
-- --

CHAPTER 9: PRIORITY SCHEDULING I

Up to this point we have concentrated on analyzing the mean throughput rate for multiple resource
systems, and the mean throughput rate and mean delay bounds for networks of single resource systems.
We saw that for many different types of systems typically one single type of resource is limiting the
maximum mean throughput rate. The avenues available for improving system performance are to add
more resources (perhaps moving the bottleneck resource elsewhere) or scheduling the single resource in
an effective manner. In this section we will focus on different techniques for scheduling a single
resource, in order to meet delay criteria. In practice a system cannot be exercised continuously at its
maximum mean rate of completing work, but rather must complete work at some lower rate in order to
meet delay criteria of different types. How much below complete utilization this one resource can
operate is the subject of this section (and the realm of queueing theory as a branch of applied
mathematics).

Rather than focusing on simply a mean value analysis, we now worry about other phenomena:

• fluctuations about a mean value and

• correlations among the fluctuations.

Intuitively, the more regular (the less the fluctuations) or constant and the more predictable the
fluctuations (the correlations in the fluctuations), the easier it will be to meet delay criteria, and vice
versa. Since more detailed questions are asked, more detailed information must be given to describe
system operation. In any queueing system there are three main ingredients:

• a characterization of the arrival statistics of each transaction type

• a characterization of the resources required at each stage of execution of each transaction type

• a policy arbitrating contention for resources (remember there is only a limited amount of each
resource type!)

In the previous sections, we used mean values to characterize the arrival statistics (e.g., a rate) and
resources required at each stage of execution, for a given policy. In analyzing the mean throughput rate
and mean delay in earlier sections, when we fixed the mean time for execution at each stage of each job,
we saw that the best performance was obtained when the mean times for each stage of execution were
constant or deterministic while the worst performance was obtained when the fluctuations about the
mean times became larger and larger. Here, we expect to see similar phenomena. Remember: all the
systems we deal with are deterministic in their functional operation, but they are sufficiently complex
that we choose a statistical or probabilistic characterization of the arrival and service statistics, in order
to summarize with a very small number of parameters what in fact is a very large number of parameters
whose detail may be overwhelming.

9.1 Time Scale of Interest

What time scale is of interest? In order to adequately characterize a system statistically, we expect the
measurements we take to stabilize at some (small!) range of values if measurements are carried out over
a sufficiently long time interval. How long is long enough? There is no simple answer here. For
example, if the disk subsystem is capable of making a disk access every thirty milliseconds, and the
processor is capable of doing useful work every ten milliseconds, then if we gather measurements over a
time scale one hundred or one thousand times as long as these smallest time intervals, for example,
every ten or every thirty seconds, then this is a long time interval during which there is a reasonable
possibility that the system has stabilized. On the other hand, it is easy to produce counterexamples in
which this need not be the case. The problem is studied in the realm of time series analysis and we will
drop it from further consideration here. Our intent is merely to point out that this is a real problem that
must be dealt with in actual systems. Queueing systems have both an initial or transient behavior and a
long term time averaged behavior. The long term time averaged behavior will occupy all of our

-- --

2 PERFORMANCE ANALYSIS PRIMER CHAPTER 9

attention here, but the transient behavior is clearly of great interest in many applications. When
measurements are presented on any system, always check to see at what point transients have died out
and at what point long term time averaged behavior appears to set in. Unfortunately, since we wish to
study behavior with congestion, as load builds, transients take longer and longer to die out, and we need
more and more data to see the demarcation between the two regimes!

9.2 Workload Arrival Statistics

How do we characterize the arrival statistics? Suppose we observed N arrivals in an interval of duration
T time units starting at time zero, and we recorded the arrival time epochs as tK ,K =1,...,N which may
possibly be the empty set. One way to characterize the arrival statistics would be by a cumulative
distribution function

distribution f unction = PROB [t 1≤T 1, . . . , tN ≤TN]

for each value of N, or the interarrival time distribution for each value of N. In practice, this becomes
very unwieldy, so in the next section we introduce additional restrictions on the arrival process that are
very often met in practice yet are analytically tractable.

9.2.1 Finite Source Arrival Statistics We first turn to the type of arrival statistics that we used to model
clerks at terminals submitting transactions in earlier sections. Since we only have a finite number of
clerks and terminals, the population is finite and the arrival statistics are due to a finite set of sources
which leads to the title of this section. The sequence of times from the completion of the last
transaction until the submission of the next transaction fluctuate; the time intervals are called random
variables because they vary and because the fluctuations, while due to many diverse causes, are so
complex that we simply summarize all of this by calling them random. Every sequence of time intervals
is different from every other, because the precise combination of events leading to that set of times is
highly likely to be duplicated exactly.

Example. Ten clerks submit one hundred transactions each to an online transaction processing system.
The time interval between the completion of the last transaction and submission of the next transaction
is recorded, and the results summarized in the table below:

Table 9.1.One Hundred Transactions/Each of Ten Clerks_ __ ___
Intersubmission Time Number of Transactions_ __ ___

0-2.5 seconds 150
2.5-5.0 seconds 135
5.0-7.5 seconds 110
7.5-10.0 seconds 90
10.0-12.5 seconds 80
12.5-15.0 seconds 65
15.0-17.5 seconds 60
17.5-20.0 seconds 45
20.0-25.0 seconds 75
25.0-30.0 seconds 55

>30 seconds 135

We want to summarize all this information with one parameter, the average or mean intersubmission
time. We compute this by multiplying the fraction of transactions with a given mean intersubmission
time by the maximum intersubmission (e.g., 0-2.5 seconds means we assume all jobs had an
intersubmission time of 2.5 seconds), and then summing the resultant terms:

E (Tidle) = 2.5(.150)+5.0(.135)+7.5(.110)+10(.09)+12.5(.08)+15(.065)

+17.5(.06)+20(.045)+25(.075)+30(.055)+45(.135) = 14.425 seconds ∼∼ 15 seconds

Note that we have assumed that all intersubmissions greater than thirty seconds were arbitrarily forty
five seconds.

-- --

CHAPTER 9 PRIORITY SCHEDULING I 3

In summary, we can summarize all the data by its average or mean value of approximately fifteen
seconds, and if we wish to assess sensitivity to this parameter we can change it to ten seconds or to
twenty seconds or to whatever value is felt to be appropriate.

We now make even stronger assumptions:

• The sequence of intersubmission times are independent from transaction to transaction and operator
to operator (no coffee breaks, no ganging up at the water cooler)

• The sequence of intersubmission times are identically distributed random variables (all operators and
transactions lead to identical intersubmission time statistics)

• The intersubmission times are exponentially distributed random variables.

This last statement, the choice of an exponential distribution to summarize all the intersubmission time
statistics, is a key assumption. In words, this says the fraction of intersubmission times that is less than
a given threshold, say X seconds, is approximated by an exponential distribution:

f raction o f time intersubmission time interval ≤X =

1 − exp [−X ⁄E (Tidle)] = 1 − e
−λ

idle
X λidle ≡

E (Tidle)
1_ _______

To test this goodness of fit, the figure below shows a quantile quantile plot of empirical or data quantiles
versus exponential model quantiles.

Figure 9.1.Empirical Quantiles vs Exponential Model Quantiles

Since the plot is approximately a straight line, the goodness of fit is felt to be acceptable, and we can
use the exponential model with as much confidence as we place in our data and its analysis.

The fraction of time one clerk is idle less than or equal to X is given by

PROB [Tidle for one clerk ≤ X] = 1 − exp [−X ⁄E (Tidle)] = 1 − e
−λ

idle
X

The probability or fraction of time that we have J submissions by N clerks in an interval of duration T is
given by

PROB [J submissions by N clerks in interval ≤ X]

=


 J

N 




1 − exp (−X λidle)

J 
exp(−X λidle)

N −J
J =0,1,...,N

-- --

4 PERFORMANCE ANALYSIS PRIMER CHAPTER 9

Many times the moment generating function of a distribution is easier to work with (analytically or
numerically) than the actual distribution. Here the moment generating function is given by

E [X J] =
J =0
Σ
N

Y J PROB [J submissions by N clerks] =


exp (−X λidle)+Y (1−exp (−X λidle))

N

This can be differentiated to find the mean number of submissions in a given time interval, and hence
the mean arrival rate:

dY
d_ __E [Y J] Y =1 = E (J) = N [1−exp (−λidle X)]

The total mean arrival rate of work is thus given by the mean rate at which each clerk submits work
multiplied by the mean number of clerks in the idle state, reading, thinking, typing, and so on:

total mean arrival rate = mean number o f idle clerks × λidle

As we add more and more clerks, the mean number idle (as well as the mean number waiting for
response) will grow without bound over any threshold we set. What we want to do is fix the total mean
arrival rate and increase the total number of clerks; this means the total mean number of idle clerks will
grow without bound, while the total mean arrival rate is fixed, so the mean idle time per transaction
must also grow without bound:

N × λidle =
E (Tidle)

N_ _______ = total mean arrival rate ≡ constant = λ

If we do this, we see that the mean number of arrivals in an interval of duration X seconds is given by

N →∞
lim



 J

N 




1−exp (−X λidle)

J 
exp(−X λidle)

N −J
=

J !
(λX)J
_ _____e−λX J =0,1,2,...

Note that each terminal or source is contributing less and less arriving work, because the individual
mean arrival time is growing without bound, and hence we call this the infinite population limit (N →∞)
of the finite population arrival process, the so called Poisson arrival process, which is the subject of our
next section.

9.2.2 Infinite Source Poisson Process Now we assume the interarrival times are independent identically
distributed exponential random variables, or, that the arrival statistics are Poisson distributed. This
means that the interarrival times obey the following relationship:

PROB [tK +1 − tK ≤ X] = 1 − exp (−X ⁄E [TA]) = 1 − e−λX K =1,2,3,...,N −1

E [tK +1 − tK] = E [TA] =
λ
1_ _ K =1,2,...,N −1

Numerous real life situations can in fact be adequately modeled by Poisson statistics. Why should this
be a reasonable fit to actual data? Because whenever there is a superposition of a number of
independent sources of arrivals, no one of which dominates, then under a variety of assumptions it can
be shown that as the number of sources approaches infinity the superposition or sum of all the arrival
streams converges to a Poisson process (this is the so called generalized Central Limit Theorem of
probability theory). Another reason why the Poisson process matches actual data is that it has two
properties that are often met in practice:

• the number of arrivals in disjoint time intervals are independent random variables

• the number of arrivals is proportional to the duration of the observation time interval

These are properties that are unique to the Poisson process, and for all these reasons make it a worthy
candidate first cut model of arrival statistics in many applications.

-- --

CHAPTER 9 PRIORITY SCHEDULING I 5

What are some analytic properties of the Poisson process that might be useful in modeling?

• the superposition or sum of Poisson processes is Poisson, with mean arrival rate being the sum of
the individual arrival rates: if we add two processes, the rates add and the new process is Poisson

• the randomized thinning of a Poisson process is a Poisson process, whereby at each arrival epoch we
flip a coin and with probability P include the arrival epoch while with probability (1−P) we discard
it, i.e., we thin the arrival stream, with mean arrival rate P times that of the original process’s arrival
rate

The moment generating function of the interarrival time distribution is given by

E [exp (−z (tK +1−tK)) =
0
∫
∞

e−zX dX [1−e−λX] =
λ + z

λ_ ____

and this can be used to find moments of all integral order by the identity

E [TA
K] = (−1)K

dz K

d K
_ ___



 λ + z

λ_ ____



 z =0 K =1,2,3,...

For example, the second moment of the interarrival time distribution of a Poisson process is given by

E (TA
2) =

λ2

2_ __ → var (interarrival time) = E (TA
2) − E 2(TA) = E 2(TA) =

λ2

1_ __

A related quantity is the number of arrivals in a time interval of duration T, denoted N (T). Assuming
the arrivals are Poisson we see

PROB [N (T) = K] =
K !

(λT)K
_ _____ exp (−λT) K =0,1,2,3,...

The moment generating function is given by

E [X N (T)] =
K =0
Σ
∞

X K e−λT

K !
(λT)K
_ _____ = e−λT (1−X)

This can be differentiated to find all factorial moments using this identity:

E [N (T)[N (T)−1][N (T)−2]...[N (T)−K +1]] =
dX K

d K
_ ____e−λT (1−X) X =1

This has mean value

E [N (T)] = λT

while the second factorial moment is given by

E [N (N −1)] = (λT)2

9.2.3 General Interarrival Time Statistics What if the interarrival time distribution is arbitrary, i.e., not
finite or infinite source processes? One way to characterize the interarrival time distribution is by its
first two moments, for example. One measure of the fluctuations in the interarrival time sequence is to
measure the variance in units of the mean interarrival time (squared), with the result called the squared
coefficient of variation:

squared coe f f icient o f variation =
E 2(interarrival time)
var (interarrival time)___________________

Three cases arise:

squared coe f f icient o f variation =





 1
1
<1

more irregular than Poisson

Poisson

more regular than Poisson

-- --

6 PERFORMANCE ANALYSIS PRIMER CHAPTER 9

9.2.4 Message Switching System A message switching system must handle two different types of
messages. Twenty per cent of the messages have a mean interarrival time of 320 microseconds, while
eighty per cent of the messages have a mean interarrival time of 1024 microseconds. What is the
squared coefficient of variation? First we calculate the mean interarrival time:

mean interarrival time = E (TA) = 0.20×32 + 0.80×1024 = 825.6 microseconds

Next, we calculate the variance of the message interarrival time distribution:

variance o f message interarrival time distribution = var (TA)

= 0.20×[32−E (TA)]2 + 0.80×[1024−E (TA)]2

= 157450.24 microseconds2

Finally, we calculate the squared coefficient of variation for the message interarrival time distribution:

squared coe f f icient o f variation =
E 2(TA)

var (TA)_ _______ =
(825.6)2

157450.24_ _________ = 0.23099

This shows that the fluctuations are not as severe as would be encountered with an exponential message
interarrival time distribution. In practice, we might choose to be pessimistic (fluctuations can
presumably only make things worse) by using an exponential interarrival time distribution rather than
using a constant interarrival time distribution.

9.2.5 Additional Reading

[1] M.B.Wilk, R.Gnanadesikan, Probability Plotting Methods for the Analysis of Data, Biometrika,
55 (1), 1-17 (1968).

[2] H.Heffes, A Class of Data Traffic Processes--Covariance Function Characterization and Related
Queuing Results, Bell System Technical Journal, 59 (6), 897-929 (1980).

9.3 Service Time Distribution

The sequence of service or processing times can be characterized by their joint distribution. Rather than
do so, we assume the processing times are independent identically distributed random variables, because
in many cases this is a reasonable match of data, and because it is analytically tractable and allows
many sensitivity studies to be readily performed.

9.3.1 Exponential Service Time Distribution A program executes one hundred times on the same
hardware configuration with different inputs. The following statistics summarize how long the program
executed:

Table 9.2.Execution Time Summary_ ___________________________________ __________________________________
0-1000 machine cycles 28 runs
1001-2000 machine cycles 21 runs
2001-3000 machine cycles 16 runs
3001-4000 machine cycles 10 runs
4001-5000 machine cycles 9 runs
5001-10,000 machine cycles 13 runs
10,001-15,000 machine cycles 2 runs
>15,000 cycles 1 run_ ___________________________________ __________________________________
Total 100 runs

We wish to summarize all this data with one easy to work with statistic, such as the mean number of
machine cycles per run. Here the mean number of machine cycles executed per run is roughly 6,630
machine cycles (check this!). We might use 5,000 to 7,500 machine cycles per job to bracket this
estimate in further analysis. What about the distribution of machine cycles per job?

-- --

CHAPTER 9 PRIORITY SCHEDULING I 7

If we test this data against an exponential distribution model using a quantile-quantile plot, the results
are plotted in the following figures.

Figure 9.2.Empirical Quantiles vs Exponential Model Quantiles

Since the graph is approximately a straight line, the goodness of fit of the data to the exponential
distribution model is felt to be adequate.

Because of this data analysis, we assume that the distribution of machine cycles can be summarized by

PROB [execution time ≤X] = 1−exp (−µX) = 1−exp (−X ⁄E (TS))

E (TS) ∼∼
machine clock rate

6,630 machine cycles_ __________________

Hence, the mean rate of executing work is µ jobs per unit time, while the mean time per job to
completely execute it is 1⁄µ = E (TS). The moment generating function of this distribution is given by

E [e
−zT

S] =
µ + z

µ_____ =
zE (TS) + 1

1_ _________

The second moment and variance are given by

E [TS
2] = 2E 2[TS] var (TS) = E 2(TS)

9.3.2 Constant Service Time Distribution If all the runs for a given program require virtually the same
amount of time, irrespective of the input, the service times are deterministic or constant, and

PROB [execution time ≤X] =


 0 X ≤E (TS)

1 X >E (TS)

The moment generating function for this distribution is

E [e
−zT

S] = e
−zE (T

S
)

The second moment and variance is given by

E [TS
2] = E 2[TS] var (TS) = 0

-- --

8 PERFORMANCE ANALYSIS PRIMER CHAPTER 9

9.3.3 Erlang Service Time Distribution Suppose that we have a pipeline of K processors, with each
processor executing only one program. Each program and each processor is identical. The operation of
a single program on a single processor is measured, and is found to be exponentially distributed. Thus,
the total execution time is the sum of the execution time of each stage:

TS ,total =
J =1
Σ
K

TS ,J

Since each stage is identical, the total mean execution time is K times the mean execution time for any
one stage:

E (TS ,J) =
K

E (TS ,total)_ ________ J =1,...,K

The moment generating function for the total time to execute a job is:

E [e
−zT

S ,total] =



 K

zE (TS ,total)_ _________+1

1_ ____________ 




K

K =1,2,3,...

This is called an Erlang distribution in honor of the great Danish teletraffic engineer who laid the
foundations for much of modern queueing theory and analysis of congestion.

EXERCISE. Check that this has mean E (TS) for all K .

For K =1 this is the exponential distribution, while for K >1 this is a more complicated expression. The
second moment of this distribution is

E [TS
2] = E 2(TS)

K
K +1_ ____

and hence the squared coefficient of variation is given by

squared coe f f icient o f variation =
K
1_ _

For K =1 this is the exponential distribution, while for K →∞ this is approaching the constant or
deterministic distribution, and hence models fluctuations inbetween these extremes.

9.3.4 Hyperexponential Service Time Distribution A processor executes any one of N types of jobs.
Once a job begins execution, it runs to completion. Measurements are gathered on the system in
operation.

• The fraction of jobs of each type are measured; FK ,K =1,...,N denotes the fraction of jobs that were
executed that were type K

• The execution time statistics of each job are measured, and are felt to be adequately modeled for
each and every job type by an exponential distribution but with a different mean depending upon the
job type: E (TS ,K),K =1,...,N denotes the mean execution time of job type K

This type of distribution is called the hyperexponential distribution which is a mixture or sum of two or
more exponential distributions.

The chart below shows one method for generating hyperexponential random variables: For two
distributions, we see

PROB [TS ≤X] = F 1(1−e
−X ⁄E (T

S ,1
)
) + F 2(1−e

−X ⁄E (T
S ,2

)
) F 1 + F 2 ≡ 1

If we fix the mean, we can make the squared coefficient of variation greater than one, and hence model
fluctuations greater than those encountered for the exponential distribution case.

Exercise: Find the moment generating function of the hyperexponential distribution.

Solution: >From the definition, we see

-- --

CHAPTER 9 PRIORITY SCHEDULING I 9

Figure 9.3.Hyperexponential Random Variable Generation

E [exp (−zX)] =
0
∫
∞

exp (−zX)dG (X)

=
K =1
Σ
N

FK
0
∫
∞

exp (−zX)
E (TS ,K)

1_ _______exp (−X ⁄E (TS ,K))dX =
K =1
Σ
N

FK zE (TS ,K) + 1
1_ ___________

9.3.5 Hypoexponential Distribution A job is decomposed into N tasks, with each task executed by a
single processor. Measurements are gathered on

• The fraction of arriving jobs due to each type of task, denoted by FK ,K =1,...,N

• The execution time statistics of each task which are exponentially distributed with mean
E (TS ,K),K =1,..,N for stage K

The chart below summarizes work flow.

Figure 9.4.Hypoexponential Distribution Flow Chart

-- --

10 PERFORMANCE ANALYSIS PRIMER CHAPTER 9

This type of execution time statistics is called the hypoexponential distribution which generalizes the
Erlang distribution. One way to generate random variables from this type of distribution is to first
generate an exponential random variable, and then allow a fraction F 1 of jobs to have this distribution
while the rest of the jobs require not only this service but additional service which is generated from a
second exponential distribution with possibly different mean, and we can repeat this process again and
again.

Exercise: Show the Erlang distribution is hypoexponential.

Solution: A random variable from the Erlang distribution can be generated by using N exponential
random number generators each with the same mean in a pipeline, with the output from one stage
feeding the input to the next stage.

9.3.6 Single Link Flow Control One transmitter receives messages from a variety of sources and
transmits them over a data link to a single receiver. The following steps are involved in message
transmission:

[1] The transmitter adds source and destination header to the message, adds start and end of message
delimiters, adds an appropriate cyclic redundancy check to the message, and transmits the
message; this requires a time interval Ttransmitter

[2] The receiver buffers the message, strips off the start and end delimiters, checks the cyclic
redundancy check to see if errors might be present, passes the message on to the proper
destination, and if all is correct transmits an acknowledgement of proper transmission to the
transmitter; this requires a time interval Treceiver

[3] The transmitter processes the acknowledgement, and flushes the message from its buffer

The transmitter and receiver can operate at widely disparate speeds:

• The transmitter might be an electromechanical terminal and the receiver a computer

• The transmitter might be an intelligent disk controller and the receiver a microprocessor controlled
electronic funds transfer automatic teller

In order to insure that no messages are lost due to speed mismatching, because the receiver has limited
and finite buffering or storage of messages, a maximum of B unacknowledged messages can be
transmitted from the transmitter to the receiver; beyond this point, the transmitter waits to receive an
acknowledgement. This is called flow control because the flow of data over the link is paced or
controlled by this mechanism.

We now consider the case where the propagation effects are negligible compared to the transmitter and
receiver message execution times. This will be the case in a local area network, with terminals and
computers interconnected over a distance of a few kilometers or less, for example. Since we only have
one transmitter and one receiver, the greatest amount of concurrency or parallelism possible is to have
both resources executing messages. Thus, we consider the case where at most two unacknowledged
messages can be outstanding (B=2) at the transmitter at any one time. For this special case, we also
show an illustrative timing diagram of system operation.

Note that after the initial idle to busy transient condition, the transmitter and receiver are very strongly
coupled in their operation. A race condition can occur if the transmitter finishes before the receiver or
the receiver before the transmitter and two messages have to be acknowledged. If we ignore the startup
transient, the time required to transmit a message, denoted by Tmessage , by inspection of the figure, is
given by

Tmessage = max (Ttrans ,Trec) + Trec

The mean message transmission time is given by

E (Tmessage) = E [max (Ttrans ,Trec)] + E (Trec)

-- --

CHAPTER 9 PRIORITY SCHEDULING I 11

Figure 9.5.Illustrative Operation with Negligible Propagation Time

The message handling time is not simply the sum of the individual message handling times. What is the
distribution of the message handling time distribution? To find this, we need to find the distribution of
the maximum of the transmitter and receiver message handling time distributions:

PROB [max (Ttrans ,Trec)≤X] = PROB [Ttrans ≤X]PROB [Trec ≤X]

On the other hand, rather than work with this complicated expression directly, we might be satisfied
with simply bounds on the message handling time:

max [E (Ttrans ,Trec)] ≤ E [max (Ttrans ,Trec)] ≤ E (Ttrans) + E (Trec)

Check this! How do we interpret these two bounds?

• The lower bound says that the slower of the transmitter and receiver will be the system bottleneck

• The upper bound says that if fluctuations are sufficiently great about the mean values, the mean
message handling time will be approximately the same mean time as if the receiver could only
buffer one message at a time, with no parallelism or concurrency possible

Here is a different way of understanding this phenomenon:

• The transmitter can be much slower than the receiver:

E (Ttrans) > > E (Trec)

and hence there will never be any queueing at the receiver, or the receiver can be much slower than
the transmitter:

E (Trec) > > E (Ttrans)

and hence there will always be two messages at the receiver. This case is called speed mismatch

• Fluctuations about the mean transmitter and receiver times can be severe:

• If the transmitter and receiver message service times are constant, then

E (Tmessage) = max [E (Ttrans),E (Trec)] + E (Trec)

• If the transmitter and receiver message service times are exponential random variables, then

E (Tmessage) =
E (Ttrans) + E (Trec)

E (Ttrans)E (Trec)_ ________________ + E (Trec)

The figures below plot the ratio of the mean of the maximum of the transmitter and receiver message
handling times divided by the single message at a time, assuming the transmitter and receiver have
identical distributions with identical squared coefficients of variation.

-- --

12 PERFORMANCE ANALYSIS PRIMER CHAPTER 9

Figure 9.6.Mean Throughput Gain of Double vs Single Buffering

When the speed of the transmitter and receiver are roughly equal, and the squared coefficient of
variation is close to zero, then the gain approaches fifty per cent. When the speeds of the transmitter
and receiver are mismatched by a factor of two or more, or the fluctuations become significant (squared
coefficient of variation greater than one), or both, the gain is roughly ten per cent or less.

9.4 Resource Allocation Policy

At each arrival epoch and each completion epoch, a decision must be made for which task(s) are
processed. What are some of the means for resolving contention for a processor?

• At each arrival epoch, we could use the arrival time as a priority index. The smaller the index, the
higher the priority leads to the policy of service in order of arrival, or first come, first served.

• At each arrival epoch, we could use the arrival time as a priority index, but now the larger the index
the higher the priority! If we decide that we will execute jobs to completion once they begin to
execute, i.e., to execute nonpreemptively, then our work discipline is service in reverse order of
arrival, last come, first serve, nonpreemptive. If we decide that we will make scheduling decisions at
job arrival instants, i.e., to execute preemptively, then we could choose to preempt a job and either
resume processing at the point of interruption or repeat processing from the beginning, or any of a
number of other points.

• At each arrival epoch, we could use a given label on the job as a priority index. Jobs would be
executed according to priority index; jobs with the same index would be executed in order of arrival.
At least two options are available, preemptive resume scheduling where higher priority jobs interrupt
lower priority jobs upon arrival and execution is resumed at the point of interruption, and
nonpreemptive scheduling where once a job begins to execute it runs to completion.

• At each arrival epoch, we could use both the arrival time and a second quantity which is the desired
execution time window of that job to determine priority: we simply add the arrival time to the
window, and execute jobs according to highest priority. This is called deadline scheduling because
the arrival time plus window is called the deadline for that job.

• At each arrival epoch, we could use the processing time of the job to determine its priority. If we
schedule jobs nonpreemptive, then one such rule is to execute that job with the shortest processing
time at all times; if we schedule jobs preemptive resume, then one such rule is to execute that job
with the shortest remaining processing time at all times.

-- --

CHAPTER 9 PRIORITY SCHEDULING I 13

Many more policies are known, as well as variations on those above. We will not deal with all of these,
but only wish to give the reader some idea of how rich the policy space in fact is. One way of
classifying these policies is by the labels static and dynamic: a static policy depends only upon the
attributes of a job that do not change with time, while a dynamic policy does allow the priority or
urgency of a job to depend on time.

9.5 Measures of Congestion

Broadly speaking, there are two types of congestion measures, those oriented toward the customer and
those oriented toward the system. For each type, we might associate a cost, and then attempt to trade
off among them: as we improve customer oriented measures, system oriented measures degrade, and
vice versa!

Customer oriented criteria deal with the mean throughput rate and the delay statistics for each type of
task. We characterize delay by

• queueing time or flow time or time in system of a task, denoted TQ

• waiting time, the time interval from arrival until a task first receives service, denoted TW

System oriented criteria deal with

• mean number of jobs in execution in the system, defined as

mean number o f executing jobs =
mean interarrival time

mean service time_ ___________________

which follows from Little’s Law

• utilization, defined as

utilization = f raction o f time resource busy

• distribution of number of tasks in the system (at arrival epochs, completion epochs, or arbitrary time
epochs)

This list is not complete. Our goal will be to calculate these different measures given certain arrival
statistics, service time statistics, and policies for arbitrating contention.

9.5.1 Additional Reading

[1] R.B.Cooper, Introduction to Queueing Theory, Chapters 1-3, Macmillan, NY, 1972.

[2] H.Kobayashi, Modeling and Analysis: An Introduction to System Performance Evaluation
Methodology, Chapter 2, 3.1-3.5, Addison-Wesley, Reading, Mass. 1978.

[3] L.Kleinrock, Queueing Systems, Volume I: Theory, Chapters 1-2, Wiley, NY, 1975.

9.6 Approximation of the Inverse of a Laplace Transform

We have already introduced and used the concepts of moment generating function and Laplace
transform. These transforms are often easier to manipulate and work with, rather than working directly
with probability distributions. Furthermore, since we are demanding additional distributional
information concerning the workload, we would like to get more out of this input than simply a mean
value: what fraction of the time does a transaction take longer than T seconds to spend either waiting or
executing? what point in time in system will result in ninety per cent or ninety five per cent or ninety
nine per cent of the transactions being completed? This suggests numerical methods for approximating
the inverse of the moment generating function or Laplace transform.

The properties that we wish to preserve with our numerical methods are

• Nonnegativity--Certain types of approximations result in negative probabilities in exactly the region
of interest, the tail of the distribution, the point at which ninety five per cent of the jobs have been
completely executed; our goal here is to have a nonnegative class of approximations

-- --

14 PERFORMANCE ANALYSIS PRIMER CHAPTER 9

• Monotonicity--Certain types of approximations, such as those based on Fast Fourier Transform
methods, result in oscillations and waves in the region of interest (not surprising, if the
approximation is a sum of sinusoidal waves); we wish to preserve monotonic behavior

In summary, we will approximate a distribution function by another distribution function.

9.6.1 Description of Basic Approximating Algorithm Consider a function g (x) for which the Laplace
transform, denoted g̃ (z), defined by

g̃ (z) =
0
∫
∞

e−zx g (x)dx

exists for all Re (z)>β where β is the abscissa of convergence of the transform. We will assume that
g (x) drops off exponentially fast in x, which will occur with the problems we will encounter.

x →∞
lim g (x)e γx =





 0
constant
∞

γ>β
γ=β
γ<β

We now define a sequence of linear functionals that will approximate g (x), denoted by Ln ,n =0,...,∞,
given by

Ln [g (x)] = gn (x) =
n !

(−1)n
_ _____ z n +1

dz n

d n g̃ (z)_ ______ 
z +

z
n +1_ ____

It can be shown that

n →∞
lim gn (t) = g (t)

The zeroth order approximation is given by

L 0[g (x)] = zg̃ (z)
z =

x
1_ _

while the first order approximation is given by

L 1[g (x)] = −z 2

dz
dg̃ (z)_ _____ 

z =
x
2_ _

The reason for choosing this type of approximation is that the resulting approximation is nonnegative.
Other methods, such as those based on Fast Fourier Transform techniques, do not preserve positivity.
This is not free: if we go from the nth order approximation to the 2nth order approximation, the error
will only halve, while using other methods (such as those based on Fast Fourier Transform techniques)
result in the error being quartered.

9.6.2 An Example To illustrate all of this, we try a probability distribution function of the form:

PROB [T >x] = g (x) = 1⁄2e−x + 1⁄2e−3x

This is convenient and easy to work with analytically, to illustrate our points. The Laplace transform of
this function is given by

g̃ (z) =
0
∫
∞

g (x)e−zx dx = 1⁄2


 z + 1

1_ _____ +
z + 3

1_ _____




The abscissa of convergence here is one, i.e., the minimum of three and one.

The zeroth and first order approximation to g (x) is given by

g 0(x) = 1⁄2


 1+x

1_ ___ +
3x +1

1_ ____




g 1(x) = 1⁄2


 (1⁄2x +1)2

1_ _______ +
(3x ⁄2+1)2

1_ ________




-- --

CHAPTER 9 PRIORITY SCHEDULING I 15

The tables below summarizes numerical studies as a function of approximation parameters:

Table 9.3. α=0_ ______________________________ _____________________________
x g g 50 g 100_ ______________________________ _____________________________
2 0.06891 0.07203 0.07048
4 0.00916 0.01064 0.00990
8 0.00017 0.00030 0.00023

Table 9.4. α=1_ _______________________________ ______________________________
x g g 50,1 g 100,1_ _______________________________ ______________________________
2 0.06891 0.06911 0.06901
4 0.00916 0.00916 0.00916
8 0.00017 0.00017 0.000017

Since the abscissa of convergence of the Laplace transform of g (x) is one, α=1 is the appropriate value
to use here.

The error is halved in going from fifty to one hundred terms, as expected. The effect of α=1 is greater
for larger values of t since the exponential term which is being tracked becomes dominant.

A different type of example is shown in the figure below. The total mean arrival is fixed at 0.5 arrivals
per second, with each arrival requiring a mean service of one second. Jobs are executed in order of
arrival. The final parameter is the second moment of the service time distribution; this allows
fluctuation about the mean.

Figure 9.7.Fraction of Time TQ >X vs X

For example, ninety per cent of the jobs are executed within four seconds of their arrival if there is no
fluctuation in the service time distribution, while for the exponential distribution ninety per cent of the
jobs are executed within six seconds of their arrival.

-- --

16 PERFORMANCE ANALYSIS PRIMER CHAPTER 9

9.6.3 Additional Reading

[1] D.Jagerman, An Inversion Technique for the Laplace Transform with Application to
Approximation, Bell System Technical Journal, 57 (3), 669-710(1978).

9.7 Kendall’s Queueing System Notation

Kendall has introduced a notation for characterizing queueing systems:

ARRIVAL ⁄SERVICE ⁄NUMBER OF SERVERS ⁄CAPACITY

These terms are as follows:

• ARRIVAL --the interarrival time distribution

• SERVICE --the service time distribution

• NUMBER OF SERVERS --the number of processors or servers

• CAPACITY --the total system capacity for tasks (if this is infinite, this term is often omitted)

The following abbreviations are often used to characterize these different interarrival and service time
distributions:

• M --exponential (Markovian) distribution

• D --deterministic or constant distribution

• EK --Erlang-K distribution, a type of gamma distribution

• H --hyperexponential distribution (linear combination of two or more exponentials)

• G --general or arbitrary distribution (as distinct from the above highly structured distributions)

Many other abbreviations have crept into use than just those above. Here are some examples of this
nomenclature:

• M ⁄M ⁄1--a single server queue with exponential interarrival times and exponential service times

• M ⁄G ⁄1--a single server queue with exponential interarrival times and arbitrary or general service
times

• G ⁄EK ⁄3⁄7--a three server queue with capacity seven with arbitrary or general interarrival time
distribution and Erlang-2 service time distribution

This nomenclature is widely used, and we will adopt it from this point onward.

9.7.1 Additional Reading

[1] D.G.Kendall, Some Problems in the Theory of Queues, J.Royal Stat.Society (B), 13, 151-173,
1951.

[2] P.Kuehn, Delay Problems in Communications Systems: Classification of Models and Tables for
Application, IEEE International Conference on Communications, 1, 237-243, Chicago, Illinois,
1977.

9.8 Single Server Queues with Poisson Arrivals and General Service Times

We wish to assess the impact on performance when the arrival statistics are Poisson but the service
times for jobs are arbitrary. This allows us to quantify the impact on delay statistics for jobs that have
different processing time requirements and also different delay goals: often we wish to execute short
jobs that have stringent delay criteria much more quickly than long jobs whose delay criteria are much
more loose, and this class of models allows us to quantify the gain due to scheduling to achieve these
goals. For example, we might be interested in how variable size packets impact congestion in a packet
switching system, so we might choose to fix the mean packet length but allow the distribution or
variance to fluctuate to see how performance is affected.

-- --

CHAPTER 9 PRIORITY SCHEDULING I 17

9.8.1 Mean Value Analysis In what follows, we are interested in mean throughput rate and queueing
and waiting time statistics. Our mean value analysis allows us to plot the mean throughput rate versus
the mean arrival rate, as shown in the figure below.

Figure 9.8.Mean Throughput Rate vs Mean Arrival Rate

As long as the mean arrival rate is less than the maximum rate at which jobs can be serviced, the mean
throughput rate equals the mean arrival rate, i.e., the arrival rate is limiting the mean throughput rate.
On the other hand, the mean delay can be anything from the mean service time on up to infinity, i.e., we
can say nothing about the mean delay at this level of analysis. Different scheduling policies will lead to
different delays.

Once the mean arrival rate exceeds the maximum rate of executing jobs, the single serially reusable
resource is a bottleneck. Furthermore, delays will exceed any threshold, because the resource cannot
keep up with arrivals, i.e., buffers overflow and so forth.

9.8.2 The M/G/1 Queue with Service in Order of Arrival The benchmark against which we will judge
all of our different scheduling policies is the policy of service in order of arrival. We now present one
result from the general theory of the M ⁄G ⁄1 queueing system. The moment generating function of the
waiting time distribution is given by

E [exp (−zTW)] =
z − λ[1 − E [exp (−zTS)]]

z (1 − ρ)_ _____________________

which has mean value given by

E (TW) =
2(1 − ρ)

λE (TS
2)_ _______

E (TS
2) is the second moment of the service time distribution, or, in other words, the first moment of the

waiting time distribution depends on more than just the first moments of the interarrival and service time
distributions. If we adopt the previous definition of squared coefficient of variation, we see

E (TW) =
2(1 − ρ)

λE 2(TS)[1+CS
2]_ _____________

CS
2 =

(mean o f service time distribution)2

variance o f service time distribution________________________________

A different way of expressing the mean waiting time is

-- --

18 PERFORMANCE ANALYSIS PRIMER CHAPTER 9

E (TW) =
1 − ρ

ρ_ _____
2E [TS]

E [TS
2]_ ______

In words, the mean waiting time is the product of two factors, one that depends only on the fraction of
time the server is busy, ρ, and one that depends on the fluctuations in the service times for jobs, which
is the ratio of the second moment over twice the first moment. Under light loading, ρ→0, the mean
waiting time is negligible, while under heavy loading, ρ→1, the mean waiting time is inflated or
stretched by 1⁄(1 − ρ) and can dominate the mean queueing time.

The queueing time (or time in system) moment generating function is given by

E [exp (−zTQ)] = E [exp (−zTW)]E [exp (−zTS)]

which has mean value

E (TQ) = E (TW) + E (TS) =
2(1 − ρ)

λE (TS
2)_ _______ + E (TS)

Several special cases are of interest:

• exponential service, CS
2 = 1:

E (TW) =
1 − ρ

λE 2(TS)_ _______

• deterministic or constant service, CS
2=0:

E (TW) =
2(1 − ρ)

λE 2(TS)_ _______

which is one half the mean waiting time of that of the exponential case

• hyperexponential service, where one might encounter CS
2 = 100 for example:

E (TW) =
2(1 − ρ)

101×λE 2(TS)_ ___________

The random variable N denotes the number of jobs in the system (including the job in execution), and
this has moment generating function given by

E [X N] = E [exp (−TQ [λ(1−X)])]

>From Little’s Law, we recall that the mean number in system equals the mean arrival rate multiplied
by the mean time in system:

E (N) = λ E (TQ)

We have summarized these formulae graphically in the following plots of mean queueing time, waiting
time, and number in system versus the fraction of time the single server is busy, with the squared
coefficient of variation of the service time distribution varied from the deterministic case of zero through
the hypoexponential case of one half, through the exponential case of one, and on into the
hyperexponential case of one and a half, two, and two and a half. In all cases, the mean service time of
a job is one time unit. Two plots are presented, one for utilization varied out to one, and the second for
the more typical loading case where the utilization varies up to one half. These plots are useful for
assessing transients: if the system is normally loaded to thirty to forty per cent utilization, but suddenly
a workload surge raises this to seventy per cent, then the mean values can be see to roughly double or
triple in all cases. This suggests doubling system design margins to allow for these longer times and
greater amount of storage.

The fraction of time the waiting time and queueing time exceed X is plotted in Figure 9.9, assuming an
exponential service time distribution.

This figure shows that under light loading, ρ=0.1, the fraction of time a job waits greater than one
service time is under ten per cent, while as the loading increases, ρ→1, the fraction of time a job waits

-- --

CHAPTER 9 PRIORITY SCHEDULING I 19

Figure 9.9.A.Mean Waiting Time vs Utilization ρ≤1

Figure 9.9.B.Mean Queueing Time vs Utilization ρ≤1

ten or more service times becomes larger and larger.

Finally, the random variable TB denotes the duration of a busy period; the processor is busy, idle, busy,
idle, and so on. The moment generating function for the busy period distribution is given implicitly by

E [exp (−zTB)] = E [exp (−TS (z +λ−λE [exp (−zTB)]))]

and hence the mean duration of a busy period is

E (TB) =
1−λE (TS)

E (TS)_ ________

9.9 The FS/G/1 Queue with Service in Order of Arrival

What if the arrivals are generated from a finite rather than infinite population? Our model is as follows:

• N identical stations attempt to execute jobs; each station is either idle or is active (either waiting to
execute or executing). The idle times for all stations form a sequence of independent identically

-- --

20 PERFORMANCE ANALYSIS PRIMER CHAPTER 9

Figure 9.9.C.Mean Number in System vs Utilization ρ≤1

Figure 9.10.A.Mean Waiting Time vs Utilization ρ≤0.5

distributed exponential random variables with mean idle time 1⁄λ

• the execution times for each station form a sequence of independent identically distributed random
variables, with associated transmission time TS which has an associated moment generating function
γT

S
(z) defined by

E [exp (−zTS)] = γT
S
(z)

• jobs are executed in order of arrival

The mean rate of executing jobs is simply the fraction of time the server is busy executing jobs divided
by the mean time to execute one job. We denote by ρ the server utilization, while E (TS) is the mean
job execution time, and see

mean throughput rate =
E (TS)

ρ_ _____

-- --

CHAPTER 9 PRIORITY SCHEDULING I 21

Figure 9.10.B.Mean Queueing Time vs Utilization ρ≤0.5

Figure 9.10.C.Mean Number in System vs Utilization ρ≤0.5

Since each station is either idle or active, the mean cycle time for one station to go from idle to active
and back to idle is simply

mean station cycle time = E (Tidle) + E (Tdelay)

and by definition the mean throughput rate is the number of stations divided by the mean cycle time per
station:

mean throughput rate =
E (Tidle) + E (Tdelay)

N_ ________________

Equating these two expressions, we see

E (Tdelay) =
ρ

N E (TS)_ _______ − E (Tidle)

The mean utilization is given by

-- --

22 PERFORMANCE ANALYSIS PRIMER CHAPTER 9

Figure 9.11.A.Fraction of Time TQ >X versus X

Figure 9.11.B.Fraction of Time TW >X versus X

ρ =

1 +
J =1
Σ
N 


 J

N 

 K =0
Π
J −1

[E [exp (λ(K TS))]−1]

J =0
Σ

N −1 

 J

N −1 

 K =0
Π

J

[E [exp (λ(K TS))]−1]
_ _______________________________

Note that we are computing the moment generating function of the job execution time distribution at
evenly spaced points. This means that the mean delay depends on more than just the mean message
length.

EXERCISE: Compute the mean delay versus N for Tidle =1 and E (TS)=0.3, for exponential and
deterministic service time distributions, for a finite source model. Compare these calculations with those
from an infinite source model with arrival rate λ=N ⁄Tidle .

-- --

CHAPTER 9 PRIORITY SCHEDULING I 23

Figure 9.11.C.Fraction of Time N >K versus K

9.10 M/G/1 Last Come, First Serve

In this section we examine a different policy for administering a single serially reusable resource: service
in reverse order of arrival. Two cases are possible here:

• Upon arrival, the job in service is preempted and the arrival will seize the resource

• Upon arrival, the job in service is not preempted but finishes execution, and the latest arrival then
seizes the resource and is completely executed

For the case of preemption, we will only examine the case where service is resumed for the preempted
task(s) at the point of interruption. A different case might be to start execution anew or afresh for a
preempted job, which we will not deal with here.

Why deal with this policy? Many computer systems employ a hardware device called a stack which
conceptually is a single serially reusable resource that operates according to a policy of the last arrival is
served first.

9.10.1 Nonpreemptive Last Come, First Serve When a job arrives, it will either execute immediately
because the system is idle, or it must wait, because one job is in execution. If the job must wait, other
jobs may arrive after it but before the first job finished execution, and all of these jobs will be executed
before the job of interest is executed. The time in system is given by

TQ =


 T̃S with probability ρ

TS with probability 1 − ρ

The moment generating function is given by

E [exp (−zTQ)] = (1 − ρ)E [exp (−zTS)] + ρE [exp (−zT̃S)]

If the system is busy upon arrival, a job must wait until the current job in execution is finished, which
we denote by T̂S

E [exp (−zT̂S)] =
zE (TS)

1−E [exp (−zTS)]______________

If we stretch T̂S to account for arrivals after the job in question, we find T̃S :

E [exp (−zT̃S)] = E [exp (−yT̂S)]

-- --

24 PERFORMANCE ANALYSIS PRIMER CHAPTER 9

y = z + λ − λE [exp (−zTB)]

E [exp (−zTB)] = E [exp ((z + λ − λE [exp (−zTB)]TS)]

The mean queueing time is given by

E (TQ) = E (TS) +
2(1 − ρ)

λE (TS
2)_ _______

This is identical to that for service in order of arrival. The reason is that no preemption is allowed, so
when a job completes, another starts (the last one or the first one), and hence the mean number of jobs
in the system either waiting to execute or in execution is the same for either policy. Little’s Law tells
us that the mean queueing time must be the same for the same mean arrival rate.

9.10.2 Preemptive Resume Last Come, First Serve If we allow preemptive resume service, then as soon
as a job arrives it begins execution, irrespective of whether the processor or server is busy. However,
this job can be preempted by later arrivals. Hence, we see

E [exp (−zTQ)] = E [exp (−yTS)]

y = z + λ − λE [exp (−zTB)]

E [exp (−zTB)] = E [exp (−(z + λ − λE (exp (−zTB))TS)]

The mean queueing time is given by

E (TQ) =
1 − ρ
E (TS)_ _____

This is the same form as the mean queueing time for an M/M/1 system with service in order of arrival,
except that here we have arbitrary service and preemptive resume service in reverse order of arrival. By
switching the scheduling policy, the mean value behaves as if the service time were exponentially
distributed.

9.10.3 Example The distribution of number of clock cycles per assembly language instruction is
measured and found to be adequately modeled by an constant distribution with a mean of two cycles per
instruction. We wish to compare the impact on performance using a stack with either nonpreemptive or
preemptive resume arbitration versus a fifo or first in, first out buffer discipline. The table below
summarizes the mean number of clock cycles per instruction (including both execution and waiting):

Table 9.5.Mean Execution Time E (TQ)_ ___ __
FIFO LCFS

Utilization Policy Nonpreemptive Preemptive Resume_ ___ __
0.1 2.1 cycles 2.1 cycles 2.2 cycles
0.5 3.0 cycles 3.0 cycles 4.0 cycles
0.9 11.0 cycles 11.0 cycles 20.0 cycles


















The impact due to fluctuations for preemptive resume versus nonpreemptive scheduling is severe as the
load grows.

BONUS: What is the variance about the mean for each of these policies?

9.10.4 Graphical Comparisons For the special case of deterministic or constant service time, we can
explicitly calculate the exact distribution of TQ . This is plotted in Figure 9.12 assuming Poisson arrivals
with mean arrival rate of one job every two seconds, while the mean service time for each job is one
second, so the processor is fifty per cent utilized. In addition, we have plotted the zeroth and first order
approximations to the exact solution, plus the modified approximations assuming the fraction of time
TQ >X drops off exponentially as exp−αX . The approximation g 0,α(X) is within ten per cent of the exact
solution, while g 1,α(X) is within five per cent of the exact solution.

By way of comparison, if we change the service time distribution from constant to exponential, and keep
everything else the same, then the results are plotted in Figure 9.13. For example, for the constant

-- --

CHAPTER 9 PRIORITY SCHEDULING I 25

Figure 9.12.Last Come First Served Preemptive Resume/Constant Service

Figure 9.13.Last Come First Served Preemptive Resume/Exponential Service

service time distribution case, ninety nine per cent of the jobs are serviced within ten seconds while the
corresponding number for exponential service is seventeen seconds.

Finally, what if we vary the policy, but fix the Poisson arrival rate at one job every two seconds, with
each job requiring a constant one second of service. Figure 9.14 summarizes numerical approximations:

Ninety per cent of the jobs are executed within four seconds for first in first out service, while this
grows to six seconds for nonpreemptive last in first out service, and to seven seconds for preemptive
resume last in first out service. The corresponding results for exponential service is shown as follows:
Ninety per cent of the jobs are executed within six seconds for first in first out service, while this grows

-- --

26 PERFORMANCE ANALYSIS PRIMER CHAPTER 9

Figure 9.14.A.Poisson Arrivals/Constant Service/Different Policies

Figure 9.14.B.Poisson Arrivals/Exponential Service/Different Policies

to nine seconds for nonpreemptive last in first out service, and to twelve seconds for preemptive resume
last in first out service. Note that this is significantly greater than the constant service case.

9.11 The M/G/1 Queue with Processor Intervisits

As a useful variation on the above example, we consider the following system

• Arrivals obey simple Poisson statistics with mean arrival rate λ

• The service times of jobs are independent identically distributed random variables with TS denoting
the processing time random variable

-- --

CHAPTER 9 PRIORITY SCHEDULING I 27

• Jobs are serviced in order of arrival

• The buffer for work has infinite capacity

• The processor executes all jobs until the system is completely empty of work, and then leaves for a
random time interval called an intervisit time; the sequence of intervisit times are independent
identically distributed random variables with V denoting the intervisit time random variable. If the
processor arrives from an intervisit to find the system empty, it immediately leaves to begin another
intervisit time.

In many digital systems, the processor is multiplexed amongst a number of jobs, and hence is not
available all the time to handle one job type. >From the point of view of any one job, the processor is
busy handling its type of work, and then is absent (doing work elsewhere), so this is often a much more
realistic model than the model of the previous section (remember: always check your particular
application to see what assumptions are valid!)..

Let’s examine a special case of this to gain insight: TS ≡0. This situation is not uncommon in digital
systems: often no one job requires a great amount of service, but the processor must handle so many
different types of jobs that the time it is absent (doing jobs elsewhere) is much much longer than the
time it is present handling any one job type. If the mean time between intervisits is denoted by E (V),
then many people would claim that the mean waiting time is simply one half the duration of a mean
intervisit time interval, because on the average a job arrives half way through a mean intervisit interval.
This is false! In fact, the mean waiting time and also the mean queueing time (since the service time is
zero) is given by

E (TQ) = E (TW) + [E (TS)=0] =
2E (V)
E (V 2)______ = 1⁄2E (V)


1 + CV

2


CV
2 = squared coe f f icient o f variation o f intervisit =

E 2(V)
var (V)_ ______

Only if the intervisit times are constant will the mean waiting time be one half of a mean intervisit time:
if there are severe fluctuations about the mean, such as with an exponential distribution where the
squared coefficient of variation is one, then the mean waiting and queueing time will lengthen (for the
exponential distribution the mean waiting and queueing time will be twice that of the constant
distribution).

This is a very subtle phenomenon: in words, if there is a severe fluctuation about the mean, the impact
on congestion will be much worse than might be expected: work will continue to arrive, and the system
will take longer and longer to process this work by passing it off to other queues (where it is absent
most of the time anyway), compounding the process in a regenerative or positive feedback manner.
Some refer to this phenomenon as length biasing: arrivals are much more likely to occur during long
intervisit time intervals than during short intervisit time intervals, and so on.

How do we show this? Let us denote by tK the arrival instants of jobs, K =1,2,.... The probability that
the waiting time at some time instant say t is less than or equal to some threshold say X is given by

PROB [TW (t) ≤ X] =
K =1
Σ
∞

PROB [t <tK ≤t + X <tK +1]

=
K =1
Σ
∞

t
∫

t +X

[1−GV (t +X −u)]dGA [tK ≤u]

In words, at least one arrival must occur during (t ,t +X] and this event can occur in several mutually
exclusive ways, since the last arrival in the time interval (t ,t +X] may be the first, the second, the third,
and so on. The mean number of arrivals during the time interval (0,t] is equal to

E [TA (0,t)] =
K =1
Σ
∞

PROB [tK ≤t] =
E (V)

t_____

Using this, we see

-- --

28 PERFORMANCE ANALYSIS PRIMER CHAPTER 9

PROB [TW (t)≤X] =
E (V)

1_____
t
∫

t +X

[1−GV (t +X −u)]du =
E (V)

1_____
0
∫
X

[1−GV (y)]dy

which is independent of t . The moment generating function of this distribution is given by

E [exp (−zTQ)] =
E (V)

1−E [exp (−zV)]_ _____________

If we use the earlier identity, we can determine all moments of integral order.

What about if TS ≠0? Now we see that the mean waiting time is simply the sum of an intervisit time
interval plus the time required to complete the backlog of work that is present when a given arrival
occurs, the virtual workload described earlier:

TW = V + W → E [exp (−zTW)] = E [exp (−zV)]E [exp (−zW)]

The queueing time is the sum of the waiting time plus the service time:

TQ = TV + TW + TS

→ E [exp (−zTQ)] = E [exp (−zTV)]E [exp (−zTW)]E [exp (−zTS)]

The mean waiting time is given by

E (TW) =
2E 2(V)
E (V 2)_ ______ +



 2(1 − λE (TS))

λE (TS
2)_ ____________ =

1 − λE (TS)

λE (TS)_ __________
2E [TS]

E [TS
2]_ ______





We have deliberately rewritten the mean waiting time as the product of a term dependent only on mean
utilization λE (TS)≡ρ and the randomized mean service time. The mean queueing time is given by

E (TQ) = E (TW) + E (TS)

As an example of this phenomenon, let’s look at the Laplace transform of the waiting time distribution
of an M/G/1 queueing system with service in order of arrival:

E [exp (−zTW)] =
z + λ − λE [exp (−zTS)]

(1 − ρ)z_ ____________________

= (1 − ρ)
K =0
Σ
∞

ρK E K [exp (−zT̃S)]

E [exp (−zT̃S)] =
zE (TS)

1 − E [exp (−zTS)]_ _______________

For light loading, ρ< <1, we see

E (TW) = (1 − ρ) + ρE (T̃S) + . . .

E (T̃S) =
2E (TS)

E (TS
2)_ ______

In words, this says that on the average, under light loading, an arrival will not wait at all a fraction of
the time 1 − ρ, and will wait for one job a fraction of the time ρ with the waiting time being E (T̃S), and
other terms are negligible (proportional to ρK ,K >1).

9.11.1 Additional Reading

[1] L.Takacs, Introduction to the Theory of Queues, pp.10-11, Oxford University Press, New
York, 1962.

9.12 Synchronous Data Link Control

A widely used data link control procedure is called Synchronous Data Link Control (SDLC). and its
international standard cousin (HDLC). Compared with previous widely used data link control
procedures, it offers a number of advantages:

-- --

CHAPTER 9 PRIORITY SCHEDULING I 29

• It is insensitive to the actual character set being used, because it deals with bit streams, and knows
nothing about character sets

• The encoding and buffering is simplified because it is done on the fly, as bits arrive

• A very high link efficiency is achievable compared with other widely used approaches

This does not come for free. Its’ disadvantages include

• Variable lengths of messages or frames, which leads to complicated buffering strategies compared to
earlier approaches

• The overhead is dependent on the pattern of ones and zeros in the data

• Certain types of single bit errors are undetectable; how often these errors occur can determine how
suitable this is in a given application

How does SDLC function? Data arrives at a link controller, is encoded with appropriate address, control
field, and error detecting and/or correcting cylic redundancy checking (CRC) coding, and then
transmitted over a link. Each frame begins and ends with a unique bit pattern called a flag that delimits
frames from one another.

Figure 9.15.SDLC Frame Format

Contention for the link is arbitrated using a nonpreemptive priority policy: data has highest priority,
while at the lower priority level a flag is always present to be sent. If there is no data, a flag is
transmitted. At the end of each flag transmission, the controller checks to see if any data is ready to be
transmitted, and if so, begins transmission; otherwise, a flag is transmitted, and the process repeats itself.

Figure 9.16.Priority Arbitration Queueing Network Block Diagram

Flags delimit the start and finish of data transmission: a flag is inserted at the beginning and appended to
the end of every data transmission. The flag consists of R+2 bits: a leading zero bit, R+1 successive
one bits, and a trailing zero bit. It is mandatory that the flag pattern not appear in the middle of the
data. Special circuitry in the link encoder monitors the total data transmission: if a zero is followed by
R successive ones, the special circuitry at the transmitter inserts a zero immediately after the R
successive ones, i.e., it stuffs a bit into the data, and hence is called a bit stuffer. At the receiver all
stuffed bits are removed by an analogous process. Figure 9.17 illustrates a thirteen bit data stream with

-- --

30 PERFORMANCE ANALYSIS PRIMER CHAPTER 9

a four bit flag (a leading zero, two ones, and a zero) that leads to an encoded stream of nineteen bits:
two flags of four bits each, thirteen data bits, and two inserted or stuffed bits.

Figure 9.17.Illustrative Bit Stuffing Example: D=13, R=2

In the following example, a single bit channel error in bit position five results in the received frame
being a flag, which would be undetected by the controller described here (but presumably would be
caught by other protocol levels).

Figure 9.18.Illustrative Spurious Flag from Single Bit Error

There are D data bits per message, with a mean of E (D) data bits and a variance of var (D) bits 2 per
message. There are A =8 address bits, C =8 control bits, and CRC =16 error coding bits associated with
each message. The total number of bits to be encoding by bit stuffing is B =D +32 bits. Figure 9.19
summarizes both the frame encoding, bit stuffing encoding, and link arbitration.

If P and Q =1−P denote the fraction of D bits that are ones and zeros, respectively, then the mean and
variance of the number of data bits between inserted or stuffed bits is

mean number o f bits between bit stu f f s ∼∼ µ
B_ _

-- --

CHAPTER 9 PRIORITY SCHEDULING I 31

Figure 9.19.SDLC Link Controller Block Diagram

variance o f number o f bits between bit stu f f s ∼∼ µ
B_ _

µ2

σ2
_ __ +



 µ

B_ _




2

var (D)

µ =
Q P R

1 − P R
_ ______ σ2 =

(Q P 2)2

1_ _______ −
q P R

2R +1_ _____ −
Q 2

P___

SDLC employs a one byte flag: R =5 with the flag consisting of a zero, six ones, and a zero. For
P =Q =1⁄2 , i.e., equal fractions of ones and zeros, the mean number of bits that are transmitted before a
bit stuffing occurs is sixty two bits, µ=62 bits . Put differently, the mean overhead is one bit out of
every sixty three bits, or 1.5873 %. For P =2⁄3, i.e., two thirds of the bits are ones, one bit is stuffed on
the average every 19.78 bits, for a bit stuffing overhead of 4.812%; for P =1⁄3, i.e., one third of the bits
are ones, one bit is stuffed on the average every 363 bits, resulting in bit stuffing overhead of 0.274%.
This makes it clear that the bit stuffing overhead incurred by this type of encoding uses relatively few
bits to achieve a transparent encoding of a bit stream: note that there are no special control characters
with this encoding strategy, unlike other approaches such as Binary Synchronous Communications.
Furthermore, the overhead is relatively insensitive to the proportion of ones and zeros in a frame.

BONUS: What is the overhead per frame for a four bit flag, R =1 as a function of 0<P <1? Repeat for
a two byte flag, R =13.

A frame consists of a leading flag, an address field, a control field, a data field, a CRC field, and a
trailing flag. The mean number of bits per frame is given by

mean number transmitted bits ⁄f rame = 2(R +3) + B



1 +

µ
1_ _





The first term is due to the two flags, the term B is due to the control and data bits, and the final term
B ⁄µ is due to bit insertions among the control and data bits. The variance of the number of bits in a
frame is given by

variance (number bits transmitted ⁄f rame) = σf rame
2 =

µ
B_ _

µ2

σ2
_ __ +

µ2

var (D)_ ______

The maximum rate at which the link can transmit the frame is given by

λmax =
mean number bits ⁄f rame
link data rate (bits ⁄sec)_ _____________________

The table below summarizes the mean and variance of the number of bits per frame transmitted
(including control bits and inserted or stuffed bits) assuming equal fractions of ones and zeroes in the
data bits, with parameters being the mean number of data bits per frame, and the squared coefficient of
the number of data bits per frame (denoted Cdata

2):

-- --

32 PERFORMANCE ANALYSIS PRIMER CHAPTER 9

Table 9.6.Bits Transmitted/Frame Statistics(Rounded up to Nearest Integer)_ ___ __
Mean Data Mean Bits σf rame

Bits/Frame Transmitted/Frame Cdata
2=0 Cdata

2=1_ ___ __
500 589 3 9
1000 1097 5 13
2000 2113 6 33














This numerical summary shows that this encoding method incurs a small amount of overhead beyond
the needed seventy two bits per frame for flags, address and control fields, and CRC coding, and that the
fluctuations about the mean measured in units of standard deviations are relatively modest.

If the message arrival statistics to the controller can be adequately modelled by a Poisson process with
rate λ, then the mean delay, including bit stuffing and transmission, from when the first bit of the
message arrives until the last bit is transmitted is the sum of three terms:

• a term accounting for the delay in waiting for the last flag to be transmitted, and since each flag
consists of a fixed number of R +3 bits each frame will be delayed on the average by 1⁄2(R +3) bit
transmission times

• a term accounting for the delay while the backlog due to previously arrived frames is transmitted

• a term due to transmitting the frame

Combining all this, we find:

mean f rame delay = E [TQ]= E [Tf rame] + 1⁄2Tf lag

+





 ∞

1 − λE [Tf rame]

λE [Tf rame]_____________
2(mean number of bits ⁄f rame)2

variance (number of bits ⁄f rame_ ___________________________

λ≥λmax

λ<λmax

E [Tf rame] =
link data rate (bits ⁄sec)

mean number of bits ⁄f rame_ _______________________ Tf lag =
link data rate (bits ⁄sec)

R +3 bits ⁄f lag_ ____________________

EXERCISE: Plot the mean frame delay versus message arrival rate for 500, 1000, and 2000 data bits
per frame with a four, eight, and sixteen bit flag, assuming P =1⁄2 and P =2⁄3.

9.12.1 Additional Reading

[1] R.J.Camrass, R.G.Gallager, Encoding Message Lengths for Data Transmission, IEEE
Transactions on Information Theory, 24 (4), 495-496 (1978).

[2] R.L.Donnan, R.Kersey, Synchronous Data Link Control: A Perspective, IBM Systems Journal, 13
(2), 140-161, 1974.

[3] J.S.Ma, On the Impact of HDLC Zero Insertion and Deletion on Link Utilization and Reliability,
IEEE Transactions on Communications, 30 (2), 375-381 (1982).

	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10

