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CHAPTER 6: JACKSON NETWORK ANALYSIS

Our goal in this section is to extend the previous performance analysis (based only on mean execution
times) to include both fluctuations about mean values as well as ordering constraints or correlations
between different steps and different jobs. This demands additional assumptions concerning the job
arrival and execution time statistics, as well as the scheduling policy. We focus on a class of Markovian
mathematical models where knowing only the present or current state of the system, not the entire
history of the system operations, its future statistical behavior is determined. These are called Jackson
queueing networks in honor of the pioneer researcher who first studied their behavior.

If all possible system states and the associated state transition rates are exhaustively enumerated,
oftentimes the number of states in such models explodes (into tens of trillions for straightforward
applications such as a single terminal word processor system, and into far far greater numbers for more
sophisticated applications such as airline reservation systems with hundreds of terminals, tens of
communication lines, and upwards of one hundred disk spindles) to far exceed the storage and
processing capabilities of the most powerful supercomputers (both available and envisioned!): it can be
virtually impossible to extract any analytically tractable formulae or numerical approximations of
different measures of performance. The only credible avenues for quantifying system performance for
many people for years appeared to be simulation studies or building a prototype (which is another form
of simulation, using the actual system but simulating the load).

In a series of seminal papers, Jackson made the fundamental observation that for a wide class of
Markovian models, the distribution of the number of jobs in each step queued or in service at each node
in a network could be written as the product of functions, with each function depending only on the
workload for that node. This arises in many other areas of mathematics, where the solution to a
multivariate set of equations is assumed to be the product of functions depending only on one variable, a
so called separation of variables decomposition. It is also in the spirit of Fourier analysis, where an
arbitrary function is approximated as the sum of a number of elementary functions. Because of this
property, the long term time averaged distribution for the number of jobs queued or in execution in these
Jackson models are often said to obey a product form distribution. Just (or more) important than this
analysis is the ready availability of efficient and easy to use software packages that numerically
approximate a variety of performance measures for these classes of models, and handle both input and
output in a flexible manner, allowing different design choices and sensitivity analyses to be quickly
carried out*. There is currently a great deal of research activity into both extending this class of models
and extending the range of numerical approximations.

6.1 Overview

First we describe the ingredients in a Jackson queueing network model and then we develop the outline
of the exposition.

6.1.1 Ingredients The inputs for this type of analysis are a description of the total mean arrival rate for
each job, the total mean time each job uses each resource with only one resource used at a time, and a
description of how contention for each resource is resolved. The output of this type of analysis is the
fraction of time a given number of jobs are queued or in execution at each resource. This in turn can be
manipulated to determine the utilization of each resource, and the mean throughput rate and mean

__________________

* Efficiency: in one study conducted by the authors for an online transaction processing system with five hundred terminals, ten
processors each with two disk spindles, and thirty data links, the entire model (including a graphics library), occupied less than
ninety thousand bytes of static main memory, and could produce graphic output for seven hundred and twenty different
parameter choices using less than ten seconds of processor time (for both numerical calculations and graphical output) running
in a GCOS environment on a H6000.



-- --

2 PERFORMANCE ANALYSIS PRIMER CHAPTER 6

queueing time (both waiting and execution time) for each job using the techniques developed in the
earlier sections. The scheduling policies analyzed here demand that a processor must execute a job if a
job is ready for execution: these are called work conserving policies because the total backlog of work
is independent of the precise details of the scheduling policy at any instant of time. Two examples of
work conserving policies are (i)servicing jobs in order of arrival, or (ii)multiplexing a single processor at
a high speed among J jobs so that each job receives 1⁄Jth the total available processor cycles. The
mean value analysis inputs are a subset of these inputs, so we expect the Jackson network outputs to
refine the mean value analysis outputs. An example of a policy that does not conserve work is found in
a system that executes two types of jobs, one with one second execution times and the other with one
hour execution times; if it frequently occurs that ten seconds after we begin execution of a one hour job,
a short one second job may arrive, then we might wait for eleven seconds after a long job arrives before
starting execution, holding the processor idle, to allow short jobs not to be delayed at the expense of
long jobs.

6.1.2 Program First we analyze a single parallel group of processors fed from a single queue, for a
wide variety of parameter choices. Second we examine an arbitrary network of serially reusable
resources where each job migrates from node to node, entering and leaving at different nodes. As a
special case, we examine a pipeline of nodes or stages, each with a single processor. All of this is done
for one type of job, and then extended to multiple types of jobs. These basic cases will form the
foundations for a series of case studies and examples in this and subsequent chapters.

Ideas appear here that have not been encountered before. All of these new ideas are expounded for the
simplest case, a single parallel group of processors: jobs can be either delayed (stored in a buffer) until
a processor is available, or rejected if no storage space is available. Queueing or buffering jobs might
be chosen if it were highly likely that a processor would become available an acceptable time after a job
arrival; jobs would be blocked on arrival if this were not the case. A different way of thinking about
this is that jobs are blocked or delayed for a finite time from being serviced; in the limit where jobs are
blocked or delayed forever, the jobs are lost, i.e., never serviced. In practice, systems are designed so
that in normal operation blocking or delay or defection is rare. Many communication systems adopt
combinations of loss and delay mechanisms. We choose to first analyze delay alone and then loss alone
before attempting to analyze systems combining both these mechanisms.

Finally, special asymptotic limiting cases give us analytic insight into system performance. One such
case involves allowing the number of active terminals attached to a computer system to become larger
and larger, while the total workload stays constant. As the total number of terminals grows, each
terminal contributes less and less to the workload, but the total workload is constant. Another such case
involves allowing the number of terminals and processors to become larger and larger, while the ratio of
terminals and processors stays fixed. Each terminal contributes the same workload, so as the total
number of terminals and processors grows, the total workload grows.

6.1.3 Additional Reading

[1] J.R.Jackson, Networks of Waiting Lines, Operations Research, 5, 518-521 (1957).

[2] J.R.Jackson, Jobshop-Like Queueing Systems, Management Science, 10 (1),131-142(1963).

[3] F.P.Kelly, Networks of Queues, Advances in Applied Probability, 8, 416-432 (1976).

[4] F.P.Kelly, Reversibility and Stochastic Networks, Wiley, Chichester, 1979.

6.2 A Single Node with P Parallel Processors

Clerks at terminals submit one type of job to a computer system that consists of P processors, then wait
for a response before submitting the next job. The processors are fed jobs from a single queue. Jobs
are stored in a buffer of capacity M jobs if no processor is available. If a job is submitted with all
buffers filled, the job is rejected, and the clerk begins the entire process over again. The mean time
spent by a clerk reading and thinking and typing is denoted by Tthink . The mean processor execution
time per job is denoted by Tproc . Our goal is to calculate the mean throughput rate λ and the mean
delay (waiting plus execution time) that a clerk experiences which we will call the queueing time or flow
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Figure 6.1.System Block Diagram

time of a job, denoted by E (TQ ).

6.2.1 Functional Operation In order to describe the operation of the system, we need to describe the
workload generated by each clerk and the policy for arbitrating contention for shared resources.

The workload is handled first. There are C clerks. There are at least as many clerks as buffer space,
C ≥M . Each clerk spends a mean amount of time Tthink reading, thinking, and typing and then submits a
job for execution. The sequence of times each clerk spends reading and thinking and typing are
assumed to be independent identically distributed random variables. Once a job is submitted to the
system, if storage space is available, the job is accepted for service; otherwise the job is rejected and
returns to the clerk who starts the entire cycle over again. The system is capable of storing a maximum
of M jobs. If a job is accepted and there is an idle processor available, that job begins execution
immediately. The processor execution times are independent identically distributed random variables
with mean Tproc .

Next, the arbitration or scheduling policy is described. There are two queues here, one for the clerks
and one for the processors. Once a processor finishes executing a job, an idle clerk will enter into the
thinking state; since there is one clerk per job, there will never be any jobs waiting in the clerk queue
for an idle clerk. The rate at which clerks submit jobs to the system depends upon the number of clerks
reading and thinking and typing. Let Φclerk (Jclerk ) denote the number of seconds of work done in one
second of time. For example, if Φclerk (Jclerk )=Jclerk , then if Jclerk =0 then no work is done, while if
Jclerk =1 then one second of work is done in one second, and if Jclerk =2 then two seconds of work are
done in one second, given there are Jclerk clerks in the thinking state. More generally, we assume that
this function is positive and monotonically increasing with Jclerk , and equals zero if Jclerk =0. We stress
that Φclerk (Jclerk ) is dimensionless or without any units. The instantaneous (i.e., the instant at which
there are Jclerk clerks thinking) rate at which jobs are submitted by clerks is given by

instantaneous job submittal rate =
Tthink

Φclerk (Jclerk )_ __________ Jclerk =0,1,...,C

For example, if we model the clerk behavior by

Φclerk (Jclerk ) = min (Jclerk ,C ) = Jclerk Jclerk =0,1,...,C

note that no jobs will be submitted if Jclerk =0, i.e., if all clerks are waiting for a response. At the other
extreme, if all clerks are reading, thinking and typing, this will be the maximum rate of submitting jobs.
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Figure 6.2.Queueing Network Block Diagram

The processor queue operates as follows: if no processor is available, the job is inserted into a buffer,
with the lower the index the closer to the head of the queue. We assume the number of buffers is
greater than or equal to the number of processors, M ≥P . If there are Jproc jobs in the queue just prior
to arrival of a job, the new job is inserted into the queue in position I with probability δ(I ,Jproc +1). If a
job is inserted in position I , all other jobs are moved to one index higher position. The rate at which all
processors execute jobs depends upon the number of jobs in the queue. Let Φproc (Jproc ) denote the
amount of work done, measured in seconds, during one second of time. For example, if
Φproc (Jproc ) = min [Jproc ,P =2], then for Jproc =0 no work is done, for Jproc =1 one second of work is done
in one second, for Jproc =2 two seconds of work are done in one second, and for Jproc >2 two seconds of
work are done in one second. The instantaneous rate at which the processor subsystem is executing jobs
is given by

processor job execution rate =
Tproc

Φproc (Jproc )_ __________

For example, we might choose

Φproc (Jproc ) = min [Jproc ,P ] Jproc =0,...,M

In words, if there are P or fewer jobs present, then each processor can execute one job at a rate of one
job every Tproc seconds, while if there are more jobs than processors, then all processors are completely
busy executing jobs.

The rate at which job I is executed in the queue when there are Jproc jobs total either in execution or
waiting is given by γ(I ,Jproc )Φproc (Jproc )≤1, where

I =1
Σ
J

K

γproc (I ,Jproc ) = 1

We stress that γ(I ,Jproc ) is measured in seconds of service received during one second of actual time.

>From this point on, we assume either of two conditions hold governing the operation of the processor
system:

• The processor service time obeys an exponential distribution

f raction of time job executed in X seconds = 1 − exp [−X ⁄Tproc ]

• The service time distribution is arbitrary, and the fraction of time that a job is inserted into position
I with Jproc jobs in the queue equals the rate at which that job will receive service:
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γ(I ,Jproc ) = δ(I ,Jproc )

One example of a scheduling rule that meets these conditions is processor sharing, where all jobs are
multiplexed by the processor so quickly that effectively each receives a fraction of processor capacity
proportional to the number of jobs at the processor queue. If Jproc jobs are present, each receives 1⁄Jproc

the fraction of available processing capacity:

γ(I ,Jproc ) = δ(I ,Jproc ) =
Jproc

1_ ____

A second example is processor scheduling such that the last arrival is the first to receive service, with
subsequent later arrivals preempting the job currently in service, and service is resumed (eventually, after
all later arrivals are completely executed) at the point of interruption:

γ(I ,Jproc ) =


 0 otherwise

1 I =Jproc

A third example is where there is always a processor available to execute a job, so

γ(I ,Jproc ) = δ(I ,Jproc ) = 1

so that when a job arrives it immediately begins execution.

6.2.2 State Space What is the state of the system? The complete state space would involve specifying
the state of each clerk (busy with a transaction or waiting for the system to respond), and the state of
each job in the system (where it is in the queue and how much service it had received). Suppose we
only keep track of the total number of clerks busy with jobs, and the total number of jobs in the
system? The system state at any instant is given by the pair J_ =(Jclerk ,Jproc ) where Jclerk =0,...,C denotes
the number of clerks with jobs, i.e., reading, thinking and typing, and Jproc =0,...,M denotes the number
of jobs in the system, both queued and in execution. A key constraint is that each clerk is either busy
reading, thinking and typing, or waiting for a response; put differently, there are always C jobs
somewhere:

Jclerk + Jproc = C

The state space, the set of admissible pairs J_ is denoted by Ω:

Ω = {J_ =(Jclerk ,Jproc ) Jclerk =0,...,C ;Jproc =0,...,M ;Jclerk +Jproc =C }

In describing the operation of the system, we might measure the following items:

• The times at which jobs are submitted

• Whether a job is accepted or rejected because storage is not available

• The time an accepted job waits without being executed in the system

• The total time an accepted job spends in the system

For each of these, we could summarize the measurements with averages, carried out over a sufficiently
long time interval such that the mean values stabilized.

6.2.3 Goals What customer oriented criteria are we interested in here?

• the mean waiting time E (TW ) and mean queueing time E (TQ )

• the fraction of time a task waits at all PROB [TW =0]

• the fraction of time a task waits greater than X time units PROB [TW >X ]

• the fraction of time a task has a queueing time greater than X time units PROB [TQ >X ]

What system oriented criteria are of interest?

• the mean throughput rate of executing jobs
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• the mean number of busy processors

• the fraction of time each processor is busy, its utilization

• the fraction of time more than one processor and more than one clerk are busy

We want to operate in states with acceptable levels of customer and system oriented criteria. States with
acceptable customer oriented criteria may result in unacceptable system oriented criteria: delays may be
acceptable at the expense of idle processors and low throughput, while high utilization of each available
processor and high throughput rates may result in long queues and long delays.

6.2.4 Mean Value Analysis The first level of analysis is based on mean value inputs, with the outputs
being mean throughput rate and mean delay. The fraction of attempts that are blocked or rejected
because the available storage is filled is denoted by B . The mean throughput rate is

λo f f ered =
1 − B

λaccepted_______ λo f f ered (1 − B ) = λaccepted

On the other hand, each clerk spends a mean amount of time reading and thinking and typing, Tthink , and
then submits a job; if the job is accepted, i.e., the fraction of attempts that are accepted is 1−B , then the
job will spend a mean time E (TQ ) inside the system either waiting or in execution, and then the cycle
starts over again. Since there are C clerks, the mean throughput rate is given by

λaccepted =
(1 − B )E (TQ ) + Tthink

C_ __________________

In order to determine mean throughput rate and mean delay, we need to determine the fraction of
requests that are blocked. If there is no blocking, M =C , then we can handle this by the methods in the
previous sections; if there is blocking, C >M , then the earlier analysis will only give a lower bound on
mean throughput rate and an upper bound on mean delay.

If M =C , the system has three bottlenecks:

• If clerks are limiting the mean throughput rate, then

λ ≡
Tthink +Tproc

C__________

• If processor time is limiting the mean throughput rate, then

λ ≡
Tproc

P_ ____

• If storage or buffering is limiting the mean throughput rate, then

λ ≡
Tproc

M_ ____

Provided that M =C , we can write down upper and bounds on the mean throughput rate and mean
queueing time:

λlower ≤ λ ≤ λupper

λlower =
Tthink +

min [M ,C ]
C_ _________Tproc

C_ _____________________

λupper = min


 Tproc

P_ ____,
Tthink +Tproc

C__________




max



Tproc ,

λupper

C_ _____ − Tthink





≤ E (TQ ) ≤
min [M ,C ]

C_ _________ Tproc

In order to proceed further, we need to make use of the assumptions outlined earlier concerning arrival
and execution time statistics, and scheduling policies.
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6.2.5 Jackson Network Analysis Averaged over a suitably long time interval, the fraction of time the
system is in a given state is denoted by π(J_) which is the product of three terms, one dependent only on
clerks, one dependent only on the parallel processor group, and one that normalizes πC (J_) so that the
system is in some state all the time:

πC (J_) =
G
1_ __ (clerk dependent term ) × (processor dependent term ) J_ ∈Ω

J_ ∈Ω
Σ πC (J_) = 1

and the second factor depends only on the source (here clerks reading and thinking and submitting jobs),
while the final factor depends only on the system (which here is a group of parallel processors).

πC (J_) = πC (Jclerk ,Jproc ) =
G
1_ __

I =0
Π

J
clerk

−1

Tthink

Φclerk (I )_ _______
K =0
Π
J

proc

Φproc (K )

Tproc________ J_ ∈Ω

The function G is also called the system partition function, and is chosen such that

J_ ∈Ω
Σ πC (J_) = 1

The fraction of arrivals that are blocked or rejected is denoted by B , where

B = B (M ) =


 0

πC −1(Jproc =M )

C =M

C >M

Note that the fraction of time an arrival finds Jproc jobs in the system is different from the long term
time averaged distribution of jobs in the system, because when an arrival occurs it cannot be in the
system, i.e., effectively there are a total of C −1 jobs in the system:

f raction o f arrivals when system state is J_ = πC −1(J_)

The fraction of time that a job enters service immediately is given by

f raction o f time job enters service immediately =
1 − B (M )
K =0
Σ

P −1

B (K )
_ ________

The mean number of jobs in execution in the system is given by

E [min (Jproc ,P )] =
K =0
Σ

M −1

min (K ,P )
1 − B (M )

B (K )_ ________

The mean throughput rate is the mean number of jobs in execution divided by the mean time per job:

λ =
Tproc

E [min (Jproc ,P )]_ _____________

The mean queueing time per job, including both waiting and execution, is the ratio of the total mean
number of jobs in the processor system divided by the mean throughput rate:

E [TQ ] =
λ

E [Jproc ]_ _______ = Tproc E [min (Jproc ,P )]

E (Jproc )_ _____________

The mean queueing time is equal to the mean execution time of a job, multiplied by a stretching factor:

stretching f actor =
E [min (Jproc ,P )]

E (Jproc )_ _____________

If Jproc <<P then the stretching factor is one, i.e., there is zero mean waiting time, while if Jproc >>P
then the stretching factor grows as Jproc ⁄P .

The difference between the total number of jobs either queued or in execution, Jproc , and the number of
jobs actually in execution, min [Jproc ,P ], is defined as the number of jobs waiting. We can rewrite this
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as follows

Jproc − min [P ,Jproc ] = max [0,Jproc −P ]

The mean waiting time per job is the ratio of the mean number of waiting jobs divided by the mean
throughput rate:

E (TW ) =
λ

E [max (Jproc −P ,0)]_ ________________

In general, although we can obtain an expression for the joint distribution of number of jobs at each
stage in the system, we do not have an expression for the delay distribution and must infer mean delay
via Little’s Law. The exception is where jobs are executed in order of arrival, first come, for one case:
jobs are executed in order of arrival, first come, first serve. For this case, when a job arrives it must
wait for all jobs ahead of it to be serviced and then it will be executed. For this case, we can explicitly
calculate the delay statistics for a job.

PROB [TW >X  job accepted ] =
1 − B (M )

K =P
Σ

M −1

B (K )[1−ẼK −P +1(X )]
____________________

ẼK (X ) = 1 − exp(−X ⁄Tproc )
I =0
Σ

K −1

I !

(X ⁄Tproc )I
_ ________ K =1,2,...

EXERCISE. Calculate how quickly the mean value asymptotes are approached, as P →∞, with all
other parameters held constant. Is the rate of convergence exponentially fast? as a power of P ?

EXERCISE. Determine the rate of convergence to the mean value asymptotes with C →∞ but all other
parameters fixed. Is the rate of convergence exponentially fast? as a power of C ?

6.2.6 Additional Reading

[1] R.Syski, Markovian Queues, pp. 170-227 (Chapter Seven) in Proceedings Symposium on
Congestion Theory, W.L.Smith, W.E.Wilkinson (editors), 24-26 August 1964, University of
North Carolina Press, Chapel Hill, North Carolina, 1965.

6.2.7 Numerical Approximation Just because we have an analytic expression does not mean that we
can get numbers of interest for engineering actual systems. A key advantage of Jackson network models
is that a wide variety of performance measures can be quickly and efficiently (storage and execution
time) approximated. This is not to be dismissed lightly: these numbers often suggest design tradeoffs,
areas that require further study, in a very short period of time, rather than spending months (or years!)
finding out the obvious. Since it does not take long to get numbers, little has been invested, but perhaps
a lot is gained!

There exist several classes of algorithms that efficiently use storage for numerically approximating the
partition function and related quantities. We will explore these in this and later sections. For the
problem at hand, a recursion for approximating the system partition function appears to be most
appropriate, provided C is small, e.g., C <10.

We assume the total number of jobs in the system is fixed at M in what follows. The partition function
can be viewed as a function of two variables, the total number of nodes N and the total number of jobs
inside the system M . For this case, the mean throughput rate λ is given by

λ =
G (M ,N )

G (M −1,N )_ _________
K =1
Σ
N

JK = M

The fraction of time there are L jobs at node N , i.e., JN =L , is given by

π(JN =L ) =
J_ ∈Ω ;J

N
=L

Σ π(J_) =
G (M ,N )

G (M −L ,N −1)_ ____________
L !

(TN )L
_ _____

I =0
Π

L

max



1,

PL

I_ __




Here is an example written in FORTRAN for calculating these recursions:
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C SYSTEM PARTITION FUNCTION VIA RECURSION
C CLOSED JACKSON NETWORK MODEL
C N NODES, M JOBS IN SYSTEM
C
DOUBLE PRECISION PART(MEAN,PROB,UTIL,IP,N,IC,T)
C
C NODE 1 = CLERK NODE, IC CLERKS=M JOBS
C NODE 2 = SYSTEM PROCESSOR NODE
C T(K) = MEAN TIME PER JOB AT NODE K,K=1,...,N
C IP(K) = NUMBER OF SERVERS AT NODE K,K=1,...,N
C MEAN(K) = MEAN NUMBER OF JOBS AT NODE K,K=1,...,N
C PROB(K,J) = PROBABILITY J JOBS AT NODE K,K=1,...,N
C
DOUBLE PRECISION PROB,MEAN,SRATE,FRATE,T,G,SUM,TEMP
DIMENSION IP(N),MEAN(N),SRATE(N,IC+1),FRATE(N,IC+1)
DIMENSION PROB(N,IC+1),T(N)
C
C INITIALIZATION
C
DO 100 J=1,N
SRATE(1,J)=1.0d0
G(1,J)=0.0d0
DO 110 I=2,IC+1
G(I,J)=0.0d0
IMIN=I-1
IF(IMIN.GT.IP(J))IMIN=IP(J)
SRATE(I,J)=SRATE(I-1,J)/(DBLE(FLOAT(IMIN))*T(J))
110 CONTINUE
110 CONTINUE

C
C PERMUTATION OF NODE NUMBERS
C IPERM DENOTES FINAL NODE IN ONE PERMUTATION
C CYCLIC PERMUTATION: FIRST NODE 1, THEN NODE 2, ON UP
C TO NODE N CHOSEN FOR FINAL NODE IN RECURSION
C
IPERM=0
150 CONTINUE
IPERM=IPERM+1
DO 200 J=1,N
JCOM=J-IPERM
IF(JCOM.LE.0)JCOM=N+JCOM
DO 210 I=1,IC+1
FRATE(I,JCOM)=SRATE(I,J)
210 CONTINUE
200 CONTINUE

C
C INITIALIZE FIRST ROW,COLUMN OF PARTITION FUNCTION MATRIX
C
G(1,1)=1.0d0
DO 300 I=1,IC+1
G(I,1)=FRATE(I,1)
300 CONTINUE
DO 310 J=2,N
G(1,J)=1.0d0
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310 CONTINUE
C
C FILL OUT BODY OF PARTITION MATRIX
C
DO 400 J=2,N
DO 410 I=2,IC+1
G(I,J)=G(I,J-1)
DO 420 K=2,I
G(I,J)=G(I,J)+FRATE(K,J)*G(I-K+1,J-1)
420 CONTINUE
410 CONTINUE
400 CONTINUE

C
C PROBABILITY DISTRIBUTION OF NUMBER AT NODE IPERM
C
DO 500 K=1,IC+1
PROB(K,IPERM)=FRATE(K,N)*G(IC+1-K+1,N-1)/G(IC+1,N)
500 CONTINUE
TEMP=0.0d0
DO 510 K=1,IC+1
TEMP=TEMP+PROB(K,IPERM)
510 CONTINUE
DO 520 K=1,IC+1
PROB(K,IPERM)=PROB(K,IPERM)/TEMP
620 CONTINUE

C
C MEAN NUMBER AT NODE IPERM
C
MEAN(IPERM)=0.0d0
DO 530 K=1,IC+1
MEAN(IPERM)=MEAN(IPERM)+PROB(K,IPERM)*DBLE(FLOAT(K-1))
530 CONTINUE

C
IF(IPERM.LT.N)GO TO 150
RETURN
END

Figure 6.3.Partition Function FORTRAN Program

Two observations are in order:

• The recursion actually involves two aspects, the total number of jobs in the system, and the number
of nodes

• The recursion developed here will handle more than two nodes; we will use it later for a three node
system.

Here is one way to numerically approximate the following performance measures:

• the fraction of time greater than K jobs are buffered (waiting or in execution) at the processor stage

π[Jproc >K ] =
J

proc
=K +1
Σ
C

π[Jclerk =C −Jproc ,Jproc ]

• the fraction of time exactly K jobs are at the processor node
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π[Jproc =K ] = π[Jclerk =C −K ,Jproc =K ]

• the mean queue length at the processor stage

E [Jproc ] =
J

proc
=0

Σ
C

Jproc π[Jclerk =C −Jproc ,Jproc ]

• the mean number of jobs in execution

E [min (Jproc ,P )] =
J

proc
=0

Σ
C

min (Jproc ,P )π[Jclerk =C −Jproc ,Jproc ]

• the mean number of jobs waiting

E [max (Jproc −P ,0)] =
J

proc
=0

Σ
C

max (Jproc −P ,0)π[Jclerk =C −Jproc ,Jproc ]

• the fraction of time processors are busy doing work, their utilization

Uprocessor =
P
1_ _




1 −

K =0
Σ

P −1

π[Jclerk =C −K ,Jproc =K ]




• the fraction of time both one or more clerks and one or more processors are simultaneously busy

π[Jclerk >0,Jproc >0] = 1 − π[Jclerk =C ,Jproc =0]

− π[Jclerk =0,Jproc =C ]

• the mean throughput rate at the processor stage

mean throughput rate =
K =0
Σ
C

π[Jclerk =C −K ,Jproc =K ]
Tproc

min [K ,P ]_ ________

In the plots below the mean throughput rate and mean delay per transaction as well as upper and lower
bounds are calculated versus the number of clerks.

Figure 6.4.Mean Throughput Rate vs Number of Clerks

For the numbers chosen here, the mean value upper bound on mean throughput rate and lower bound on
mean delay closely approximates the Jackson network analysis. Put differently, the Jackson network
analysis refines our earlier analysis, showing in more detail (provided the underlying assumptions are
valid) how great contention is for processors or clerks. The mean value bounds arise from bottlenecks
that have a natural interpretation; oftentimes the designer can choose where the bottleneck should be, or
move it from one point to another as needs warrant it. Jackson network analysis results in a smooth
curve; mean value analysis results in a piecewise linear function. The interpretation of Jackson network
analysis results in bottlenecks being identified, just as in mean value analysis. A key contribution of the
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Figure 6.5.Mean Delay vs Number of Clerks

Jackson network analysis is to provide an independent check on what mean value bounds provide,
because the underlying assumptions are more stringent or different, and our findings are more robust.

6.2.8 Additional Reading

[1] S.C.Bruell, G.Balbo, Computational Algorithms for Closed Queueing Networks, Elsevier
North Holland, NY, 1980.

[2] J.P.Buzen, Computational Algorithms for Closed Queueing Networks with Exponential Servers,
C.A.C.M., 16(9), 527-531 (1973).

[3] R.B.Cooper, Introduction to Queueing Theory, pp.65-77, MacMillan, NY, 1972.

[4] K.G. Ramakrishnan, D. Mitra, An Overview of PANACEA: A Software Package for Analyzing
Markovian Queueing Networks, Bell System Technical Journal, 61, (10), I, 2849-2872 (1982).

[5] J.McKenna, D.Mitra, Integral Representations and Asymptotic Expansions for Closed Markovian
Queueing Networks: Normal Usage, Bell System Technical Journal, 61, (5), 661-683 (1982).

[6] J.McKenna, D.Mitra, K.G.Ramakrishnan, A Class of Closed Markovian Queueing Networks:
Integral Representations, Asymptotic Expansions, and Generalizations, Bell System Technical
Journal, 60 (5), 599-641 (1981).

6.3 Asymptotics

In order to gain insight into these formulae, we wish to examine two types of special cases. Both arise
from examining the formulae presented earlier. In all cases, we assume

Φclerk (Jclerk ) = Jclerk Φproc (Jproc ) = min [Jproc ,P ]

In the first type of special case, the total workload offered is fixed, measured in jobs arriving per second,
but the number of clerks becomes infinite. This is called an infinite source approximation, and it is also
called a Poisson approximation.

λ ≡
Tthink

C_ ____ = f ixed C →∞ Tthink →∞

Since Tthink →∞, each clerk spends more and more time reading and thinking and typing, but since we
have more and more clerks, the total workload is constant.
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A second type of limit is to fix ratios C ⁄M and C ⁄P and allow C →∞, with Tthink and Tproc fixed.
Should we have five clerks per processor, or ten clerks for two processors? Should there be three
buffers for every five clerks, or six buffers for every ten clerks? Since the mean time intervals Tthink

and Tproc , are fixed, the activity of each clerk stays the same, unlike the first case. The advent of
inexpensive processors may make this type of analysis of great practical import in times to come.

6.3.1 Infinite Source Asymptotics If we fix λ≡C ⁄Tthink and allow C →∞, then we find that the fraction
of time Jproc jobs are in the system is given by

π(Jproc ) =
G
1_ __

Jproc !

(λTproc )
J

proc

_ _________
K =0
Π
J

proc

max



1,

P
K_ _





Jproc =0,...,M

The distribution of jobs in the system at the instant a job arrives is now identical to the long term time
averaged number of jobs in the system. If M =C →∞, the fraction of time that a task must wait greater
than X time units is

PROB [TW >X ] =


 ∞

C (P ,A )exp [−(1−U )XP ⁄Tproc ]

A ≥P

A <P
M →∞

A ≡E [Jproc ] = λTproc U ≡ A ⁄P

The units of A are called Erlangs in honor of the Scandinavian teletraffic engineer A.K.Erlang, who was
a pioneer in engineering voice telephone transmission and switching systems. Since A is the mean
number of jobs in the processor queue, either waiting to run or in execution, if the mean number of jobs
is less than the actual number of processors then the processors can keep up with the work, and
otherwise they cannot. U is the fraction of time each processor is busy, its’ utilization.

The expression C (P ,A ), called Erlang’s delay function or Erlang’s function of the second kind, is given
by

C (P ,A ) =

K =0
Σ

P −1

K !
A K
_ ___ +

(P −1)!(P −A )
A P

_ ___________

A P ⁄(P −1)!(P −A )_ _____________________

This is a very important function, because we can compute many performance measures directly once
we know it:

• The fraction of time a task waits at all is

PROB [TW >0] = C (P ,A ) A <P

For a single processor, the fraction of time a task waits is the fraction of time the processor is busy;
for multiple processors, the fraction of time a task waits at all depends upon finding all the
processors busy first, and hence is more complicated.

• The mean waiting time for a task is given by

E (TW ) =
P −A

C (P ,A )Tproc_ ___________ =
(1 − U )P

C (P ,A )Tproc_ ___________ A <P

• The mean queueing time for a task is the sum of its mean waiting and service time:

E (TQ ) = E (TW ) + Tproc

For one processor, we see

C (P =1,A ) = A → E (TW ) =
1−A

ATproc_ _____ → E (TQ ) =
1−A

Tproc_ ____

The mean queueing time equals the mean execution time, multiplied by a stretching factor of 1⁄1−A .
Under light loading A <<1 the stretching factor is one, while as A →1 the stretching becomes larger and
larger than one.
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6.3.2 Modem Pooling In a dial up online computer system, users dial up the computer over voice
telephone lines. Each user will need a modem to connect to the computer. The mean holding time per
call is one minute. The mean arrival rate of calls is five calls per minute. We wish to have sufficient
modems so that the fraction of time that a user waits at all for a modem is under ten per cent. How
many modems are required?

The offered load to the system is given by

A = 5 calls per minute × one minute per call = 5 Erlangs

We wish to find P such that

C (P ,A =5) < 0.10

If we simply try various numbers, starting with P=5 since we expect to have five busy modems on the
average most of the time, we see that eight or more modems is sufficient to meet the delay criterion.

6.3.3 P=M Loss System A typical problem in voice telephony is to determine how many circuits are
needed to handle the load. Telephone calls arrive at random instants of time, and will tie up or hold a
telephone line for three to five to ten minutes. If all lines are busy, it is highly unlikely a line will
become free within the next few seconds, and the new arrival is blocked or rejected. A natural model of
this situation is calls or jobs arrive for service at a group of P =M parallel servers or processors, with
one buffer per processor. The mean service time of a job is denoted by E (TS ). If all servers are busy
when an arrival occurs, the new arrival is rejected or blocked and presumably will retry later.

What goals are to be achieved? >From the point of view of a customer, the fraction of time an arrival
is rejected should be acceptably low. What system oriented criteria are of interest? The mean number
of busy processors, and the fraction of time each processor is busy, its utilization, should be acceptably
high.

The interarrival times between jobs are assumed to be independent identically distributed exponential
random variables, i.e., the arrival statistics can be modeled by a Poisson distribution. The mean
throughput rate of completing tasks is denoted by the carried mean throughput rate, to distinguish it
from the offered load, which will be bigger than the carried load because some offered load was
rejected. The carried mean throughput rate is

λcarried = λo f f ered [1 − B (P ,A )]

where as above A is the mean offered load to the system A = λE (TS ) to distinguish it from the carried
(actual) load Â given by

Â = A [1 − B (P ,A )] = mean number o f busy servers

In some cases, only the carried load can be measured, and then we must work backwards to infer the
offered load. As long as the fraction of attempts blocked is negligible, the above expression provides a
convenient rough cut for doing so. B (P ,A ) is called Erlang’s blocking function or Erlang’s function of
the first kind, and is given by

B (P ,A ) =

K =0
Σ
P

A K ⁄K !

A P ⁄P !_ _________

B (P ,A ) is the fraction of time that all P processors are busy, or it is the fraction of time a new arrival is
blocked or rejected.

If a task is accepted, it waits no time at all to be processed. If a task is rejected, it waits forever and is
never processed. The queueing time, the sum of the waiting time and the service time, is either equal to
the service time if the task is accepted, or is infinite if the task is rejected.

For values of λo f f ered that result in small blocking the mean throughput rate λcarried equals λo f f ered ; for
λo f f ered →∞ the mean throughput rate approaches P ⁄E (TS ). For intermediate values, the exact
expressions must be used. The mean waiting time of accepted tasks is zero, while the mean queueing
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time of accepted tasks is E (TS ).

6.3.4 Circuit Switching We must configure a data computer communication system with sufficient
private communication lines so that the fraction of time call attempts are blocked because no line is
available is sufficiently small. Measurement data suggest a typical call lasts for forty five minutes, with
an average of ten calls per hour being attempted. We wish to examine two levels of service, one where
a call attempt is blocked no more than ten per cent of the time, and a second where a call attempt is
blocked no more than one per cent of the time. How many circuits are needed?

The mean number of calls in progress is

A = (3⁄4) hours ⁄call × 10 calls ⁄hour = 7.5 calls or Erlangs

Hence, at least 7.5, i.e., eight circuits are needed just to carry the load.

Using an Erlang blocking analysis, in order to meet the goal of calls being blocked no more than ten per
cent of the time, we need ten circuits. In order to meet the goal of calls being blocked no more than
one per cent of the time, we need fourteen circuits.

6.3.5 Relationships Between Loss and Delay Systems There are many relationships between loss and
delay systems. Here is one such formula relating Erlang’s loss formula and Erlang’s delay formula:

C (P ,A ) =
P + A [B (P − 1,A )−1]

A B (P − 1,A )_ ___________________

Thus, if we know how to calculate or numerically approximate Erlang’s loss formula, we can also
numerically approximate Erlang’s delay formula.

6.3.6 Numerical Approximation of Erlang’s Blocking Function We now present an algorithm for
numerically approximating the Erlang blocking function, due to D.Jagerman, that can be readily
programmed on a pocket calculator or other machine. The implementation presented here is in
FORTRAN, and requires two constants, one for underflow and one for overflow.

DOUBLE PRECISION FUNCTION BERL(N,A)
C
C INPUTS
C
C P--NUMBER OF PROCESSORS
C A--OFFERED LOAD IN ERLANGS
C
C OUTPUT
C
C BERL--ERLANG BLOCKING FUNCTION
C
C ALGORITHM--ITERATE ON THE INVERSE OF BERL
C

DOUBLE PRECISION BERL,A,XN,XA,TERM,SUM,DMIN,DMAX
C
C DMIN--CHOSEN TO MACHINE ACCURACY
C DMAX--RECIPROCAL OF SMALLEST BLOCKING OF INTEREST
C

DMIN=1.0D-10
DMAX=1.0d9

C
C PARAMETER INITIALIZATION
C

XN=DBLE(FLOAT(N))
XA=1.0d0/A
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TERM=XN*XA
SUM=1.0d0

C
C MAIN LOOP
C

10 CONTINUE
SUM=SUM+TERM
XN=XN-1.0d0
TERM=TERM*XN*XA
IF((TERM.LT.DMIN).OR.(SUM.GT.DMAX)) GO TO 20
GO TO 10

C
C TO REACH HERE MUST HAVE COMPLETED
C

20 CONTINUE
BERL=1.0d0/SUM
RETURN
END

Figure 6.6.Erlang Blocking Function FORTRAN Program

6.3.7 Additional Reading

[1] D.L.Jagerman, Some Properties of the Erlang Loss Function, Bell System Technical Journal, 53,
(3), pp.525-551, 1974.

6.3.8 C/M and C/P Fixed, C →∞ The remaining asymptotic case, where the ratios are fixed for C ⁄M
and C ⁄P but C →∞, is summarized by the following formulae:

• The fraction of time an attempt is blocked is given by

B = 1 − min






1,

Tthink + min


 P

CTproc_ _____ − Tthink ,Tproc P
M_ __





C_ _________________________________






• The fraction of time a processor is busy is given by

U = utilization ⁄processor = min



1,

P (Tthink +Tproc )

CTthink_ ____________




• The mean rate of submitting jobs is given by

λo f f ered = mean job submission rate =
Tproc

PU_ ____

• The mean throughput rate of jobs is given by

λcarried =
1 − B

λo f f ered_ ______ =
(1 − B )E (TQ ) + Tthink

C_ __________________

• The mean delay per job is given by

E (TQ ) = max



Tproc ,min



 P

CTproc_ _____ − Tthink ,
P
M_ __Tproc








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6.4 Teletraffic Engineering of an Automatic Call Distributor

An automatic call distributor, as the name implies, automatically distributes incoming calls among
various available agents. Customers dial a telephone number, and the calls are routed through the voice
telephony network to the call distributor. The call distributor either blocks or rejects a call attempt if all
incoming circuits or trunks to the call distributor are busy (either with calls waiting for an agent or calls
between agents and customers). Customers are queued for service by an agent. If all agents in a given
group are busy, the customer is queued for a receiver that plays a recorded message asking the customer
to be patient until an agent becomes available; in many cases, music is played while the customer is
waiting. After the agent handles the customer request there is often some clean up work associated with
that particular task, after which the agent is available for handling the next incoming call.

Automatic call distributors are currently in wide use. Some examples are

• airlines--for handling reservations, time of arrival and departure of flights, travel agent activity,
charter and tour operators, charging or billing information, internal administrative use

• hotels and motels--for handling reservations at a nationwide chain, billing questions, travel agent
activity

• credit authorization and verification--for a variety of bank credit cards, which require authorization if
the purchase price exceeds a given limit

• message service--major companies frequently have a centralized group of agents handle all messages
rather than tie up a secretarial pool with this job

6.4.1 Model The model inputs required here would be the mean arrival rate of calls, the mean time a
customer would wait for an agent, and the mean time to handle a customer plus any related work (such
as logging the result of the customer inquiry).

How can the number of trunks or links and agents be chosen such that the system meets both a given
blocking criterion and a mean delay criterion for each customer?

Here is a summary of model parameters for two illustrative cases, one for credit authorization, and one
for airline reservations and flight information.

Table 6.1.Model Parameters_ ______________________________________________________ _____________________________________________________
Attribute Credit Authorization Airline_ ______________________________________________________ _____________________________________________________

Announcement Time 10-20 Seconds 20-30 seconds
Talking Time 30-60 seconds 100-200 seconds

Goals are specified for a peak business hour load. During the first year of operation, the peak business
hour mean call arrival rate is four per minute. This will increase to eight calls per minute during the
second year, and twenty calls per minute during the third year. Each call that is accepted can wait for
fifteen seconds, on the average, and each inquiry will require a mean of one minute per agent. We
denote by Twait the mean waiting time (e.g., to hear an announcement), and Ttalk the mean time to
handle a customer request.

6.4.2 State Space The system state space is denoted by Ω. Elements are integer valued pairs denoted
by J_ =(Jwait ,Jtalk ), where Jwait denotes the number of calls waiting for an agent, and Jtalk denotes the
number of busy agents (busy handling customer requests). Since there are T trunks and S agents, the
state space is given by:

Ω = {(Jwait ,Jtalk ) Jwait +Jtalk ≤T ,Jtalk ≤S }

6.4.3 Mean Value Analysis The mean number of trunks held equals the mean arrival rate of accepted
calls multiplied by the mean trunk holding time. Since trunks are held for an announcement (if no agent
is available), and for handling customer requests, we can write

E [min (Jwait +Jtalk ,T )] = λ(Twait +Ttalk )

The mean number of busy agents is given by
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Figure 6.7.Call Distributor Block Diagram

Figure 6.8.Call Distributor Queueing Network

E [min (Jtalk ,S )] = λTtalk

This suggests the following two bottlenecks:

• If trunks are the bottleneck, then

λ =
Twait +Ttalk

T_ _________

For the number here, the required mean number of trunks is summarized in the table below:

Table 6.2.Number of Required Trunks_ __________________________________ _________________________________
Year Trunks_ __________________________________ _________________________________

1 5 trunks
2 10 trunks
3 40 trunks





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• If agents are the bottleneck, then

λ =
Ttalk

S_ ____

For the numbers described above, the mean number of required agents is summarized in the table
below:

Table 6.3.Number of Required Agents_ __________________________________ _________________________________
Year Agents_ __________________________________ _________________________________

1 4 agents
2 8 agents
3 20 agents






This analysis suggests that 1.25 trunks are required for every agent, i.e., (Ttalk +Twait )⁄Twait trunks per
agent.

6.4.4 Jackson Network Analysis What if we use an Erlang blocking analysis to determine the number
of trunks required? This means that we are looking for the largest value of T such that

B [T ,λ(Ttalk +Twait )] ≤ εtrunk

where εtrunk is the fraction of blocked or rejected call attempts. The table below summarizes these
calculations:

Table 6.4.Number of Trunks Required_ ____________________________________ ___________________________________
Fraction of Attempts Rejected

Year 0.001 0.01 0.1_ ____________________________________ ___________________________________
1 14 trunks 11 trunks 8 trunks
2 21 trunks 18 trunks 13 trunks
3 41 trunks 36 trunks 28 trunks







The interpretation of the data is that during year one 8-14 trunks suffice, during year two 13-21 trunks,
and during year three 28-41 trunks. Since trunks may come in bundles or integral multiples of one
trunk (such as six trunks or twenty four per trunk group, with all purchases in multiples of trunk groups)
economic considerations must be addressed here. For example, two trunk groups of six trunks each
would suffice for the first year, four trunk groups for the second year, and seven trunk groups for the
third year. On the other hand, the increment in carried load is simply the difference in blocking for T +1
trunks versus T trunks, multiplied by the carried load.

We next use Erlang’s delay formula to calculate the number of agents required to meet a given delay
criterion. This means we are looking for the largest value of S such that

C (S ,λTtalk ) ≤ εagent

where εagent is the agent delay criterion. The table below summarizes these calculations:

Table 6.5.Number of Agents Required_ _____________________________________ ____________________________________
Fraction of Time Call Waits > 0

Year 0.1 0.2 0.3_ _____________________________________ ____________________________________
1 8 agents 7 agents 6 agents
2 13 agents 12 agents 11 agents
3 22 agents 20 agents 19 agents







This table makes it clear fewer agents are needed than trunks, typically one agent for every 1.1 to 1.5
trunks. In all cases, the number of agents and trunks needed is larger than the mean value analysis
suggests. On the other hand, the mean value analysis appears to be a reasonable first cut at answering
how many trunks and agents are needed, one that can be refined as additional information comes to
light.
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6.4.5 Additional Reading

[1] L.Kosten, Stochastic Theory of Service Systems, pp.26-40, Pergamon Press, London, 1973.

[2] P.A.Brown, D.W.Clark, Automatic Call Distribution System-ASDP 162, Telecommunications
Journal of Australia, 29 (3), 245-255 (1979).

6.5 Teletraffic Engineering of an Automatic Call Distributor

An automatic call distributor, as the name implies, automatically distributes incoming calls among
various available agents. Customers dial a telephone number, and the calls are routed through the voice
telephony network to the call distributor. The call distributor either blocks or rejects a call attempt if all
incoming circuits or trunks to the call distributor are busy (either with calls waiting for an agent or calls
between agents and customers). Customers are queued for service by an agent. If all agents in a given
group are busy, the customer is queued for a receiver that plays a recorded message asking the customer
to be patient until an agent becomes available; in many cases, music is played while the customer is
waiting. After the agent handles the customer request there is often some clean up work associated with
that particular task, after which the agent is available for handling the next incoming call.

Automatic call distributors are currently in wide use. Some examples are

• airlines--for handling reservations, time of arrival and departure of flights, travel agent activity,
charter and tour operators, charging or billing information, internal administrative use

• hotels and motels--for handling reservations at a nationwide chain, billing questions, travel agent
activity

• credit authorization and verification--for a variety of bank credit cards, which require authorization if
the purchase price exceeds a given limit

• message service--major companies frequently have a centralized group of agents handle all messages
rather than tie up a secretarial pool with this job

6.5.1 Model The model inputs required here would be the mean arrival rate of calls, the mean time a
customer would wait for an agent, and the mean time to handle a customer plus any related work (such
as logging the result of the customer inquiry).

How can the number of trunks or links and agents be chosen such that the system meets both a given
blocking criterion and a mean delay criterion for each customer?

Here is a summary of model parameters for two illustrative cases, one for credit authorization, and one
for airline reservations and flight information.

Table 6.1.Model Parameters_ ______________________________________________________ _____________________________________________________
Attribute Credit Authorization Airline_ ______________________________________________________ _____________________________________________________

Announcement Time 10-20 Seconds 20-30 seconds
Talking Time 30-60 seconds 100-200 seconds

Goals are specified for a peak business hour load. During the first year of operation, the peak business
hour mean call arrival rate is four per minute. This will increase to eight calls per minute during the
second year, and twenty calls per minute during the third year. Each call that is accepted can wait for
fifteen seconds, on the average, and each inquiry will require a mean of one minute per agent. We
denote by Twait the mean waiting time (e.g., to hear an announcement), and Ttalk the mean time to
handle a customer request.

6.5.2 State Space The system state space is denoted by Ω. Elements are integer valued pairs denoted
by J_ =(Jwait ,Jtalk ), where Jwait denotes the number of calls waiting for an agent, and Jtalk denotes the
number of busy agents (busy handling customer requests). Since there are T trunks and S agents, the
state space is given by:

Ω = {(Jwait ,Jtalk ) Jwait +Jtalk ≤T ,Jtalk ≤S }
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Figure 6.7.Call Distributor Block Diagram

Figure 6.8.Call Distributor Queueing Network

6.5.3 Mean Value Analysis The mean number of trunks held equals the mean arrival rate of accepted
calls multiplied by the mean trunk holding time. Since trunks are held for an announcement (if no agent
is available), and for handling customer requests, we can write

E [min (Jwait +Jtalk ,T )] = λ(Twait +Ttalk )

The mean number of busy agents is given by

E [min (Jtalk ,S )] = λTtalk

This suggests the following two bottlenecks:

• If trunks are the bottleneck, then

λ =
Twait +Ttalk

T_ _________

For the number here, the required mean number of trunks is summarized in the table below:
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Table 6.2.Number of Required Trunks_ __________________________________ _________________________________
Year Trunks_ __________________________________ _________________________________

1 5 trunks
2 10 trunks
3 40 trunks






• If agents are the bottleneck, then

λ =
Ttalk

S_ ____

For the numbers described above, the mean number of required agents is summarized in the table
below:

Table 6.3.Number of Required Agents_ __________________________________ _________________________________
Year Agents_ __________________________________ _________________________________

1 4 agents
2 8 agents
3 20 agents






This analysis suggests that 1.25 trunks are required for every agent, i.e., (Ttalk +Twait )⁄Twait trunks per
agent.

6.5.4 Jackson Network Analysis What if we use an Erlang blocking analysis to determine the number
of trunks required? This means that we are looking for the largest value of T such that

B [T ,λ(Ttalk +Twait )] ≤ εtrunk

where εtrunk is the fraction of blocked or rejected call attempts. The table below summarizes these
calculations:

Table 6.4.Number of Trunks Required_ ____________________________________ ___________________________________
Fraction of Attempts Rejected

Year 0.001 0.01 0.1_ ____________________________________ ___________________________________
1 14 trunks 11 trunks 8 trunks
2 21 trunks 18 trunks 13 trunks
3 41 trunks 36 trunks 28 trunks







The interpretation of the data is that during year one 8-14 trunks suffice, during year two 13-21 trunks,
and during year three 28-41 trunks. Since trunks may come in bundles or integral multiples of one
trunk (such as six trunks or twenty four per trunk group, with all purchases in multiples of trunk groups)
economic considerations must be addressed here. For example, two trunk groups of six trunks each
would suffice for the first year, four trunk groups for the second year, and seven trunk groups for the
third year. On the other hand, the increment in carried load is simply the difference in blocking for T +1
trunks versus T trunks, multiplied by the carried load.

We next use Erlang’s delay formula to calculate the number of agents required to meet a given delay
criterion. This means we are looking for the largest value of S such that

C (S ,λTtalk ) ≤ εagent

where εagent is the agent delay criterion. The table below summarizes these calculations:

Table 6.5.Number of Agents Required_ _____________________________________ ____________________________________
Fraction of Time Call Waits > 0

Year 0.1 0.2 0.3_ _____________________________________ ____________________________________
1 8 agents 7 agents 6 agents
2 13 agents 12 agents 11 agents
3 22 agents 20 agents 19 agents






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This table makes it clear fewer agents are needed than trunks, typically one agent for every 1.1 to 1.5
trunks. In all cases, the number of agents and trunks needed is larger than the mean value analysis
suggests. On the other hand, the mean value analysis appears to be a reasonable first cut at answering
how many trunks and agents are needed, one that can be refined as additional information comes to
light.

6.5.5 Additional Reading

[1] L.Kosten, Stochastic Theory of Service Systems, pp.26-40, Pergamon Press, London, 1973.

[2] P.A.Brown, D.W.Clark, Automatic Call Distribution System-ASDP 162, Telecommunications
Journal of Australia, 29 (3), 245-255 (1979).

6.6 General Single Class Jackson Network Model

Clerks at terminals submit one type of job to a computer communication system.

Figure 6.9.System Block Diagram

A queueing network model of this system is as follows: A source submits one type of job to a system.
There are a total of P 0 sources. Each job enters a staging queue: if there are less than M jobs in the
system, the job immediately enters the system, and otherwise waits for the number of jobs in the system
to drop below M . Once a job enters the system, it visits a number of nodes or stations within the
network, and after being completely processed exits the system, where the cycle begins anew. The
number of processors or servers at node K is denoted by PK .

6.6.1 State Space The number of jobs either queued or in execution at time t at node K =1,...,N is
denoted by JK (t ). Elements JK (t ) are nonnegative integers, and are members of a state space denoted
by Ω. The number of sources with a job is denoted by J 0; if there is staging, then

number of jobs in staging queue = min [0,M − J 0]

Three cases will be dealt with:

[1] Jobs can be submitted to the system sufficiently fast such that the system always contains M
jobs. The state space for this case is given by

Ω = {(J 1,...,JN ) JK ≥0,1≤K ≤N ;
K =1
Σ
N

JK =M }

[2] The system always has room for a job, i.e., M ≥P 0, so there is never a job in the staging queue.
The state space for this case is given by
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Figure 6.10.Queueing Network Model Block Diagram

Ω = {(J 1,...,JN ) JK ≥0,0≤K ≤N ,
K =0
Σ
N

JK = P 0}

[3] One limiting case that is analytically tractable is a so called open network, where only the total
job arrival rate is known, denoted by λ = P 0⁄T 0, with P 0→∞. The state space is now given by

Ω = {(J 1,...,JN ) JK ≥0,1≤K ≤N }

It remains to specify the workload in greater precision, and the scheduling or arbitration rule for each
node.

6.6.2 Workload The system at any instant of time contains  J_  jobs, where

 J_   =
K =1
Σ
N

JK

Given the system contains  J_  jobs at time t and that the number of jobs at each node is observed
over time, the instantaneous job arrival rate at time t is given by

instantaneous job arrival rate =
T 0

Φ0( J_(t ) )_ __________ > 0

Each distinct visit to node K requires a possibly different amount of execution time by a server at that
node. The random variable τK denotes the service time per visit to node K , which is a sequence of
independent identically distributed random variables drawn from a common distribution denoted by
HK (X ):

PROB [τK ≤ X ] = HK (X )

The mean of τK is denoted by E (τK ).

Each job is routed through the network probabilistically: once a job is serviced at node K , it migrates
to node J with probability RKJ , where K =1,...,N and J =0,...,N , i.e., a job can exit the system and return
to the source node when J =0. An equivalent description of this process is that each job makes VK visits
to node K , and hence the total mean amount of service at node K , denoted by TK , is VK E (τK ).

6.6.3 Scheduling Policy for Arbitrating Contention When a job arrives at queue K and finds JK jobs
present, it is inserted into place I with probability δK (I ,JK +1) where I =1,...,JK +1. All tasks in position
I ,...,JK are shifted to the position with the next higher index. When a job finishes execution at position
I , all jobs at position I +1,...,JK are shifted to the position with the next lower index.
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When JK jobs are present at node K , work is executed at a total rate (measured in seconds of processing
per second, so that it is dimensionless), of ΦK (JK ). A job in position I out of JK at node K is
processed at a rate of γK (I ,JK )φK (JK ) ≤ 1, again measured in seconds of processing per second, such
that

I =1
Σ
J

K

γK (I ,JK ) = 1

or in words that some jobs are receiving all the available processing capacity.

We will not allow all possible scheduling rules, but only two classes. The first class of rules allows the
service time distribution to be arbitrary but the scheduling policy must be balanced in the sense that

γK (I ,JK ) = δK (I ,JK )

Examples of scheduling rules that meet these conditions are

• Processor sharing: if JK jobs are present, each receives 1⁄JK the fraction of available processing
capacity:

γK (I ,JK ) =
JK

1_ __

• Last come first serve preemptive resume: the last arrival is serviced first, with subsequent arrivals
preempting service, and service is resumed at the point of interruption:

γK (I ,JK ) =


 0 otherwise

1 I =JK

• An infinite server group, i.e., there is always available one server to execute a job, with no waiting
or queueing:

γK (I ,JK ) = 1

The second type of scheduling policy is to allow jobs to be executed in order of arrival, but now the
service time distribution must be exponential:

HK (τK ≤ X ) = 1 − exp [−X ⁄E (τK )]

6.6.4 Finite Source Arrival Statistics with Staging Analysis Granted the previous assumptions, the long
term time averaged fraction of time the system is in state J_ is denoted by π(J_), where

π(J_) = π(J 1,...,JN ) =
G
1_ __

I =0
Π

 J_   −1

T 0

Φ0(I )_ _____
K =1
Π
N

I =1
Π
J

K

ΦK (I )

TK_ _____

J_ ∈Ω
Σ π(J_) = 1 π(J_) ≥ 0

If ΦK (I )=min (I ,PK ), and the system always contains M jobs, this can be written as

π(J_) =
G
1_ __

K =1
Π
N

JK !

TK
J

K

_ ____
I =0
Π
J

K

max



1,

PK

I_ ___




J_ ∈Ω

For the case where there is a staging queue with P 0 sources, this can be written as

π(J_) =
G
1_ __

K =0
Π
N

JK !

TK
J

K

_ ____
I =0
Π
J

K

max



1,

PK

I_ ___




6.6.5 Asymptotics One natural type of asymptotic analysis is to fix the total arrival rate at λ while
allowing the number of sources to become infinite:
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λ ≡
T 0

P 0_ __ = f ixed P 0,T 0→∞

The resulting form of the long term time averaged distribution simplifies:

λ f ixed
lim π(J_) =









0

K =1
Π
N

I =1
Π
J

K

JK !

λTK_ ____
I =0
Π
J

K

max



1,

PK

I_ ___




λ≥
K

min
TK

PK_ ___ = λmax

λ<
K

min
TK

PK_ ___ = λmax

This last condition needs some elaboration: if λ<λmax, the mean value upper bound on the maximum
mean throughput rate, then all nodes can keep up with the workload, and otherwise the number of jobs
at the slowest or bottleneck nodes exceeds any threshold. This can be seen from evaluating the partition
function: the partition function is finite provided λ<λmax, and otherwise is infinite.

The total mean queueing delay of a job is the sum of the individual queueing delays at each node:

E (TQ ) =
K =1
Σ
N

E (TQ ,K )

where the mean queueing delay (waiting plus execution) at node K is given by

E (TQ ,K ) = TK D (PK ,UK ) K =1,...,N

U is the utilization, the fraction of time, each server or processor at node K is busy, and D (PK ,UK ) is
the stretching factor for node K , i.e., it shows how much TK is inflated or stretched to account for
queueing delays.

D (P ,U ) =
P (1 − U )
C (P ,P U )_ _________ + 1

C (P ,P U ) is the Erlang delay function discussed earlier. This can be readily approximated numerically.
For U <<1, light loading, D (P ,U )∼∼ 1, i.e., there is virtually no stretching of the execution time, while
under heavy loading U →1, D (P ,U )→∞, i.e., the waiting time can swamp the execution time.

What if we plot the mean throughput rate versus the degree of multiprogramming defined to be  J_  ?
We see for  J_   =1 the mean throughput rate is simply the reciprocal of the total time to complete one
job, and hence increasing the degree of multiprogramming will always be less than  J_  times the
mean throughput for one job. At the other extreme, as the degree of multiprogramming becomes larger
and larger, one or more resources will be completely utilized or busy with work, and we see

λ =
I

min


 TI

PI_ __




 J_   →∞

The nodes that reach complete utilization first are called bottleneck nodes. The queueing network
analysis allows us to interpolate between these two asymptotic regions, as shown in the figure below.
One figure of merit discussed earlier is the stretching factor which we defined as the ratio of the upper
bound on mean throughput rate due to the number of jobs being a bottleneck over the actual mean
throughput rate:

stretching f actor =
actual mean throughput rate

job bottleneck mean throughput bound_ _________________________________ =
λ(J >1)

J λ(J =1)_ _______

We want to operate with a stretching factor close to one, i.e., as we add more jobs, the mean throughput
rate scales or increases linearly with J, and we stay close to the ideal bound. The design question is to
intelligently choose the bottlenecks so that this in fact happens!

6.7 Pipeline Processing

The configuration studied here is a pipeline of N processors, one processor per stage. Jobs arrive at the
first stage, are processed, and move on to the second stage, until completely executed. What impact
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Figure 6.11.Mean Throughput Rate vs Degree of Multiprogramming

Figure 6.12.Pipeline Queueing Network Block Diagram

might fluctuations have on the performance of such a system?

6.7.1 Analysis The model ingredients are

• Jobs arrive according to simple Poisson statistics with mean arrival rate λ jobs per unit time

• Each job requires TS ,K service at node K , where the service times are independent identically
distributed random variables

• Jobs are serviced in order of arrival

If there is no contention at all, to completely execute a job will require on the average
E (T 1)+ E (T 2)+ ...+ E (TN ) time units.

We now wish to study the impact that fluctuations about the mean value of the processing times can
have on the time required to completely execute a job. First, if the processing times at each stage are
exponentially distributed, which might be the case if sometimes one branch were followed and another
time another branch were followed, then the mean time that a job is waiting while other jobs are being
executed is denoted by E (TW ) and is given by

E (TW ,exponential )=
k =1
Σ
N

1−λE (TS ,K )

λE 2(TS ,K )_ __________

For example, if E (TS ,1)=...=E (TS ,N )≡E (TS ), i.e., the processing times at each stage had the same mean
value, then
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E (TW ,exponential )=
1−λE (TS )

N λE 2(TS )_________ E (TS )≡E (TS ,1)=...=E (TS ,N )

On the other hand, if the processing times at each stage are constant, i.e., no fluctuations about the
mean, then the mean time that a job is waiting while other jobs are being executed is denoted by
E (TW ,constant ) and is given by

E (TW ,constant )=
2(1−λE (TS ,max ))

λE 2(TS ,max )_ ______________ E (TS ,max )=max (E (TS ,1),...,E (TS ,N ))

For example, if E (TS ,1)=...=E (TS ,N ), then

E (TW ,constant )=
2(1−λE (TS ,max ))

λE 2(TS ,max )_ ______________

Note that this can be N/2 times that for the exponential case if the fluctuations about the mean
processing times are reduced from the exponential spread to the constant processing time case, with
similar much more dramatic payoff if one wishes to cut the ninetieth percentile of the waiting time
distribution function, averaged over a long term time interval.

EXERCISE: Show that the result for constant service at each stage is true, by showing that all the
queueing or waiting occurs as if all jobs were queued at the stage with the longest service time,
independent of the order of nodes in the pipeline.

It is interesting to note that although the delay statistics in pipeline processing can be quite sensitive to
the processing time statistics at each stage of execution, the maximum mean throughput rate is the same
for either example above:

maximum mean throughput rate = 1⁄max (E (TS ,1),E (TS ,2),...,E (TS ,N ))

This means that small changes in the mean service rate result in small changes in the maximum mean
throughput rate but not in the mean delay as the underlying execution time distributions at each stage
are varied.

6.7.2 An Example Suppose a computer communication system consists of N steps for each job, and
each step requires a mean of one second. If jobs arrive at the first stage of the pipeline at the rate of
one job every two seconds, then we can compare the performance of this system for different number of
stages in the pipeline and to fluctuations about the mean service time, and the results are summarized in
the table below:

Table 6.6.Mean Delay with λ=0.5 jobs ⁄sec_ ____________________________________________________________ ___________________________________________________________
Number Mean Waiting Time E (TW ) Mean Queueing Time E (TQ )

of Stages Constant Exponential Constant Exponential_ ____________________________________________________________ ___________________________________________________________
3 0.5 sec 3.0 sec 3.5 sec 6.0 sec
4 0.5 sec 4.0 sec 4.5 sec 7.0 sec
5 0.5 sec 5.0 sec 5.5 sec 8.0 sec














This makes it evident that the mean waiting grows with the number of stages if the fluctuations are
severe. As a check on this study, we allow the first stage to require two units of service, the second
stage one half unit of service, and all the rest of the stages require one unit of service, with the
calculations summarized below:

Table 6.7.Mean Delay with λ=0.5 jobs ⁄sec_ ____________________________________________________________ ___________________________________________________________
Number Mean Waiting Time E (TW ) Mean Queueing Time E (TQ )

of Stages Constant Exponential Constant Exponential_ ____________________________________________________________ ___________________________________________________________
3 2.25 sec 5.67 sec 5.25 sec 8.67 sec
4 2.25 sec 7.67 sec 6.25 sec 10.67 sec
5 2.25 sec 9.67 sec 7.25 sec 12.67 sec














This makes evident that the mean waiting is significantly impacted by the imbalance at the first two
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stages in the service time, for both the constant and exponential distribution. However, the constant
service case is significantly less impacted than the exponential case.

6.7.3 Link Level Flow Control Consider a transmitter and a receiver that are connected via a data
network of N stages or nodes, with messages at stage K requiring a constant amount of processing,
E (TS ,K ),K =1,...,N . In order to insure that no messages are lost along the way, because one stage may
be transmitting while the receiving stage may have no storage or buffer space available, a flow control
policy regulates message flow between neighboring nodes. Each node has a buffer with two limits, its
maximum capacity or high water mark and a lower threshold or low water mark. When a buffer is
filled to its high water mark, the transmitting node is stopped, and the buffer is drained of messages
until it reaches its low water mark, at which point the transmitter node can continue to send messages.
From the previous discussion, it is straightforward to show that if the high water marks for all nodes are
greater than or equal to two messages, then the maximum mean throughput rate is given by

maximum mean throughput rate = 1⁄max (E (TS ,1),...,E (TS ,N ))

In other words, the flow control strategy under these assumptions has no impact on the maximum data
mean throughput rate. No messages will be lost due to buffer space being unavailable, and the slowest
stage will be the bottleneck. Furthermore, all of the queueing occurs at the stage with the greatest
processing time, and all of the delay analysis sketched earlier carries over immediately.

6.7.4 Additional Reading

[1] Gene M. Amdahl, Validity of the Single Processor Approach to Achieving Large Scale
Computing Capabilities, AFIPS Spring Joint Computer Conference Proceedings, pp.483-485,
1967.

[2] H.D.Friedman, Reduction Methods for Tandem Queuing Systems, Operations Research, 13 (1),
121-131 (1965).

[3] Wolfgang Kramer, Investigations of Systems with Queues in Series, Institute of Switching and
Data Technics, University of Stuttgart, Report #22(1975).

6.8 One Processor, One Paging Drum, One Moving Head Disk

The hardware configuration of a computer system consists of one processor, one moving head disk, and
one paging drum. From the earlier mean value analysis, we know that the best concurrency we might
achieve is to keep all three devices simultaneously busy. A job will undergo some processing, some
input/output, some processing, and so forth, and then leave, but at the instant it leaves another job will
enter to take its place, fixing the total number of jobs in the system at M at all times. Each job accesses
the paging drum a mean of seven times, the moving head disk a mean of twice, and has a mean of ten
processor visits. The total mean time spent using each resource without contention is:

Tprocessor = 280 msec Tdrum = 280 msec Tdisk = 560 msec

As we increase the total number of jobs, the disk will reach complete utilization first, i.e., the disk is the
system bottleneck (why?). It also happens to be the slowest device, but it is really the total load per
node that determines the bottleneck, not the speed or number of visits individually.

The mean throughput rate for M=1 is

λ(M =1) =
1120 msec

1_ _________ = 0.88 jobs ⁄sec

The table below summarizes the results of calculating the processor utilization versus M:

Table 6.8.Degree of Multiprogramming vs Utilization_ _______________________________________________ ______________________________________________
M 1 2 3 4 ∞_ _______________________________________________ ______________________________________________

Uprocessor 1/4 4/11 11/23 26/57 1/2

Most of the gain in maximizing mean throughput rate is achieved for increasing M from one to three,
and the increase beyond two buys little:
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mean throughput rate =
Tprocessor

Uprocessor_ _______

Since we have three devices, the best we could ever do is to keep all three simultaneously busy. For the
numbers here, with the disk time per job twice as great as the processor or drum time per job, the disk
will reach completely utilization first. If the disk is completely busy, the processor and the drum will
each be utilized fifty per cent of the time. Since the mean number of jobs in execution equals the
fraction of time each device is busy, the total mean number of jobs in execution with M →∞ is two, one
on the disk, and one half each for the drum and processor. The Jackson network analysis refines this
mean value asymptotic analysis, quantifying the mean throughput rate more precisely: 0.3636 jobs per
second (M=2) versus 0.4783 jobs per second (M=3), a net gain of 23.9 per cent.

EXERCISE. Graph the mean throughput rate versus M . Plot upper and lower bounds on mean
throughput rate versus M that were derived earlier, and compare the results.

6.8.1 Additional Reading

[1] H.Kobiyashi, Modeling and Analysis: An Introduction to System Performance Evaluation
Methodology, Addison Wesley, Reading, Mass, 1978.

6.9 Prototype Directory Assistance System Case Study

A prototype of an online directory assistance system was built to handle telephone number directory
assistance queries. In a typical cycle of operation, a person at a terminal would be involved in the
following steps

[1] Receive a query from a customer via voice telephone

[2] Enter the given information into a computer terminal while talking to the customer

[3] Wait for the system to respond with the answer to the query

[4] Tell the customer the reply over the voice telephone

[5] Close out customer interaction

[6] Wait to receive the next customer query

The hardware configuration for the system consisted of C terminals, a single processor, a single disk
controller, and a single disk spindle. An operating system coordinated scheduling and management of
these devices, while a set of prototype application programs handled query processing.

Measurements on the prototype system in operation showed that

• The mean time spent by a person talking, reading, and thinking, denoted by TC , was twenty seconds

• The mean processor time per query was broken down into three sets of application programs

• The operator interface front end programs consumed 180 milliseconds of processor time per
query on the average

• The index manipulation application programs consumed 420 milliseconds of processor time per
query on the average

• The data retrieval application programs consumed 330 milliseconds of processor time per query
on the average

• Miscellaneous application programs that were invoked for accounting, system administration, and
other purposes consumed one hundred and forty milliseconds (140 msec) per query

Hence, the total mean processor time per query, TP , was 1.07 seconds

• The mean number of disk accesses per query was twenty six (26), with the disk capable of making
one access every twenty five milliseconds (25 msec) which results in a mean time the disk is busy
per query, denoted TD , of six hundred fifty milliseconds (650 msec)
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The above measurements on total mean processor time and disk access counts were based on examining
the mean resources required for one hundred different queries to the system; the measurement error on
the processor time was felt to be under ten milliseconds, while the measurement error on the number of
disk accesses was felt to be under one access.

6.9.1 State Space The system state space Ω is given by

Ω = {J_ = (JC ,JP ,JD ) JC + JP + JD =C }

JC clerks are active entering a query, JP jobs are queued or running on the processor, and JD jobs are
queued or running on the disk.

6.9.2 Mean Value Analysis The upper and lower mean value bounds on mean queueing time or
response time are given by

max



TP +TD ,

max [TP ,TD ]
C_ __________ − Tthink





≤ E (TQ ) ≤ C (TP +TD )

while the associated upper and lower mean value bounds on mean throughput rate are given by

TC +C (TP +TD )
C_ ____________ ≤ λ ≤ min



 TC +TP +TD

C_ _________,
max [TP ,TD ]

1_ __________




6.9.3 Jackson Network Analysis Provided a Jackson network model adequately fits the data, the
distribution of number of jobs at each node is given by

π(J_) = π(JC ,JP ,JD ) =
G
1_ __

JC !

TC
J

C

_ ____ TP
J

P TD
J

D

G =
K_ _ ∈Ω
Σ KC !

TC
K

C

_ ____ TP
K

P TD
K

D

The mean number of jobs inside the computer system is

E [JP + JD ] =
K_ _ ∈Ω
Σ [KP + KD ]π(K_ _)

The mean throughput rate is simply the fraction of time the processor is busy multiplied by the
maximum rate, in jobs per unit time, that the processor can execute jobs:

mean throughput rate =
K_ _ ∈Ω
Σ [1 − π(KC ,KP =0,KD )]⁄TP =

TP

E [min (1,JP )]_ ___________

The mean queueing time per job is the mean number of jobs in the system divided by the mean
throughput rate:

mean queueing time per query =
mean throughput rate

E [JP + JD ]___________________

For infinite source arrival statistics, this simplifies:

mean throughput rate = λ =
TC

C___

mean queueing time per query =
1 − λE (TP )

E (TP )_ __________ +
1 − λE (TD )

E (TD )_ __________

These bounds are plotted in the figures below, along with observed data gathered over an eight hour
time interval with twelve C =12 operators and calculations based upon a closed queueing network model
with M =C obeying product form type solution. The goodness of fit of the closed queueing network
model to actual data was felt to be acceptable for the purposes at hand; the mean value lower bound on
mean delay and upper bound on mean throughput rate were also felt to give an indication of
performance limitations at an early stage of development, which the data gathering and refinement via a
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Figure 6.13.Mean Throughput Rate vs Mean Processor Time/Query

Figure 6.14.Mean Response Time vs Mean Processor Time/Query

closed queueing network model only strengthened further. Note that the system is achieving a great deal
of concurrency, because the actual mean throughput rate is much closer to the upper bound, not the
single thread lower bound, as is the mean delay.

6.10 Multiple Class Jackson Network Model

C types of jobs arrive to a system for execution. Each job stream is submitted by P 0 sources.
FI ,I =1,...,C is the fraction of job submissions of type I . Each job takes a route through the network,
specified by RI (M ),M =1,...,S (I ) where M denotes the step for job type I . The job step execution time
is denoted by τIK time units of service at node K =1,...,N . The total amount of service required at node
K by a type I job is given by aggregating the total service time for each step, denoted by TIK . Each
node consists of PK processors.

6.10.1 State Space The state of the system at any time instant t is denoted by J_ where

J_ = (J 11,...,JC 1,...,J 1N ,...,JCN )
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with JIK (t ),1≤I ≤C ,1≤K ≤N denoting the number of jobs either waiting or in execution at node K of
type I . We denote by JK* the total number of jobs at node K and by J*I the total number of jobs in the
system of type I :

JK* =
I =1
Σ
C

JIK J*I =
K =1
Σ
N

JIK

Finally, the total number of jobs in the system at time t ,denoted by  J_(t ) , is given by:

 J_(t )  =
K =1
Σ
N

I =1
Σ
C

JIK (t )

6.10.2 Scheduling Policy The instantaneous total throughput rate at node K is given by

rK =

I =1
Σ
C

FI TIK

ΦK (JK* )_ _______

If the queue discipline is balanced with an arbitrary service time distribution at each node, then the
fraction of time the system is in state J_ is given by a product of three terms, a partition function term, a
source term, and a term that is the product of one term for each node:

π(J_) =
G
1_ __ (source term ) ×

K =1
Π
N

(node K term )

source term =











λ  J_ 

1

J 0!

T 0
J

0

_ ___

T 0

P 0_ __=λ,P 0→∞

 J_   =M

J 0 = P 0 −  J_ 

node K term = JK* !
l =1
Π
J

K*

ΦK (l )
1_ _____

I =1
Π
C

JIK !

(FI TIK )
J

IK

_ ________ K =1,...,N

6.10.3 Infinite Source Asymptotics For the infinite source case, this can be simplified:

π(J_) =
G
1_ __

I =1
Π
C

K =1
Π
N

JK* !
JIK !

(λFI TIK )
J

IK

_ _________

G =













∞

K =1
Π
N

1 − λ
I =1
Σ
C

FIK TIK

1_ _____________

λ≥
K

min




 I =1
Σ
C

FI TIK

PK_ _______






λ<
K

min




 I =1
Σ
C

FI TIK

PK_ _______






6.10.4 Delay Analysis For either the finite source or infinite source model, the mean queueing delay is
simply the sum of the mean queueing delay at each node:

E [TI ,Q ] =
K =1
Σ
N

E [TIK ,Q ] I =1,..,C

The mean queueing delay at each node is the mean queueing delay for all jobs at that node, apportioned
according to the utilization of the node by that type of job:
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E [TIK ,Q ] =

I =1
Σ
C

FI TIK

FI TIK_ _______ E [TK ,Q ]

where

E [TK ,Q ] =
λ

E [JK ]_ _____ =


I =1
Σ
C

FI TIK








D (P ,U ) ≡ 1 +

P (1−U )
C (P ,PU )_ ________





C (P ,P U ) is the Erlang delay function discussed earlier, and D (P ,U ) is the stretching factor that
multiplies the total mean job execution time at node K . We stress that this can be readily approximated
numerically using the Erlang delay numerical approximations discussed earlier. Here the multiple class
analysis involves analyzing a single class system, with the total load on each node apportioned among
the different jobs, and then calculating the multiple class delays by apportioning the delay at each node
according to loading.

6.10.5 An Example As an example, suppose a single processor node N =1 executes two types of jobs
C =2. Jobs arrive according to Poisson statistics, with total job arrival rate λ; FK denotes the fraction of
arrivals of type K =1,2. The state space is given by

Ω = {(J 11,J 21) JI 1≥0,I =1,2}

The fraction of time the system is in state J_ =(J 11,J 21) is given by

π(J 11,J 21) =
G
1_ __λJ

1* J 1* !
J 11!

(F 1T 11)
J

11

_ ________
J 21!

(F 2T 21)
J

21

_ ________

The partition function is given by

G =
1 − λ(F 1T 11+F 2T 21)

1_ _________________

In order to calculate the mean throughput rate, we calculate the mean number of total jobs at the node,
E (J 1* ), and then apportion the mean number of each type job according to the workload:

E (JI 1) =
F 1T 11+F 2T 21

FI TI 1_ ___________ E [J 1* ]

If there is only one processor, the mean number of jobs at the node is given by

E [J 1* ] =
1 − λ(F 1T 11+F 2T 21)

λ(F 1T 11+F 2T 21)_ _________________

The mean throughput rate is λ which equals the total mean number of jobs divided by the total mean
execution time per job:

λ =
F 1T 11+F 2T 21

E [min (J 1* ,P 1)]_ _____________

The total mean delay (waiting plus execution) is given by

E [TQ ] =
λ

E [J 1* ]_ ______ = D (P ,U )(F 1T 11+F 2T 21)

which for one processor is simply

E [TQ ] =
1 − λ(F 1T 11+F 2T 21)

F 1T 11+F 2T 21_ _________________

The mean throughput rate for each type of job is λI =λFI . Finally, the total mean delay for each type of
job is apportioned according to the load:
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E [TI ,Q ] =
F 1T 11+F 2T 21

FI TI 1_ ___________E [TQ ]

6.11 Bounds on Mean Throughput Rate in Product Form Network Distributions

Our goal is to obtain upper and lower bounds on mean throughput rate without explicitly evaluating the
mean throughput rate based on the product form formula. These bounds will in general be tighter than
the mean value bounds obtained earlier, but unfortunately at present are only known for the case where
there is one processor or serially reusable resource at each step of execution, unlike the mean value
bounds which hold for multiple processors (and resources) held at each execution step.

6.11.1 Model The mathematical model dealt with here consists of

• One type of job that migrates amongst N stations or stages

• A single processor available to execute a job at stage K =1,...,N

• M tasks or jobs circulate among the nodes

• TK denotes the total mean amount of service required by a job summed over all its visits to stage
K =1,...,N

The system state is denoted by Ω:

Ω = {(J 1,...,JN )
K =1
Σ
N

JK = M }

At any given instant of time, the system is in state J_ = (J 1,...,JN ) where JK ,K =1,...,N denotes the
number of jobs at node K (both waiting and in execution). The long term time averaged distribution of
number of jobs at each node at an arbitrary instant of time can be adequately modeled by product form
or separation of variables formula

PROB [J 1=K 1, . . . , JN =KN ] =
GM

1_ ___
I =1
Π
N

TI
K

I (K 1,...,KN )∈Ω

GM = GM (T 1,...,TN ) =
J_ ∈Ω
Σ

I =1
Π
N

TI
J

I

GM is the system partition function chosen to normalize the probability distribution. Granted these
assumptions, we observe that the mean throughput rate of jobs making a complete cycle of the system is
given by

λ =
TK

PROB [JK >0]_ ___________ =
GM (T 1,...,TN )

GM −1(T 1,...,TN )_ _____________

Straightforward manipulations of this expression yield the desired bounds:

K =1
Σ
N

TK + (M −1)T max

M_ _________________ ≤ λ ≤ min





T max

1_ ____,

K =1
Σ
N

TK + (M −1)Taverage

M_ ___________________ 




Tcycle + (M −1)T max

M_ ________________ ≤ λ ≤ min


 T max

1_ ____,
Tcycle + (M −1)Taverage

M_ __________________




where Tcycle is the total mean execution time for a job to cycle through all nodes

Tcycle =
K =1
Σ
N

TK

and Taverage is the average execution time per node

Taverage =
N
1_ _

K =1
Σ
N

TK =
N

Tcycle_ ____
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and T max is the largest mean execution time per node:

T max =
K =1,...,N
max TK

If the average time per node spent in execution by one job during a cycle and the maximum time per
node per job are roughly comparable to one another, these bounds will be quite close to one another.

6.11.2 Example The hardware configuration for a computer system consists of a single processor and a
single disk. The computer system is assumed to have M jobs resident in main memory at any one time,
the so called degree of multiprogramming. How should M be chosen to maximize mean throughput
rate?

This can be modeled by a two stage queueing network, N =2, with the total mean processor time per job
denoted by Tproc while the total mean number of disk accesses per job multiplied by the mean time per
disk access gives the total mean disk time per job, denoted by Tdisk . The table below summarizes mean
value upper and lower bounds on mean throughput rate for this system as a function of M , the degree of
multiprogramming, i.e., the number of jobs in the system.

M (Tproc + Tdisk )
M_ ______________ =

Tproc + Tdisk

1_ __________≤λ≤min


 max [Tproc ,Tdisk ]

1_ _____________,
Tproc + Tdisk

M_ __________




Table 6.9.Mean Value Bounds on λ with Tdisk =1.0_ ____________________________________________________________ ___________________________________________________________
M Tproc =0.3 Tproc =1.0

(Jobs) λlower λupper λlower λupper_ ____________________________________________________________ ___________________________________________________________
1 0.77 jobs/sec 0.77 jobs/sec 0.50 jobs/sec 0.50 jobs/sec
2 0.77 jobs/sec 1.00 jobs/sec 0.50 jobs/sec 1.00 jobs/sec
3 0.77 jobs/sec 1.00 jobs/sec 0.50 jobs/sec 1.00 jobs/sec














All of benefit occurs in increasing the degree of multiprogramming from one to two, because only two
resources can be kept busy at any time; going beyond two buys nothing at this level of analysis.

For comparison, Table 6.10 summarizes queueing network upper and lower bounds for the same system:

Tcycle + (M −1)T max

M_ ________________≤λ≤min


 T max

1_ ____,
Tcycle + (M −1)Taverage

M_ __________________




Tcycle = Tproc + Tdisk Taverage =
2

Tcycle_ ____ T max = max [Tproc ,Tdisk ]

Table 6.10.Queueing Network Bounds on λ with Tdisk =1.0_ ____________________________________________________________ ___________________________________________________________
M Tproc =0.3 Tproc =1.0

(Jobs) λlower λupper λlower λupper_ ____________________________________________________________ ___________________________________________________________
1 0.77 jobs/sec 0.77 jobs/sec 0.50 jobs/sec 0.50 jobs/sec
2 0.87 jobs/sec 1.00 jobs/sec 0.67 jobs/sec 0.67 jobs/sec
3 0.91 jobs/sec 1.00 jobs/sec 0.75 jobs/sec 0.75 jobs/sec














The numbers show that the queueing network bounds are considerably tighter than the mean value
bounds, for the numbers chosen here. Furthermore, for the case of equal job time balance, Tproc =Tdisk ,
the queueing network upper and lower bounds on mean throughput rate are identical and hence equal the
exact mean throughput rate, something that might not be obvious a priori! Finally, most of the benefit
occurs in going from M =1 to M =2 for the imbalanced case, Tproc =0.3,Tdisk =1.0, while the gain for the
balanced case in increasing M are much more gradual, provided the Jackson network assumptions are
valid. This is a refinement beyond the information provided in the mean value bounds.

6.11.3 Additional Reading

[1] P.J.Denning, J.P.Buzen, The Operational Analysis of Queueing Network Models, Computing
Surveys, 10 (3), 225-261 (1978).
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[2] C.Sauer, K.Chandy, Computer Systems Performance Modeling, Prentice-Hall, Englewood
Cliffs, NJ, 1981.

[3] J.Zahorjan K.C.Sevick, D.L.Eager, B.Galler, Balanced Job Bound Analysis of Queueing
Networks, Communications of the ACM, 25 (2), 134-141 (1982).
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Problems

1) An online transaction processing system consists of one processor and C clerks at terminals. The
mean time a clerk spends reading, thinking and entering the transaction is denoted by Tthink . The mean
time required for the processor to execute the transaction is denoted by Tproc .

A. What is the state space for this system?

B. What are the resources required for each step of execution?

C. What are the bottlenecks?

D. Plot bounds on mean throughput rate and mean delay to execute a transaction versus number of
clerks using mean value analysis.

E. Plot the mean throughput rate and mean delay versus number of clerks using a closed Jackson
queueing network, and compare with the mean value analysis.

F. Suppose the total mean arrival rate of jobs is fixed at λ such that

λ = constant =
Tthink

C_ ____ C →∞,Tthink →∞

which is the infinite source model for this system. Plot the mean throughput rate and mean delay
versus arrival rate, and compare with the closed Jackson network analysis and mean value bounds.

2) An online transaction processing system requires dedicated links from front end terminal controllers
to back end data base management systems. Each transaction holds a circuit for a mean time interval of
one tenth of a second. The arrival statistics are assumed to be simple Poisson. During a normal
business hour the system must process ten transactions per second with the fraction of transactions
blocked due to all links being busy of less than one transaction in ten thousand. During a peak business
hour the system must process thirty transactions per second with the fraction of transactions blocked due
to all links being busy of less than one transaction in one hundred.

[1] If all circuits are busy, a transaction will be queued until a circuit becomes available.

A. How many trunks are needed to meet design goals?

B. Repeat the above if the mean transaction holding time is one fifth of a second.

C. Repeat the above if the mean transaction holding time is one twentieth of a second.

[2] If all circuits are busy, a transaction is rejected or blocked, and presumably will retry later.

A. How many trunks are needed to meet design goals?

B. Repeat the above if the mean transaction holding time is one fifth of a second.

C. Repeat the above if the mean transaction holding time is one twentieth of a second.

[3] Repeat both A) and B) for the following two new design goals

A. During a normal business hour, no more than one transaction in one hundred is delayed
due to trunks not being available. During a peak business hour, no more than one
transaction in five is delayed due to trunks not being available.

B. During a normal business hour, no more than one transaction in one million is delayed due
to trunks not being available. During a peak business hour, no more than one transaction
in ten thousand is delayed due to trunks not being available.
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3) Insurance agents dial up through the voice telephone network a central computer, and then use a
terminal connected to a modem to query the central computer about different types of insurance policies
for potential customers. A five year plan has been proposed. During the first two years of operations,
the system should handle five queries per second during a normal business hour, and ten queries per
second during a peak business hour. During the next three years, the system should handle twenty
queries per second during a normal business hour, and thirty queries per second during a peak business
hour. A query session has a mean duration of five minutes. If all ports are busy when a query attempt
occurs, a busy tone is generated, and the query is delayed.

[1] Assume all blocked queries are lost or rejected and will retry later:

A. How many modems are needed if the fraction of queries blocked due to no modem being
available is no more than one query in ten?

B. Repeat if the criterion is no more than one query in five is blocked?

C. Repeat if the criterion is no more than one query in one hundred is blocked?

D. Repeat all the above if the mean holding time per query is increased to ten minutes.

[2] Assume all blocked queries are queued or delayed until a port becomes available. Repeat all the
above.

4) Jobs arrive for service at a parallel group of P processors. The arrival statistics are Poisson with
mean arrival rate λ. The holding time or service time per job forms a sequence of independent
identically distributed exponential random variables with mean service time E (TS ). The offered load is
the mean number of busy servers provided we had an infinite number of servers, and this is measured in
Erlangs, and denoted by A:

A = λE (TS ) = o f f ered load (Erlangs )

The fraction of time P or more servers are busy with an infinite number of available servers is denoted
by F (P ,A ) and is given by

F (P ,A ) = f raction o f time P or more busy servers = e−A

K =P
Σ
∞

K !
A K
_ ___

A. Show the following relationships between Erlang’s blocking function,

B (P ,A ) =

K =0
Σ
P

K !
A K
_ ___

A P ⁄P !_ ______ A = o f f ered load (Erlangs ) P = number o f servers

which is also called Erlang’s function of the first kind and Erlang’s delay function,

C (P ,A ) =

K =0
Σ

P −1

K !
A K
_ ___ + A P ⁄(P −1)!(P −A )

A P ⁄(P −1)!(P −A )_ _______________________

which is also called Erlang’s function of the second kind:

B (P ,A ) < F (P ,A ) < C (P ,A )

Provide a physical interpretation for why this result is reasonable: draw some pictures!

B. Show the following:

C (P ,A ) =
(P ⁄A )−1+B (P ,A )

(P ⁄A )B (P ,A )_______________

C. Show the following:
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C (P ,A ) =

A B (P −1,A )
P − A_ ___________ + 1

1_ _______________

D. Show the following:

B (P ,A ) =
P + A B (P −1,A )

AB (P −1,A )_ _______________

E. Show the following:

C (P ,A ) =
1 +

A
P −A_ ____

(P −1−A )C (P −1,A )
P −1−A C (P −1,A )_ ________________

1_ __________________________

5) The hardware configuration for an online transaction processing system consists of one processor and
one disk. Each transaction requires a total mean amount of processor time denoted by TP and a total
mean number of disk accesses N each of which requires τD seconds, so the total disk access time per
job is denoted by TD . The system state is given by J_ = (JP ,JD ) where JP denotes the number of jobs
waiting or in execution at the processor queue and JD denotes the number of jobs waiting or in
execution at the disk queue. An infinite source open queueing network is felt to adequately model the
distribution of the number of jobs at each queue; if λ is the total mean arrival rate, in transactions per
unit time, and π(J_) denotes the fraction of time the system is in state J_, then

π(J_ =(JP ,JD )) =
G
1_ __ [λTP ]

J
P [λTD ]

J
D

A. Calculate the system partition function G

G =
I =0
Σ
∞

(λTP )I

J =0
Σ
∞

(λTD )J

B. Calculate the total mean number of jobs in system from first principles:

E [JP + JD ] =
J

P
=0
Σ
∞

J
D

=0
Σ
∞

[JP + JD ]π(JP ,JD )

C. Show that the mean delay (waiting plus execution time) per transaction equals

E [Tdelay ] =
λ

E [JP + JD ]_ __________ =
λ

TP_ __
∂TP

∂G_ ___ +
λ

TD_ ___
∂TD

∂G_ ____

D. For N =10,20 disk accesses, with one processor and one disk, and τD =50 msec while
τP =300 msec ,700 msec calculate the mean throughput rate and the mean delay.

6) The hardware configuration for a computer system consists of a single processor and a single disk.
The system state at any time is denoted by J_ =(JP ,JD ) where JP denotes the number of jobs waiting or
in execution on the processor, and JD denotes the number of jobs waiting or in execution on the disk.
Each job requires some processor time and some disk access time, in order to be completely executed.
The fraction of time a computer system spends in state J_ is denoted by π(J_). We are given some mean
value or average performance metric E[PM] which is a functional of the system state J_, denoted by
PM (J_):

E [PM ] =
J_ ∈Ω
Σ PM [J_]π(J_)

A. Show that the mean delay per transaction is an example of such a performance metric by
exhibiting an explicit formula for E[PM]
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B. Show that the processor utilization is an example of such a performance metric by exhibiting an
explicit formula for E[PM]

C. If we wish to assess the sensitivity of the performance metric to a change in speed of the
processor, show that

∂(1⁄TP )
∂E [PM ]_ _______ = E



 ∂(1⁄TP )
∂PM (J_)_ _______





− TP covar [JP ,PM (J_)]

where covar (I ,J ) denotes the covariance between I ,J , and illustrate what this is explicitly for the
mean delay and processor utilization performance metrics

D. Suppose that the time per transaction to access the disk is state dependent, such that it equals the
product of two terms, the first a disk speed dependent but state independent factor, and the second
a state dependent dimensionless function (which accounts for the disk scheduling algorithm):

TD = TD ,speed f (JD ) f (JD ) =


 (2JD −1⁄JD )
1

JD >0

JD =0

Write an analytic expression for the fraction of time the system is in state (JP ,JD ), denoted by
π(JP ,JD ), which is a modification of the expression shown earlier.

E. We wish to assess the sensitivity of changing the speed of the disk while keeping the same
scheduling algorithm. Show that

∂(1⁄TD )
∂E [PM (J_)]_ __________ = E



 ∂(1⁄TD )
∂PM (J_)_ _______





− TD covar [JD ,PM (J_)]

Evaluate this for a total mean delay performance measure and a disk utilization performance
measure

F. If TD =1 explicitly evaluate all these formulae for TP =1,=0.5,=0.2.

G. Suppose you can get one fast disk or two slower disks such that

TD ,one f ast disk = 1⁄2TD ,one slow disk

What is the maximum mean throughput rate of the disk for either system? Repeat all of the above
(including substitution of numbers into all formulae).

7) The hardware configuration for a computer system consists of a central processor unit (CPU) and two
direct memory access (DMA) disk controllers each handling a single spindle. Jobs arrive for execution
to this system in such a manner that the staging queue is never empty. The staging queue limits the
degree of multiprogramming to a constant level of M jobs always in the system. Measurements are
carried out on this system, and are summarized in the table below:

Table 6.11.Measurement Data Summary_ __________________________________________________ _________________________________________________
Attribute Symbol Quantity_ __________________________________________________ _________________________________________________

Processor Time/Job Tproc 2 sec
Mean Time/Disk Access Taccess 50 msec
Mean Number of Disk Accesses/Job:
To Spindle I Ndisk ,I 50
To Spindle II Ndisk ,II 20

Answer the following questions:

A. What is the state space for the operations of this system?

B. Plot upper and lower bounds on mean throughput rate of executing jobs versus M and state what
the bottleneck resource is as M →∞
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C. Suppose that the long term time averaged fraction of time the system is in a given state can be
adequately modeled by a product form distribution. What is an explicit expression for this
formula?

D. Plot the mean throughput rate of executing jobs versus M assuming the product form distribution
adequately models the system operation on the same plot as the mean value upper and lower
bounds on mean throughput rate.

E. Plot upper and lower bounds on the mean throughput rate of executing jobs versus M assuming
the a product form adequately models system operation. Do this on the same plot as the mean
value upper and lower bounds on mean throughput rate.

F. Suppose that the file access load is redistributed so that the mean number of disk accesses per job
stays the same but is equal to each spindle. Repeat all the above.

8) A data network consists of three nodes, A, B, C. At each node there are two Poisson streams of
arriving messages of equal intensity intended for each of the other nodes, with each stream having mean
arrival rate λ messages per unit time. Each message consists of a random number of bits with a mean
of B bits per message. Each node is connected to every other node by two one way links, with one link
for transmission and the other for reception. All links have capacity C bits per second.

A. What is the state space for this system?

B. What is an upper bound on the total number of messages per unit time carried by the network
versus the individual message stream arrival rate λ?

C. Assuming a Jackson network model is statistically valid, what is an explicit expression for the
fraction of time the system is in a given state?

D. Assuming the validity of a Jackson network model, what is an explicit expression for mean
message delay as a function of model parameters?

E. If A can only transmit to C, C can only to transmit to B, and B can only transmit to A, i.e., we
have a ring, with each link having capacity 2C bits per second, repeat all of the above analysis.
Which system should be chosen under what conditions?

9) N clerks each submit a single type of job to a computer system. The hardware configuration for the
computer system consists of a single processor and a single disk. Each clerk spends a variable amount
of time reading, thinking, and entering the job, and then waits for the system to respond before starting
the cycle over again. Each job undergoes processor execution, following by a single disk access,
followed by more processor execution, followed by a single disk access, until eventually the processor
completes execution of the job. The table below summarizes the quantitative data for this system:

Table 6.12.Measurement Data_ __________________________________________________ _________________________________________________
Attribute Symbol Quantity_ __________________________________________________ _________________________________________________

Mean Time Thinking Tthink 15 sec
Total Processor Time/Job Tproc 3 sec
Probability Job Migrates CPU->Disk R 360/361
Probability Job Migrates CPU->Clerk 1−R 1/361
Mean Time per Disk Access Taccess 50 msec

Answer the following questions:

A. What is a suitable state space to describe the operation of this system?

B. What is the mean number of disk accesses per job?
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C. Plot upper and lower bounds on mean throughput and mean response time per job versus the
number of active clerks.

D. What are the potential bottlenecks in this system?

E. Suppose that the long term time averaged fraction of time the system is in a given state can be
adequately modeled by the product form probability distribution. What is an explicit expression
for this probability distribution in terms of measurement data?

F. Plot the mean throughput rate and mean response time per job versus the number of active clerks
assuming the product form distribution adequately models the system operation. Do this on the
same plot as the mean value upper and lower bounds.

G. Suppose that the total rate at which jobs are submitted to the system is fixed at λ≡N ⁄Tthink while
the number of clerks is allowed to become infinite. What is the state space for this system? If a
product form distribution adequately models the long term time averaged operational statistics,
plot the mean throughput rate and mean response time per job versus the arrival rate λ.

10) Students want to use N terminals attached to a computer system that consists of a single processor.
The statistics for students requesting or demanding a terminal are adequately modeled by a Poisson
process with mean arrival rate λ which has the numerical value of two (2) sessions per hour. If all
terminals are occupied with a student when a request occurs, the requesting student goes away. Once a
student gets a terminal, the student keeps the terminal busy for a session. Each session consists of a
series of interactions between the student at the terminal and the computer. Each interaction consists of
a time interval with mean Tthink =4 sec where the student is reading and thinking and typing, and a time
interval for the system to respond. With only one student at one terminal using the computer, the mean
time for the system to respond is denoted by Tsystem =2 sec. There are a mean number of I =100
interactions per student during a session. Once a student completes a session, the student leaves, freeing
the terminal for another student.

A. What is the state space for describing the operation of this system?

B. Plot an upper bound on the mean number of sessions per unit time that the system can service
versus N =1,2,3.

C. If the system statistics for the number of students at terminals and the number of requests in the
computer can be adequately modeled by a product form distribution, write an explicit expression
for this distribution as a function of N .

D. Using the above product form distribution, plot the fraction of student requests that are blocked or
rejected versus N =1,2,3.

E. Using the above product form distribution, plot the mean number of sessions per unit time that the
system services versus N =1,2,3.

F. Plot the mean time per session for students that are not rejected for N =1,2,3.

11) A computer system executes one type of job. The system hardware configuration consists of one
processor, one fixed head disk (called a drum), and one moving head disk. The file system is configured
with some files physically located on the drum and others on the disk. Each job requires some
processor time, followed by a secondary storage access, and so on until the job is completely executed.
There are N secondary storage accesses, and N +1 processor interactions per job. The system holds M
jobs at any one time, either waiting or running on the processor, or waiting and accessing secondary
storage. The secondary storage subsystem consists of a moving head disk and a fixed head disk (also
called a drum). The file system is configured so that a fraction F of the secondary storage requests are
made to the drum, and the remainder to the disk. The mean time per processor interaction is Tcpu . The
mean time for a disk access is Tdisk , while the mean time for a drum access is Tdrum . In what follows,
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use the following numbers:

Table 6.13.Numerical Parameters_ ______________________________ _____________________________
Tcpu 10 msec
Tdrum 20 msec
Tdisk 30 msec

N 25 accesses
M 5 jobs

Answer the following questions:

A. What is the system state space?

B. Plot an upper bound on the mean rate of executing jobs as a function of F .

C. What choice of F maximizes the upper bound on the mean rate of executing jobs?

D. If the system statistics for the number of jobs queued or in execution at the processor, drum and
disk can be adequately modeled by a product form distribution, write an explicit expression for
this formula.

E. Using the above product form formula, plot the mean throughput rate of executing jobs versus F
on the same plot as the upper bound.

12) A communication system administrator wishes to determine the benefits of pooling resources. A
single type of message holds a link for a mean time interval of two seconds. There are two groups of
links that can handle this type of message. The first group has three links and messages arrive at a rate
of one message per second. The second group has four links and messages arrive at a rate of three
messages every two seconds. The administrator can also pool the links into one group of seven links,
with a total message arrival rate of five messages every two seconds.

A. What is the state space for each configuration?

B. Based on a mean value analysis, which configuration should be chosen?

C. If messages are blocked if no link is available, which configuration will achieve the lowest total
blocking?

D. If messages are delayed if no link is available, which configuration will achieve the lowest total
mean delay?
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