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We study a statistical hypothesis testing problem, where a sample function of a Markov
process with one of two sets of known parameters is observed over a finite time interval.
When a log likelihood ratio test is used to discriminate between the two sets of parameters,
we give bounds on the probability of choosing an incorrect hypothesis, and on the total
probability of error, for both discrete and continuous time parameter, and discretc and
continuous state space. The asymptotic behavior of the bounds is examined as the
observation interval becomes infinite.

1. INTRODUCTION

We are concerned with a classical problem in mathematical statistics,
classifying a sample function of a random process, observed over a finite
time interval, into one of two classes (called hypotheses). For a wide
variety of cost criteria, it is well known, e.g. Grenander [7], that a
minimum cost test is the so-called likelihood ratio test, where the
likelihood functional is computed from the observations, and the result is
compared with a threshold to choose one or the other hypothesis.
Evaluating performance of the likelihood functional test involves analysis
of the probability distribution. of the:likelihood functional, which is often
the much more difficult part of the problem. Moreover, in many. practical
= situations, it is well-known that a likelihood functional may be too

“Réscarch supported in’part by NSF Grant MPS 74-04870 AO1
139



140 C. M. NEWMAN AND B. W. STUCK .

complicated and hence too expensi b fun-

305_. are calculated which are much _E costly to np_n.__-n however, it
y to pare the perfc of the subopti test with

-__u. of the optimum test, and again this can lead to great analytical or
computational difficulties.

We restrict attention to the special case where the observation is a
Markov process whose vnovchc. distribution contains one of two sets of
known parameters (this is called the sure signal in the literature, as
opposed to the more general case i___hr has attracted much _E«aom. over
the last decade where the Ives may be i—-o:
a likelihood ional test is used to discrimi between hypoth
give explicit new formulae for oEBon -type bounds [1], (5], [8], _uuu on
the probability of ing one hypothesis when the other is true, and on
the total probability of error; this was previously an unsolved problem.
We study the behavior of our bounds as the duration of the observation
interval becomes infinite, and, under suitable conditions, show that all the
probabilities of error decay exponentially, where the decay rate is gover-
ned by the largest eigenvalue of a particular operator that arises naturally
from our approach. It is easy to construct examples where if one uses a

bopti test for discrimit between the two hypotheses, the error
probabilities need not decay exponentially but may decay rather much
more slowly.

Some of the earlier work (see Evans [5] and the references therein) on
this S_vmn dealt mainly with Markov processes with continuous sample
paths, i.e. diffusion processes. Here, we deal mainly with Markov jump
v-og w:a treat E:._Eo: processes separately. Skorokhod [15] has

to the hyp of P it

4.3 below, for the mutual =o=c:__cme=w_=< of the probability measures
associated with two continuous time Markov processes; our results are
clearly related to his, but were obtained by different methods, and appear
to be much more useful in that they can be used to obtain upper and
lower bounds on various error probabilities almost immediately. Finally,
we are able to simplify, unify, and wn__oau_ﬁn =.=n~_ previous work on this
topic by using a semi-group app The ion of these
results to time inh Markov is strai ward, but is
omitted for brevity.

2. MATHEMATICAL PRELIMINARIES AND
PROBLEM STATEMENT

Let x,(t),x,(t) be separable versions of two different stochastic pro-
cesses taking values in a common state space, where t is time, teE, E a
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te the

. . defined
probabilities o
as

?»I‘Aﬂ_ooﬂl__tuﬁ.—& m-.mt...%»u
. =Prichoose Hy|H, true] = =ft ,dulAlH,]
ution of the log likelihood functional. An

distrib
where p is the n..owe.:—:«
indirect measure of performance
defined as

is the total probability of error, Pg,

Pp=mPytmPr2

ri probability that hypothesis j is true.
trm_.om“.“._.”m ﬂm‘_ﬂgv%ﬂﬁoﬂn« one of the first in the En._unSn:MM
statistics literature to obtain the following simple upper bounds on
probabilities of an error of the first and second kind:

Pus infh, (o)™

s<1

Py, S E:..c....r»...

5>0

ssociated with
) is a conditional momen
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the distribution of the log likelihood fi

hy(py)=EleN|H,] =ELe#~ H,]
An alternate expression for hypy) is

hulo)={ @p/any v/} =2 py<x

which is independent of the choice of x.

These ideas have been extended in several different directions. Shannon
et al. [14] obtained lower bounds on the probabilities of an error of the
first and second kind, for discrete measures p,v and showed their lower
bounds and the Chernoff upper bounds are identical to within a factor
that approaches unity as the observation becomes infinite.

It is well known, eg. Kraft [10], Hellman and Raviv [8], that
evaluating h, ,(p,v) yields simple, easy to calculate (but often crude) upper
and lower bounds on the total probability of error,

dmin(e,, %)y 2(p)1 S Py S (my,m5) hy ()

where the threshold L is chosen to be In(ny/r,) in order to obtain the
upper bound on Py,

We emphasize that in many cases of practical interest, it is difficult or
impossible to obtain closed form analytic expressions for P, 2, P31, Pg, and,
furthermore, it is also quite difficult or expensive to accurately numerically
approximate these quantities. The bounds just discussed are often possible
to treat both analytically and i Thus, we from this
point only on explicitly calculating h,(p,v), which provide upper and lower
bounds on P, immediately, and can be further manipulated to obtain
Chernoff-type bounds on Py3, and P,,. Although we are finding bounds
on a likelihood ratio test, many of the same ideas developed here can be
extended to bound performance of sub tests, or, equivalently, to
assess the performance of a suboptimum versus optimum test.

3 DISCRETE TIME, FINITE STATE MARKOV PROCESSES

Let x,,x, be two time homogeneous Markov processes taking values in a
finite state space {1,..., M} at discrete time instants {0,1,...,N}. Let up be
their initial distribution vectors. We note that h,(u,v) is given by

hy(up)= m ujof =% =H(uv)e

i=t
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where H,(uv),=ujv{' ®i=1,...,M Tdenotes transpose and ¢;=

=1...M . ;
w..a. R,Q denote the respective transition matrices of x,x,

Ry=Prix, (k+1)=jper (k) =11
Qy=Prlx;(k+1)=jlxs(k)=1]
mxau m 0,=1 13ijSM, 0SksN
i=1 j=1
PROPOSITION 3.1 Let x,,x; be as just defined. Then
a) The log likelihood functional is given by

u, "' R
=In-o4 Y in-leer
Ao o) L .Me Qi

ji ji i tate of r, 0SkSN.
b) Mﬂﬂh“«w.wnwa”:”ﬁ\”:ag:\o\w the log likelihood functional is give
by
hy(py)=H] (wo)[H,(RQ))"e
where
H,(RQ)y=[R,;ITQ,1" ™ for 1<ijsM

Proof (a) follows from the .ﬁm.._i:oa given in Section 2. To show (b)

simply substitute into the definition:

M M

[0: 3 (N

(RQ) e H(RQ)

=HIwp)(H,(RQ)I" QED.

We now study the role played by the eigenvalues n._..n_ Bmo._ﬂ“-wru
H,(R,Q) in determining the behavior of. F@Ni. In vn,:.n: ar, we e
Q.E@h:«. H,(R,Q) has a unique largest positive 3-—. n_mmuﬁ._..o r(; .—_ prid
<1, and that as the observation interval 70858 infinite (N |_..'om ), ¢n.n _n. )
HQ,:.E (R,@))¥). Roughly speaking, h,(p,v) is a measure o_,.,. o_—o n__”-
il ity” of p,v, so that the closer r(H,(R,Q)) is to unity, the gre:

or “simi




144 C. M. NEWMAN AND B. W. STU(

7(S)= max {|4[}

1sisM
In the following lemma, we use the well-known fact that

r(S)=lim sup||s"[m < s

for any suitable matrix norm |-|.

LEMMA 3.2 Given the Ppreceding notation,

pv)]<In[r(H,(R,0))]

ie,
hpV)SO(M(H(RQ) N-cwo
Proof Simply take norms on both sides of the expression for hy(p,v)

ho) ™ ST, o) |12 R Q) 11

The desired result follows
limit N~ 0. QE.D.

PROPOSITION 3.3 There exists at least one eigenvector w of H,(R,Q)

.:_ . 4.
H«-_ nonnegative entries and with eigenvalue r(H,(R,Q)). If w™H,(u,0)#0,

immediately upon taking logarithms plus the

.~
ﬁw ME??.:H_H_.AAE.SEH_
Proof The first statement follows from the classic;
! n al Perron-Frobeni
ESH.E.?_. matrices with nonnegative entries. In particular, w has ”_”
nonnegative entries. ‘This is used to write e=cw+ p, where ¢>0 and p has
all nonnegative entries, This in turn implies that t

lim inf - In[ T ) HR. Q)]

Neo

= lin
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provided that HT(uv)w#0, which together with the previous lemma
completes the proof, Q.E.D.

To see that Lemma 3.2 may be a significant improvement over the
simpler (often much easier to calculate) upper bound

hy(o)S O(h,(wo)|H, RO

consider the following example: -
Example 34 Let R and Q be two by two matrices

R[22 27 o [12 _j
9/10 /10 1/10 9/10
where R,Q are considered to act on I, for the calculation of operator
norms. Then the spectral radius of H,(R,Q) is

191 9t 9
‘E.S.STNT&HAN,( %) T

r(H,(RQ))=08 if s=1/2-h(py)~008" ifs=12

The much easier to calculate upper bound on the error probabilities is in
fact useless here:

cg

|1H,R.Q)|= udquu ]

h(py)<0(1™)

Variational methods can be used to numerically approximate the spectral
radius of Hy(R,Q):

4. CONTINUOUS TIME MARKOV PROCESSES
In this section, x,,x, are time h Markov p with
common state space R, and with time parameter in the interval [0,T).
Continuous time Markov p have additional over discrete
time Markov processes, because, very roughly speaking, we can write the
ition p bilities of the two p which in discrete time were
denoted R,Q, as exponentials of an operator which is called the in-
finitesimaj of the ition probabilities. Our goal in this
section is to take advantage of this additional structure. Suitable re-
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ferences are Dynkin [3,4]), Feller [6].

The of the two are given by
Prx,s+edfG)  [oRiexdy
Prlxy(s+ e Alxa(s) 14Q(x.dy)

R(t) and Q(r), when considered as operators, act on the space of bounded

functions. Vhe infini d with R and
Q are denoted by A,,4,, where

A N)x lim=[R() -I)f(x

-0l

s x&umﬂwS: &)
where 7 is the identity operator. This allows s to identify the operator
R(z) with the operator exp(t4,), and the operator Q(t) with the operator
exp(t,).
We first consider the case where the infinitesimal generators are
bounded operators. This case is technically much easier to treat than the
more general case of unbounded opetators. Moreover, it is often rcason-

able to begin here in licati such as deling signal di ion in
optical communication systems, or deling d ion of
changes in and gdata networks as well as in

voice telephony traffic problems (see, e.g. Riordan [13]), for many such
simple examples which lead to a great deal of insight into system
behavior. This necessarily implies that x,,x, are pure jump processes (with
no drift and no diffusion component) with sample paths that are constant
except for jumps occurring at random times with random amplitudes:

Af)x) a,(xdz)Lf( %)
with supf,  ,a,(xdz) < o«

In words, the measure g,(x,dz) denotes the mean transition rate from state
x to a state located in (2,z+dz]; e.g. for a simple Poisson process (which
is often the first model i i in optical ications or in data

icati ! in many i with mean rate parameter
A a(x,d2)=2,(z~ (x+ 1)Mz, where 8(.} is a Dirac delta function, because
a simple Poisson process sample function contains only simple jump
discontinuities of amplitude + 1. We include finite state space or countable
state space processes here as a special case.
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i iti denote
In the statement and proof of the following proposition we
by " H/uy) for measures u(dx), o(dx), the measure H,(u,0)(dx)
= (du/dw) (du/dw) ~*w(dx) where w(dx) is any measure such that uo<€w,
and H,{v) is independent of the choice of w, with h,(u,0)={ H,(u,0)dx).
mr::nm_v: we define the operator H,(R(1),Q(#)) by

HREQOWIE e R( 0l ))&

This n ation is consistent with that of Section 3

. Let u(dx) be
PROPOSITION 4.1 Suppose A.,A, are bounded m.«.n...agwu
the distribution of x,(0) and i(dx) be the distribution of x»»o.v. bn\msa
a,(x.dz)=H,(a,(x,.), a,(x,.))d 1), and let Do(x) denote the function given
b

Dolx say(cd +(1 Jax(xdz as(xdz)]
whic from Jenser's inequality is nonnegative. Then
hy(p)={ JLH, (0)dx)exp(TlAs — Do))xdy)
where
s/ Mx a0 2N xN

i i {tiplication by the
where Do in the last equation denotes the ERE::. of ~.==
\::e:..u; obixy Since A; can be thought of as the infinites mal mmw&‘.n_na. of
a third Markov process, denoted x3(r) i:._ E. distribution
H {uv)/h,(uv), we can rewrite the moment generating function of the log
likelihood functional as

Bipw :h(uo)E, fexpt fiDolxs)(MH)

i by the discrete time

Proof For each n=12,..., we approximate x(t) )
v_,cashwm\?_;ﬂ\:v"kuoL n—1}. Letting p, respectively v,, n“ﬂnc.ns EM
probability distribution of {x,(kT/n)}, respectively ?n?ﬂ?x. en w :
lculati letel i! to the one carried out in the proof of

Proposition 3.1 above, one has
BPwts = Hiw0)dx)[H,(R( m)Q(T/m)Ie)(x)
where e(x) is the function identically equal to one for all x. Since

hlps  timhipovad

suffices to show that
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DR M GHRCTIOMOAT/m)IF = XD T (4, - Do)

Eé:«aii?[é of the propesition
i.!.i _l_t:.&.. : anB.__-w !-sat[
g

ALV, 0 (d2) (2)

and AP is the of =
inﬁhaggig multiplication by —(,,,a,(xd: Then

R{E/n) =L+ (t/m)Af + (¢ VAP + ot/n)
?!igiia@%zﬁ
Hil 414 :. AT 41, ng
H, (A} A 42 c +{1=sMB)+olr)
uuuuuuuu Dy + ol

_tﬂllu&qe.ifria&ii?lsni
abtained: directly from an analysis of the spectrum of .?Bs:u
with b, %0(exp(—xT)) for an sppropriate x determinid from Ay —Dy,’
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L=
E._ ﬁﬁggﬁorﬁgii

provides & new set of explicit examples. of the, Trotter  product. formula

of Eivg&
[46); and is & special case of more general

Ba&-ﬂi%gffﬂl&
{whiich are encountered in pure drift‘or diffusion pe ses).
_aagsgﬁ-ﬁtié

Elii&wwu.&.&...!;i
infinitesimal generators are

Fhi- iz A2 )= £ () j_q V5]

gﬂ&.uﬂi
Sau....# %?Eﬂ?!&?i&oﬁ-@ﬂa
assumption;, . —¢sbol g .
for each £>0

mwa sz (dz) < o0
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As above, we define a new time homogeneous Markov process x; with
state space RY, te[0,T), initial distribution H,(u,v)/h,(u,v) and infinitesimal
generator A, defined when conditions (a), (b), (c) in Proposition 4.3 are
met via
as(xd  Hi(@,0)%dz  ajz iz of(z
10242

(@du)+  s)ay(zdu ay(zdu)] Nnﬁq :ﬂ_n

PROPOSITION 4.3  Suppose the following conditions are satisfied
). Do(x) is finite or all x, ie
D x)=lim say(xdy)+ @ Day(xdy  as(xdy)]
b) The infinitesimal variance of the diffusion process componc  are
identical
ajj(x)=¢ e M forallx R*

) The infinitesimal drifts differ by 5 which lies in the range of o, for all
€R* where

S 6 aatx limf Rt
The og likelihood moment g ing fi L is then given by

h(p  =hy(u)E, [exp(— [§D(x3(t))dr)]
=[§H,(u0)(dx)exp[ T (43~ DI(xdy

where
b Dix T W X6

denote the matrix inverse of (x

Proof The proof, of this proposition is based upon a direct com
bination of, Proposition 4.1 together with the techniques and results o
Newman C 1], [12]. We do not include the details for the sake of brevity.

The ing result is a of the definition of the spectra
radius of the ova—.qu exp(4; —D), and the proof of Proposition 3.3:

"HERNOF BOUNDS AND MARKOV 'RO( SSES 151

PROPOSITION

limsup - 7 “hy(p,¥)] In[ lim [lexp( D)y

T
If ;—D has a nonnegatit eigenfunction w(x)e eigenvalue equa
to '« and if
Iw()H, up)(dx)#0

then

lim sup==Inlh,(p,9)] sup Refw(x)[(4 D)w](x)dx
where the supremum is aken over all w in the domain of D with L,
norm unity.

Example 4.5 In the case where x,,x, are ‘independent increment
processes, the infinitesimal drift, variance, and jump measure are all
independent of the present state x, so that D(x) is also a constant D
independent of x, and

hy(py)=h(uwoexp( «T
87a '8+, polsar(@y)+ (1 -s)az(dy)tH,(a,a,)(dy)]
We note that in this case h, has an exact exponential dependence on T
moreover, p and v are mutually orthogonal unless & e range(s) and B
fdlsa (1 a; Hi(ayaz)l<

(see )
Example 46 Suppose x,(t) is a real valued stochastic process satisfying
the stochastic differential equation

dx,()=db(t 5,(x)dt x,(0)=0 as

with &, =—8,=5(x) for some given function &(x), where b(t) denote
standard Brownian motion. The infinitesimal generator is given by
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i [2) P. R. Chernofl, Nots e product formulas for operstor smigroups, J. Fucrional An,
221968 :
; : SWP%%!‘I.&E&.EE,E%..?
i provticy ;
P a%&ﬂf?iglsi;;irg
...... : . Ll id
dath £1 5. E. Evans, Chemnolf bounds on the error probability for the detestion of nen-Gaussien
sigaals, {EEE Trans, Info. Thy. 39, S69-5T1 (1974}
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%)=ble) hp.y)=Elexp(— 43 F(bie))dN] Hﬂrﬁihiih‘ﬁni Ak, Foe Mashemaith
For simplicity, we assume that §ix)—co as [x|—+ o so that 4, -0 has & Eﬂ.ﬁmﬁl_—‘;.; of ewvor, squivacation, and the Chernoll
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ically in general. In p , the assumption Hx)~5 8 |x] -+ [¥] 5. Karlin, Poaltive operators, J. Math. Meck. 8, 907-934 (1959,
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