

2. Problem statement 

The statement of the problem is heavily influenced by earlier work of Mossin 

(1968), Samuelson (1969), and Hakansson (1970). 

Letx,(k = l,2,. . .) be the price of the stock at time kdt, where At is a given 

interval of time. The price is assumed to evolve in time according to the formula 

xtl+1 = elk y 
’ L* x0 given, k = 0, I, 2, . . ., (1) 
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where {So} is a sequence of independent identically distributed random variables. 

An immediate consequence of this model is 

xk = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAesxO, k = 1, 2,. . ., (2) 

k-l 

SE c si. 
I=0 

The investor is assumed to be a small investor: the amount of stock the investor 

purchases has no effect on the stock price. It is also assumed (for simplicity) 

that the parameters that specify the probability distribution of Sk are known, 

although in a more realistic problem the parameters are unknown and must be 

estimated. 

Initially the investor allocates a fraction p of available capital IV, to the 

risky stock, and a fraction (I -p) to the risk-free asset. At time kdt, the total 

wealth of the investor is IV,, 

W, = (I +‘)(I-p)Wo+pesWo, (4) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

W, = [(I -p)+p zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe’-R]WO-eR, (5) 

where (I +r) E eR is the return on the risk-free asset at time kdt. Both r and R 

will be called the rate of return from this point on. The investor quantifies 

preferences according to a utility function U, which is assumed measurable 

and sufficiently smooth, with positive first derivative and negative second 

derivative [see Arrow (1971)). Since the investor can specify the investment 

period, without loss of generality k can be taken to unity in (4), (5). 

If the investor wishes to maximize expected wealth at the end of the invest- 

ment period, and cash in all investments afterwards, then the problem is to find 

that value of p, say pop,. to invest in the risky stock such that the expected utility 

of wealth W, is maximized while W2 = 0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

P op,: Max E[WW,)I. w, = 0. (6) 
OSPSl 

By a 
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the single-period problem. it was felt a good grasp of the single-period problem 

was prerequisite to tackling the more difficult multi-period problem. 

The extension of this work from one risky asset and one risk-free asset to a 

portfolio of risky assets and one risk-free asset is immediate from a separation 

theorem [Cass and Stiglitz (1970)] whose hypotheses are valid here. An import- 

ant qualification is the portfolio of risky assets must have a log-stable distribu- 

tion, which obviously does not imply that the marginal distributions of each of 

the risky assets are log-stable [cf. Markowitz (1959)]. 

Mossin (1968). Samuelson (1969) and Hakansson (1970) among others 

[e.g., Merton (1969, 1971. 1973)] have observed that the particular choice of 

initial wealth and consumption do not affect the solution to the single-period 

(or multi-period) problem if and only if the investor’s preferences can be modeled 

by isoelastic utility functions. For this reason, as well as for their simple analytic 

form, this class of utility functions has received a great deal of attention. Two 

isoelastic utility functions that will be examined in detail are the Bernoulli 

logarithmic utility, 

WY) = In (~9, y > 0, (7) 

= 0, _Y ,< 0, 

and the power utility, 

whcrc 4 < 0 (this restriction on 4 being ncgativc is necessary to insure the exis- 

tencc of the cxpccted utility of wealth for the non-Gaussian log-stable model). 

As is well known, the logarithmic utility is an exceptional member of this Family, 

since U(y) = y-’ (yq- I) -b In (y)asQ -) 0. 

The assumption of no brokerage commissions can be relaxed in many ways. 

One way of achieving this is as follows. Assume a net gain or loss G on the stock 

investment at the end of the invcstmcnt period. The amount lost on brokerage 

commissions, i.e., the amount subtracted from wealth in order to actually 

achieve this gain or loss is P/Cl, w h ere i: is the commission. On the other hand, 

the fraction invested in the stock should be modified up or down to take this 

into account: the correct fraction to invest in the stock is the sum of the final 

price of the stock plus the gain or loss divided by the final wealth, or 

pe r-RW+G 

’ = [(I -p)+pseseR]WI ’ 
(9) 

where W’ z eR W,. Solving for G and substituting into the expected utility, the 
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problem is to find p such that 

E~LI[:(l-p)+pe’-R-_~(l-p)le’-R-_I}W’]) 

is maximized overp. 

(IO) 

It remains to specify the probability distribution of the logarithm of succes- 

sive differences of stock prices. One rich class of probability distributions that 

have been studied extensively in the mathematical literature are the infinitely 

divisible distributions; the characteristic function of an infinitely divisible 

distribution can always be written in a simple canonical form due to L&y and 

Khinchin [Gnedenko and Kolmogorov (1968). Lukacs (1970)] 

E(eiw”) = exp i&+9-fa’w*+ eivw- I- (II) 

where 6( - co < 6 < co) is a location parameter, o*( 2 0) is the variance of the 

Gaussian component. and 11 is called the L&y measure which specifies the para- 

meters of a generalized Poisson distribution, with 

and d/c non-negative. 

To date, attention has centered on the purely Gaussian distribution (I( = 0) 

and on one particular non-Gaussian distribution (a2 = 0). whcrc /c(r) = 

c_[I./-’ for 1’ < 0, and /1((t) = --c+v-’ for c > 0, which is a stable distribution 

with characteristic index a, 0 < a < 2. and skewness paramcter[j, /I = (c_ -c+)/ 

(c, +c_)(l 6 a < 2). The reasons for examining these two are that first, they 

arc the only distributions which arise from the central limit theorem of pro- 

bability theory. and thus offer some hope of grossly accounting for all the 

factors that influence stock price fluctuations at one sweep [e.g., see Samuelson 

(1973)). and second, these distributions have been successfully fit to actual stock 

price data [Fama (1965a). Paulson et al. (1973, Leitch and Paulson (1975)). 

Clearly, the class of infinitely divisible distributions include many other cases 

than just these two. If one wishes to model stock price fluctuations using a gam- 

ma distribution, for example, then u2 = 0, dp = aemb”d(ln L.). If one wishes 

to use models with time varying parameters, then simply let (S, 02, p) depend 

on time. The Gaussian and non-Gaussian stable distribution models employed 

in the next section provide a convenient starting point for investigating these 

other models, in that they capture much of the behavior of Gaussian and non- 

Gaussian infinitely divisible distributions.’ 

‘Much of the literature is concerned with the tail behavior of P(s). Simple arguments [Feller 

(1966. p. 5QO)j show that ifJT dp(u) - 0(x-‘). then Pr (s > x) - 0(x-‘). while if p has compact 

support, then J has moments of all orders. Thus, infinitely divisible distributions can model a 

broad range of tail behavior of P(s), by simply choosing the L.&y measure appropriately. 
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3. Numerical approximations aud analytic results 

In this section the results of numerically approximating the expected utility 

function, 

E(u) = j?, U[{(l -p)+p eseR} W’lf(s) ds, (12) 

are described for the Bernoulli logarithmic utility [U(v) = lny] and for the 

isoelastic utility [U(y) = y4/q,q < 01, where f(s) is the probability density 

function of a stable distribution with characteristic index a, skewness para- 

meter /?, dispersion parameter y, and location parameter 6. Brokerage commis- 

sions have been set to zero here; machine calculations to be discussed later 

indicate brokerage commissions are not significant in this problem, although 

they may we!! be in a more complicated, realistic problem. 

Before presenting the results, it is worthwhile to digress and develop some 

intuition for the behavior of a representative sample function of a utility 

functional. Figs. 1 and 2 depict representative sample functions of arithmetic 

symmetric stable random walks [see eq. (3) for the definition of an arithmetic 

random walk]. as we!! as the corresponding logarithmic utility sample functions 

with R = 0, p = f. The large hops in the non-Gaussian stable random walks 

are a graphic indication that a sum of infinite variance random variables is 

often dominated by one or .a few of the summands; these large excursions 

allow stable distribution models to account for such sudden jumps in stock 

prices such as occurred in 1962 or 1973, as we!! as many other instances. These 

large hops would be absent in a Gaussian random walk. Note the logarithmic 

utility is bounded from below by In(l -p), while there is no upper bound. It is 

clear from these pictures that the stable random walk with a = 1.9 does not 

wander as far positive as the random walk with a = 1.5, which reflects the 

fact the stable distribution with a = 1.9 has less probability in its tails than 

the a = 1.5 stable distribution. Observe that around I x 450 the utility function- 

a! drops to zero in all cases. One cure for this is to assume there is a positive 

long-term drift upward in the random walk (the pictures were generated assuming 

zero drift), which would modify the revivals at t z 650 and t x 750. 

Various analytical results are now presented for special choices of model 

parameters, and for long- and short-time periods. For ease of exposition, only 

two cases are studied in detail, since the other results follow in like manner (al! 

analytic results are collected in table 1). 

Proposition. Assume the following conditions are satisfied: 

(a) WY) = InCv), 

(b) 5 = R, i.e., the drifr in the stock price equals the rate of return on the risk- 

free asset. 
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Fig. 1. (a) Left figures (random walk versus time): SW+, = S.+ X.. So = 0. {X.} independent 

identically distributed stable random variables. Stable distribution parameters (a = 1.9. 8. 

y = I, d = 0). (b) Right figures (logarithmic utility versus time): U. = In [pesm+(I -p)c”], 

p = fraction invested in stock = j. R = rate of return on risk-free asset = 0. 

Fig. 2. (a) Left figures (random walk versus time): S.,, = S.+ X.. S,, = 0. {X”} independent 

identically distributed stable random variables. Stable distribution parameters (u = 1.5, 8, 

y = I, S = 0). (b) Right figures (logarithmic utility versus time): fJ” = In (pcsn+(l -p)e”]. 
p = fraction invested in stock = j, R = rate of return on risk-free asset = 0. 
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Then the following holds: 

(i) If f(s) = f( -s), i.e., if the distribution is symmetric (not necessarily stable), 

P 4. ov, = 

(ii) If f(s) is a stable density with characteristic exponent a and skewness para- 

meter /I, and the duration of the inrestment intewal is infinite, then 

pO,,=f(I-j?‘.~). I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA<a s’, 

where 

7r 2-a 
tan /I?‘*,- ( > = -/I tan (~42). 

Ci 

Ta ble  1 

Optimum fra c tion lo  inve st in a  risky a sse t. 

I. Invesrmenr period approaches :ero durariun: 

0 S pop4 S 1. 

II. Invcs~men~ period approaches infinite dururiun: 

(a) Uc rnoulli log a rithmic  utility. U(y) = In(y): 

(i) d x:R, pw.,=O. 

(ii) B = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR, pop, = 
( 

I-8.2). 

(iii) 6 > R, pyF, = 1. 

(b) Isoe l;islic  utility. U(y) = ye / q: 

jLIll = 0. 

_- __ - - - .- - ..__“-  _..-  ._- I- - - - I- - . - - -  ..- - .-  .- _ - ..-- _..._ __ 

I Il. Symmcrric disrriburion. f(s) = /( -s). U(y) = In (y): 

P..c = f . 

The proof of this proposition is omitted since it is straightforward. Statement (i) 

is easy to show from simply computing the derivative of the expected utility 

functional with respect to p; note that this includes the case of a student t 

model for stock price fluctuations [Blattberg and Gonedes (1974)]. Statement 

(ii) foIlows the same line of reasoning, and uses results of Zolotarev (1966). 

Table 2 summarizes representative values of pop, = p,,v,(a, /I); only one half 

the table is shown, because p&a, /3)+p,,,(a. -/?) E 1. As a simple check, 

note that for /J’ = - I, pop, = (1 -I/a), whilefor/I = l,p,,, = l/a. 

The discussion now turns to numerical approximation of the expected utility 

functional. The approximations used are discussed in an appendix. In all cases, 
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Table 2 

Optimum fraction to invest in a risky stock to maximize expected logarithmic utility 

functional for 6, = R,,. uith an infinite investment period. & = lim,.., (6/r), 

R, = lim,,, (R.‘r). do is the log-stable stock price drift (see appendix). R. is the rate 

of return on the risk-free asset. 
--___ 

\S 

2\ - 1.00 -0.75 -0.50 -0.25 

1.95 0.48718 0.49038 0.49358 0.49679 

1.90 0.47368 0.48019 0.48676 0.49337 

1.80 0.44444 0.45773 0.4715’ 0.48567 

1.70 0.41176 0.43165 0.45329 0.47628 

1.60 0.37500 0.40074 0.43068 0.46425 

I.50 0.33333 0.36344 0.40161 0.44801 

1.40 0.28571 0.31782 0.36295 0.42465 

1.30 0.23077 0.26150 0.31000 0.3883 I 
1.20 0.16667 0.19178 0.23619 0.326w 

I.10 0.09091 0.10568 0.13423 0.20887 

,l~ZOOAYS 

5 

5 

!i 

z 

E 

9 

s 

E 

LOGARITHMIC UTILITY U(yl 8 Intyl 

is 

LOG GAUSSIAN STOCK PRICE D(STRWJTION 

0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1.0 

FRACTION INVESTED IN STOCK 

Fig. 3. Expected logarithmic utility E(Il)vcrsus fraction invested in stock. E(U) = J?,/(.S. I) 

In [(I -p)+peS-“0’1 dS. /(S. I) = /(a = 2.8. 7 = y or, d = &r; S) = cxp [-(S-&f)‘/4rorl/ 

(~vw)‘. R, = do, I = IO. 20. 30 days. Representative values for y0 taken from Fama(l965a. 

table 5). Ro is rate of return on risk-free asset, 6, is drift in log Gaussian stock price model. 

representative values were taken for the value of the dispersion of the distribu- 

tion of various conservative blue-chip stocks traded on the New York Stock 

Exchange [Fama (1965a. table S)]. 

Fig. 3 shows representative expected log utility functionals for investment 
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periods of ten, twenty and thirty days as a function ofp. wheref(s) is a Gaussian 

density (z = 2). In all cases the expected utility is maximized for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp = 0.5. 

Note that the expected log utility is relatively flat in the neighborhood of its 

optimum, so that investing a much smaller (and larger) amount in the stock 

yields roughly the same expected utility. 

Next, the results for j(s) a non-Gaussian stable density (I < cz c 2) are 

described. Fig. 4 shows representative expected logarithmic utility functionals 

as functions of both the fraction invested in the stock and the duration of the 

Fig. 4. Expected logarithmic utility E(U) vcrsuq fraction invested in stock. E(U) = 

jZ,/(S. r)ln I(1 -p)+pe ‘-“0’1 dS, /(S. r) = /(a, /3. y = yor, 6 = 6~; S), Ro = ~4,. t = IO. 

20. 30 days. Representative values for y, taken from Fama (IYGa, table 5). R. is rate of return 

on risk-free asset, 6, is drift rate in log-stable stock price model. 

investment interval. Note that for fixed time the expected utility is quite flat as 

a function of p. The reader is cautioned that different vertical scales have been 

used for ezch curve, in order to convey as much qualitative information in as 

short a space as possible. In each case the expected log utility is maximized for 

p c 0.5. As in the log Gaussian case, the expected utility is quite flat in the 

neighborhood of its optimum, so a much smaller (or larger) investment yields 

only marginally less than the optimum expected utility. The effect of varying 

the characteristic index upon the expected log utility will be dealt with elsewhere. 
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In addition to the results shown in figs. 3 and 4 expected logarithmic utilities 

were approximately calculated with the dispersion varying up and down by a 

factor of two, varying the rate of return on the risk-free asset from 0 percent to 

10 percent annually, varying the drift of the stock price from - 10 percent to 

10 percent annually, and choosing brokerage commissions of 0 percent, 1 

percent, and 5 percent. All these variations had negligible effect on the main 

I I I I I I I I I 

Fig. 5. E?tpcctrd isoelastic utility E(U) versus fraction invested in stock. E(U) = 

I”* dS./(S. t)[(l-p)+pc’-“u’]~/,/, /(S.I) = /(a = 2. /?, y = yof, 6 =&r: S)= exp [- 

(S-G,f)‘,j,,f]l(4nuof)‘. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR. = 6,; I = IO. 20, 30 days;,, = -0.5. - 1.0, -2.0. Representative 

VaheS for YO taken from Fama (1965a. table 5). R. is rate of return on risk-free asset, dc is drift 

rate parameter in log Gaussian stock price model. 

results: in all cases the optimum fraction was around p z 0.5, and the expected 

utility in the neighborhood of the optimum was relatively flat. 

When f(s) is Gaussian and the utility is isoelastic, U(y) = yq/~, the results 

arc quite similar. Fig. 5 shows various numerical approximations to (12) as a 

function of p (4 = -0.5, - 1.0, -2.0; investment periods of IO, 20 and 30 

days), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq is fixed in each graph, investment period is a parameter. Again, the reader 

is cautioned different scales have been used for each curve in order to emphasize 

the optimum. The same parameters as used in the logarithmic utility have been 

used here. Note that the optimum p is around 0.4 for q = -0.5 and decreases to 



288 B. W. Stuck, Incestment solutions for log-stable stocks 

0.1 for q = -2. Close inspection reveals the optimum decreases as time in- 

creases, as expected. Fig. 6 shows the same information as in fig. 5, except that 

time (I) is fixed in each graph. These figures make it evident that investing much 

more or less in the risky stock yields only slightly less expected utility than the 

optimum fraction. 

Varying the rate of return on the risk-free asset from 0 percent to 10 percent 

annually, changing the drift of the stock price from - 10 percent to 10 percent 

Fig. 6. Expsc~cd iswhstic utility E(U) wrws fraction lnvcsled in stock. E(U) = 

j”_ tlS~/(S,t)[~lp) tpcs-H~‘]‘lqr /a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI) =/(x = 2, p. ;’ = yet, 6 = d,t;S) = cxp [- 

(S-,r,,l)~/4y,r]i(4n;‘“l)‘, Ho = 6,: t = IO. 20. .WJays;rt = -0.5. - 1.0. -2.0. Kcpresentati~e 

values fur y. tahcn from Fame (196%. table 5). K. IS rate of return on risk-free aswt, 3, is drift 

rate parameter in log Gaussian stock price model. 

annually, increasing the dispersion by a factor of two and also decreasing it by 

a factor of two, and switching the brokerage commission from 0 percent to I 

pcrccnt to 5 percent had virtually no effect on these results. 

The final case is when/(s) is non-Gaussian stable, and U(y) = ,@/q. 

Fig. 7 shows representative expected isoelastic utility function& as a function 

of both the fraction invested in the stock and the duration of the investment 

interval. The flatness of the expected utility in the neighborhood of its maximum 
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is quite evident in these figures. The only curvature evident is in the neighbor- 

hood of p equals one. The optimum fraction is apparently around 0.4 for q = 

-0.5, and decreases to perhaps 0.1 for q = -2. Furthermore. the expected 

utility is quite close to its maximum for fractions much less (but not greater) 

Fig. 7. Expected isoelastic utility E(U) versus fraction invested in stock. E(U)= 

J-” o d.S~/(S.r)[(t -p)+pe S-*~‘]‘/‘l./(S. I) = /(x.8, y = Tar, 6 = 601; S), Ko = 6” = 0, I = 10 

days; ‘I = -0.5. - 1.0. - 2.0. Representative values for y0 taken from Fama (196%. ~ahle 5). 

R. is rate of return on risk-free asset, & is drift rate parameter in log-stable stock price model. 

than the optimum, as in the log Gaussian model. The effect of varying the 

characteristic index upon the expected isoelastic utility is of independent 

interest, and will be dealt with elsewhere. 

Varying dispersion, drift of the stock price, rate of return on the risk-free 

asset, and including brokerage commissions in the manner described earlier 

had virtually no effect on these results. 
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Numerical analysis 

In this section the approximations used to numerically evaluate the integral 

J = j?,W(l +r)(l -P)+P e’lk a, 8, y, 6) d.s (A.1) 

are described, for the Bernoulli logarithmic utility [U(j) = lny] and for the 

isoelastic utility [U(y) = y4/q, q < 01. 

The first step is to change variables 

s’ = (s-@/c, (A.21 

:. J = JIOmU[(l +r)(l -p)+p e “‘+‘]j(s’; a, j?, y = 1, 6 = 0) ds’, 

(A.3) 

and the prime superscript on s’ will be dropped from here on. The integral is 

now broken up into three integrals, 

J = J,+Jz+J,. (A.41 

with rcspcctivc limits (-co, -L). (-L, M), and (M, co). The integrand in J, 

can bc simplified by series expansions of the utility function. For the Bernoulli 

logarithmic utility, 

In [(I +r)(l -p)+p ecr+d] = In [(I +r)(l -p)] 

‘e,SC (-l)‘+’ 
*-, 

i 

(A.9 

while for the isoclastic case, 

[(I +r)(l -p)+p e’c+d]q/q 

= [Cl +rXl --PIP , + 

i 

w es,+d+4k-1) 

x,(l~;~,)J+Y:j”‘-” l 2 (A.@ 

For both cases, for L sufficiently large, only a small number of terms are needed 

to accurately approximate the integrand. Two approaches were used to evaluate 

J,, one a straightforward Rombcrg’ adaptive step size integration method 

‘Kal~ton (1965) is a highly rcadablc reference on Romberg numerical integration schemes. 
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using an asymptotic series expansion for the stable density in conjunction with 

(A.5)-(A.6), the second a laborious integration by parts of the asymptotic 

series expansion for the density along with (A.5)-(A.6). Both methods yielded 

answers consistent to three significant figures and were less than the obvious 

upper bound on J,, 

JI 5 U[(l +r)(l -p)+p e-CL+dJ.Pr (s c -t). (A.7) 

The second integral, J2, was evaluated two different ways. The first approach 

used a Romberg adaptive step size integration method; the stable density was 

evaluated via power and asymptotic series. The second approach used a Rom- 

berg fixed step size integration method, where the stable denstty was approxi- 

mated by inverting the characteristic function using the discrete fast Fourier 

transform. Both approaches yielded results consistent to three significant figures. 

J,. the third integral, can be found by expanding the utility in a power series. 

For the Bernoulli logarithmic utility, 

In [(l+r)(l-p)+pe’C+d] = (lnp)+sc+3 

+ln ’ +(’ +r)(’ -P) C-SE-d 

P 
1, (A.81 

ln l+(‘+‘)(‘-P)e_sc-d 

P . 1 II 
= _ ~ ("r"P-')e-d ‘e-,~~,j 

/=l P 1 
(A.9) 

J, = (In p+S) Pr[s > R]+J~r.rj(s: Q, /I. y = 1, 8 = 0) ds 

-jsc/jfts; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa, /I, y = 1, S = 0) ds. 

(A.10) 

The first term in (A. 10) can be computed directly from series expansions for the 

distribution. The second term in (A.10) was found by direct integration of the 

density asymptotic series multiplied by S. The last term in (A.1 I) was approxi- 

mated by both a Romberg adaptive step size algorithm and by a laborious 

integration by parts of the log power series times the stable density asymptotic 

series; both methods yielded answers consistent to three signifcant figures, and 

were checked against the upper bound, 

m 

5 [ In I+(‘+r)(‘-p)e-“-d 
hf P 1 

f(s*q p y = 1 3 = o)& 
> 7 1 

I+(’ +r)(’ -‘) eScMVd 
P zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 Pr [s > M]. (A.11) 
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For the isoelastic utility, 

sc+d q 

[(I +f)(l _p)+p esc+d]q;q = (p eq ) 1 +(l+f;l -p)e-sc-d > ’ ~ 

(A.12) 

I +(I +‘)(I -p) e-SC-,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 ’ = 1 +dt+r)(l-d e-)c-d 
P P 

(l+r)(l-p)e-sc_d ‘+ 1 . . 9 
. 

P 

(A.13) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

J, = 
“1 tp esc+djq 

M 4 

1 +dl +r;’ -P) e-,c-d I q(4; I) 

(l+r)(l-P)e-sc_d Zf . 

11 . . P zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

xf(.s;a ,p,y = 1.~5 = 0)ds. (A. 14) 

The integral (A.14) was cvaluatcd using both a Rombcrg adaptive step size 

algorithm and a tedious intq@on by parts of the utility function scrics 

expansion (A.I’_)-(A. 13) times the stable density asymptotic scrics; both methods 

yicldcd answers consistent to three significant ligurcs and wcrc chcckcd ag;linst 

the upper bound. 

il 
,u.l 

~,~[(I+r)(l-l’)+/‘c’~+d]~(r:~,/~,j, = I,ii = 0)d.s 

5 i [(I +r)(l -pj+/~e~*“+~)~ I’r[s > 1211. 

II 
(A.15) 

In all cases, an absolute error criteria of 0.001 was used for the Rombcrg 

jntcgration mcthodi. 

To give the reader some feeling for the computational effort involved in 

gcncrating the plots in the text. some numbers fora typical runarc nowdcscribcd. 

An avcragc run involved one hundred evaluations of the expcctcd utility func- 

tion (p varied from 0.001 to 0.999 in nine evenly spaced steps, time varied from 

0.01 to 30.0 days in nine evenly spaced intervals). On a Honcywcll6000 computer 

24K of core storage would bc nccdcd. and this run would take 78 seconds. 

Over one hundred and fifty runs were carried out to gain confidence in the 

approximations involved in numerically evaluating the expected utility function- 
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al. The figures presented in the text are felt to be representative, and all errors 

involved appear to be negligible. 

S.O. Rice has suggested some quite clever approaches to checking the numeri- 

cal work described here. Several of the integrals were checked by his method 

against the method just discussed, and were found to agree to within limits of 

accuracy [see Rice (I 973)]. 
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