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CHAPTER 2: CONCURRENCY AND PARALLELISM

In this chapter our goal is to explicitly calculate bounds on the mean throughput rate of executing a
single transaction type or a given transaction workload mix for a particular class of models of computer
communication systems. In many instances, this provides a fundamental limitation on system
performance: if a packet switch can only switch one hundred packets per second, then no amount of
chicanery (e.g., clever scheduling, increasing the degree of multiprogramming, adopting a new paging
strategy, and so forth) will allow this packet switch to switch two hundred packets per second. On the
other hand, we must ask ourselves what is the best that we might do: is there any intrinsic reason why
the packet switch can switch at most one hundred packets per second, or is it possible to increase this to
five hundred packets per second by judicious changes in hardware, operating system kernel, data base
manager, and application code?

The crux of performance analysis is describing how a computer communication system processes each
step of a job. The models described here require as inputs a detailed description of the step by step
processing of a job, and give as outputs bounds on system performance. By dealing with examples or
tractable models of parallelism and concurrency for computer systems, we hope to build up intuition
about the benefits of different approaches. A disclaimer is in order: systems that improve performance
via added concurrency are in many ways more sensitive to the workload than systems that improve
performance via raw speed, because in order to take advantage of concurrency some knowledge of the
workload must be used. What happens when the workload changes? Caveat emptor!

2.1 General Approaches

Figure 2.1 shows the two fundamental approaches to parallelism in computer communication systems.

Figure 2.1.Pipeline and Parallel Configurations

The hardware configuration and operating system are fixed: a group of processors interconnected by a
high speed bus, with a network operating system to coordinate resource allocation. How do we structure
a set of application programs to take advantage of this type of system?

At one extreme of parallelism, the group of processors operates in parallel (i.e., fed by a single queue or
work stream) Each processor does all the work for each job. As more processors are added, more work
can be done. The total delay will be approximately the processing time of a job, because if we have
sufficiently many processors it is highly likely that one will always be available to handle a job.
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At the other extreme of parallelism, processors are functionally dedicated to doing a given step of a job.
Each step of a job is done sequentially, or in tandem, like a bucket brigade or pipeline of processors.
All the input is handled at one stage and all the output at another stage. The pipeline has a great deal of
interaction between adjacent stages, unlike the purely parallel case, and hence the potential benefits may
not be nearly as great with the pipeline as with the parallel processor case, even though both systems
attempt to take advantage of concurrency in the workload.

Finally, we might have an arbitrary network of processors that jobs migrate amongst, which would be a
combination of the purely parallel and purely pipeline cases. We will discuss in more detail the two
simple cases of parallel and pipeline processing because we can gain insight into the more complicated
but realistic situation of the general network.

2.1.1 An Arithmetic Logic Unit An arithmetic logic unit must perform three jobs

Figure 2.2.Arithmetic Logic Unit Block Diagram

[1] Fetch an instruction from memory

[2] Decode the instruction

[3] Execute the instruction

This is an example of a pipeline with three distinct functions.

2.1.2 Floating Point Accelerator A floating point accelerator is a special purpose processor that can
accelerate or assist general purpose processors to perform floating point operations at high speed. Here
the steps that must be carried out are

Figure 2.3.Floating Point Accelerator Block Diagram

[1] Subtraction of the exponents

[2] Shifting right the fraction from the number with the smaller exponent by an amount
corresponding to the difference in exponents

[3] Addition of the other fractions to the shifted one

[4] Counting the number of leading zeroes in the sum

[5] Shifting left the sum by the number of leading zeroes and adjusting the exponent accordingly

Although this partitioning is typical, there are variations in practice to account for overflow and
underflow detection, representation of zero, and other number bases.

2.1.3 Additional Reading

[1] P.M.Kogge, The Architecture of Pipelined Computers, Hemisphere Publishing, Washington,
DC, 1981
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2.2 An Example: Printing Ten Jobs

Ten jobs are present at an initial time, say zero. Each job requires LK ,K =1,...,10 lines to be printed.
These number are given in the table below:

Table 2.1.Lines for Each Job_ _______________________________ ______________________________
Job Lines Job Lines_ _______________________________ ______________________________
A LA =2,000 F LF =1,000
B LB =1,000 G LG =1,000
C LC =1,000 H LH =2,000
D LD =1,000 I LI =2,000
E LE =2,000 J LJ =1,000

We see six jobs need one thousand lines to be printed, and four jobs need two thousand lines to be
printed. The mean number of lines that must be printed is:

Laverage =
10
1_ __

K =1
Σ
10

LK = 1,400 lines

The average is a useful statistic if most jobs require roughly the average (same) number of lines to be
printed. That is the case here; in fact, six jobs require less than the average, while four require more
than the average.

We want to compare the performance of the following configurations

• A single printer that can print one thousand lines per minute

• Two printers that are fed from a common buffer, each of which can print one thousand lines per
minute

• A single printer that can print two thousand lines per minute

We will measure total system performance via mean throughput rate which is defined as the total
number of jobs (denoted by N =10 here) divided by the total time to execute these jobs, denoted by
Tf inish , called the make span:

mean throughput rate =
Tf inish

N_ _____ jobs ⁄minute

We will measure job oriented performance by the mean time a job, say job K , spends in the system,
either waiting to be printed or being printed, until it is completed. We will call this time interval for job
K its flow time and denote it by FK ,K =1,...,N =10. The total mean flow time is the flow time averaged
over all jobs:

mean f low time =
N
1_ _

K =1
Σ
N

FK =
10
1_ __

K =1
Σ
10

FK ≡ E (F )

2.2.1 A Single Printer The single printer case gives us a baseline or benchmark for measuring
performance against. It is a natural starting point for virtually any investigation. No matter what order
is used to execute jobs, the total number of lines printed for this set of jobs is:

Lf inish ,single printer =
K =1
Σ
10

LK = 14,000 lines

The mean throughput rate is simply the total number of jobs divided by the mean time to print all the
jobs:

mean throughput rate for one printer =
Tf inish

N_ _____=
Taverage

1_ ______ Taverage =
N

Tf inish_ _____

If a single printer can print one thousand lines per minute, then
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mean throughput rate = 10 jobs in 14 minutes

while if a single printer can print two thousand lines per minute, then

mean throughput rate = 10 jobs in (14⁄2)=7 minutes

Suppose that we print the job stream according to a priority schedule. How will this impact the flow
time or time in system statistics? Let’s try two special cases to gain insight. The first priority schedule
operates as follows: job K is said to have higher priority than job J if LK ≤LJ ;K ,J =1,...,N =10. In other
words, the fewer the lines, the shorter the printing time of a job, the higher its priority. The motivation
is to let short jobs get printed quickly, so that they will not have to wait for long jobs, which take a long
time anyway. Shortest processing time first scheduling attempts to minimize job delay or flow time
statistics.

Two additional rules will be used:

• Once a job begins printing, it runs to completion, and cannot be preempted by any other job

• No job can be printed in parallel with itself. For one printer this is no problem, but for two printers
this would allow us to split a job, and we do not allow this

We will refer to this schedule as SPT/NP (shortest processing time has highest priority, with no
preemption) in what follows. The schedule for this case is shown below:

Figure 2.4.SPT/NP Single Slow Printer Schedule

The mean flow time for this schedule for a single one thousand line per minute printer is given by

E (FSPT ⁄NP ) =
10
1_ __[1+2+3+4+5+6+8+10+12+14] = 6.5 minutes

For a single two thousand line per minute printer, the mean flow time is simply half this.

The second priority schedule operates as follows: job K is said to have higher priority than job J if
LK ≥LJ ;K ,J =1,...,N =10. In other words, the longer the printing time of a job, the higher its priority.
We will refer to this schedule as LPT/NP (longest processing time has highest priority, with no
preemption) in what follows. The idea for choosing this schedule is that long jobs will take a long time
to print, so we might as well begin printing them as soon as possible in order to finish all the work as
soon as possible. The longest processing time first rule is oriented toward optimizing a system
performance measure, the fraction of time the system is busy doing work. The schedule for this case is
shown below:

Figure 2.5.LPT/NP Single Slow Printer Schedule

The mean flow time for this schedule for a single one thousand line per minute printer is given by

E (FLPT ⁄NP ) =
10
1_ __[2+4+6+8+9+10+11+12+13+14] = 8.9 minutes

For a single printer capable of two thousand lines per minute, the mean flow time is half this.



-- --

CHAPTER 2 CONCURRENCY AND PARALLELISM 5

Each schedule results in the same total system mean throughput rate, but radically different mean flow
time statistics.

2.2.2 Two Parallel Printers For the second case, two parallel printers, the worst we could do would be
to never use one processor. One alternative is to schedule the jobs, with the shortest execution time jobs
having the highest priority:

Figure 2.6.SPT/NP Two Slow Printer Schedule

This means the shortest amount of time to execute all ten jobs is Tf inish =7.

The mean throughput rate is given by

mean throughput rate for two parallel printersSPT ⁄NP =
7
10_ __ =

0.7 minute
1_ _________

The speedup compared with a single processor is given by comparing the time to finish all jobs on one
processor versus the time to finish all jobs on two processors:

speedupSPT ⁄NP =
Tf inish (P =2)

Tf inish (P =1)_ __________ =
7
14_ __ = 2

The mean flow time is given by

E (FSPT ⁄NP ) =
10
1_ __[1+1+2+2+3+3+5+5+7+7] = 3.6 minutes

On the other hand, we might print jobs with the longest processing time jobs having the highest priority:

Figure 2.7.LPT/NP Two Slow Printer Schedule

The mean throughput rate for printing jobs is given by

mean throughput rate for two parallel printersLPT ⁄NP =
7
10_ __ =

0.7 minutes
1__________

The speedup over a single printer is given by

speedupLPT ⁄NP =
Tf inish (P =2)

Tf inish (P =1)_ __________ =
7
14_ __ = 2

Note that the mean throughput rate and the speedup depend upon the scheduling algorithm. The best
possible speedup would be to do all the jobs in half the time of a single processor, while the worst
would be to just use one processor (and ignore the other):
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1 ≤ speedup ≤ 2

Finally, the mean flow time per job for this schedule is given by

E (FLPT ⁄NP ) =
10
1_ __[2+2+4+4+5+5+6+6+7+7] = 4.8 minutes

The mean flow time for scheduling longest jobs first is radically larger than the mean flow time for
scheduling shortest jobs first.

2.2.3 Summary We summarize all these findings in the table below:

Table 2.2.Performance Measure Summary_ _________________________________________________________________ ________________________________________________________________
Configuration Schedule Mean Throughput Rate Mean Flow Time_ _________________________________________________________________ ________________________________________________________________

One Slow Printer SPT/NP 1 job every 1.4 min 6.5 minutes
One Slow Printer LPT/NP 1 job every 1.4 min 8.9 minutes

Two Slow Printers SPT/NP 1 job every 0.7 min 3.6 minutes
Two Slow Printers LPT/NP 1 job every 0.7 min 4.8 minutes
One Fast Printer SPT/NP 1 job every 0.7 min 3.25 minutes
One Fast Printer LPT/NP 1 job every 0.7 min 4.45 minutes

What conclusions do we draw?

• Using one fast vs two slow printers has no impact on mean throughput rate

• One fast printer offers slightly better mean flow time compared with two slow printers

• Shortest processing time scheduling results in a lower mean flow time compared with longest
processing time scheduling

We will see these lessons repeated later.

2.2.4 Sensitivity One of the primary reasons for carrying out performance analysis studies is to
determine the sensitivity of the conclusions to parameters. We might not know the number of lines that
must be printed for each job, and are only using guesses or estimates. Two types of studies can be
done:

• Changing all the numbers by a small amount. For example, we might change the number of lines
printed for each job up or down by ten lines or less, and see what changes in mean throughput rate
and mean flow time.

• Changing a small set of numbers by a large amount. For example, we might change job J from one
thousand lines to ten thousand lines.

Let’s pursue the second type of study, changing job J from one to ten thousand lines of printing, and
study the consequences.

First, what about a single slow printer? The SPT/NP schedule is shown below:

Figure 2.8.SPT/NP Schedule for One Slow Printer (10,000 Lines for Job J)

The make span is the time required to completely execute all the work. The make span for this
schedule is twenty three minutes, and hence the mean throughput rate is
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mean throughput rate =
Tf inish ,SPT ⁄NP

N_ __________ = 1 job every 2.3 minutes

The mean flow time for SPT/NP is

E (FSPT ⁄NP ) =
10
1_ __ [1+2+3+4+5+7+9+11+13+23] = 7.8 minutes

For a single high speed printer, the mean flow time is simply half of this, and the mean throughput rate
is twice as high.

On the other hand, for LPT/NP scheduling on a single slow printer, we see the make span is identical
with SPT/NP, as shown in the figure below:

Figure 2.9.LPT/NP Schedule for One Slow Printer (10,000 Lines for Job J)

By inspection from this figure, the mean flow time is

E (FLPT ⁄NP ) =
10
1_ __ [10+12+14+16+18+19+20+21+22+23] = 17.5 minutes

For a single high speed printer, the flow time is half of this, while the mean throughput rate is twice as
big.

Next, for two parallel printers, the SPT/NP schedule is shown below:

Figure 2.10.SPT/NP Schedule for Two Slow Printers (10,000 Lines for Job J)

The mean throughput rate is simply

mean throughput rate =
Tf inish ,LPT ⁄NP

N_ __________ =
16 minutes

10_ _________

while the mean flow time is

E (FSPT ⁄NP ) =
10
1_ __[1+1+2+2+3+4+5+6+7+16] = 4.7 minutes

Finally, for two parallel printers, the LPT/NP schedule is shown below:

The mean throughput rate is simply

mean throughput rateLPT ⁄NP =
Tf inish ,LPT ⁄NP

N_ __________ =
12 minutes

10_ _________

while the mean flow time is

E (FLPT ⁄NP ) =
10
1_ __[10+2+4+6+8+9+10+11+11+12] = 8.3 minutes
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Figure 2.11.LPT/NP Schedule for Two Slow Printers (10,000 Lines for Job J)

All these calculations are summarized in the table below:

Table 2.3.Performance Measures(10,000 Lines for Job J)____________________________________________________________________________________________________________________________________
Configuration Schedule Mean Throughput Rate Mean Flow Time____________________________________________________________________________________________________________________________________

One Slow Printer SPT/NP 1 job every 2.3 minutes 6.5 minutes
One Slow Printer LPT/NP 1 job every 2.3 minutes 17.5 minutes
Two Slow Printers SPT/NP 1 job every 1.6 minutes 4.7 minutes
Two Slow Printers LPT/NP 1 job every 1.2 minutes 8.3 minutes
One Fast Printer SPT/NP 1 job every 1.15 minutes 3.9 minutes
One Fast Printer LPT/NP 1 job every 1.15 minutes 8.75 minutes

2.2.5 Summary What lessons have we learned?

• A single printer mean throughput rate is less insensitive to scheduling compared with a distributed
two printer system

• In order to achieve greater mean throughput rate, either we speed up a single printer or we add
printers; how many and where depend upon the workload

• Responsiveness or mean flow time is critically influenced for any of these examples by the workload
and the configuration

• One large job can impact the performance of the two printer system much more adversely than the
single high speed printer system

2.3 A More General Example

N jobs are present at some initial time, say zero, and are executed on P identical processors. The
execution times for the jobs are denoted by TK ,K =1,...,N . The jobs are independent of one another:
there is no precedence ordering among the jobs. How long does it take to execute all the jobs? One
way to answer this is to calculate the total execution time, Tf inish or TF , required for each possible
ordering of the jobs; since there are N jobs, there are N! schedules, and we will find out for moderate
values of N such as 20 to 30 that even trying out one schedule a second can take us centuries to
investigate all possible schedules. Our approach here is to find upper and lower bounds on the total
time required to execute all N jobs on P processors without investigating all possible scheduling rules.

2.3.1 One Processor Used First, suppose we had P processors, but only used one processor. This is
the worst we might do: it gives an upper bound on TF equal to the sum of the execution times for all
the jobs.

TF ≤
K =1
Σ
N

TK

Furthermore, this gives us a lower bound on mean throughput rate:
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mean throughput rate ≥
TF

N_ __ =

K =1
Σ
N

TK

N_ _____ =
Taverage

1_ ______ Taverage =
N

K =1
Σ
N

TK

_ _____

While this is an example of one type of upper bound on the total make span or an equivalent lower
bound on mean throughput rate, it is not the best possible set of bounds. How can we do better? A
digression is needed.

2.3.2 The Geometry of Static Scheduling The figure below shows an illustrative mode of operation for
this system: the number of busy processors versus time is plotted. Initially all processors are busy, until
one by one they become idle and all the work is completed at TF .

Figure 2.12.Illustrative Operation: Number of Busy Servers vs Time

We denote by S (t ) the number of busy servers at time t . The area under the curve formed by S (t ) is
simply the total amount of processor time all the jobs require:

0
∫
T

F

S (t )dt =
K =1
Σ
N

TK

In the figure above, we have denoted by T̃ the duration of time from the last instant when all the
processors are busy until all processors are first idle. Our program is to relate the model ingredients,
i.e., the area under the curve S (t ), the number of processors, the job processing times, and TF , by
bounding T̃ .

2.3.3 A Lower Bound on Makespan What is the shortest total execution time? Since we have P
processors, they could all start execution at the same time and finish at the same time:

P
K =1
Σ
N

TK

_ _____ ≤ TF

On the other hand, if one job requires more execution time than the average amount of processor time
per job, then this one job will determine the shortest possible make span:

K
max TK = T max ≤ TF

We can combine all these bounds:

max




T max, P

K =1
Σ
N

TK

_ _____




 ≤ TF

If no one job requires significantly more execution time than any other job, then
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T max < <
P

K =1
Σ
N

TK

_ _____

and hence all processors are simultaneously executing work.

On the other hand, if one job requires significantly more execution time than any other job, then

T max ∼∼
K =1
Σ
N

TK

and effectively only one processor is busy executing work.

2.3.4 An Upper Bound on Makespan The largest that T̃ might be is the largest time required to run
any single job:

T̃ <=
K

max TK = T max

On the one hand, we can lower bound the total area under this curve by demanding that all but one of
the processors finish all their work at the same time, and the final processor is busy executing one job
for T̃ :

P [TF − T̃ ] + T̃ ≤
K =1
Σ
N

TK

If we rearrange this, we see that

TF ≤
P

K =1
Σ
N

TK

_ _____ +
P

P −1_ ____ T̃ ≤
P

K =1
Σ
N

TK

_ _____ +
P

P −1_ ____T max

We can rewrite this as

TF ≤
P

K =1
Σ
N

TK

_ _____






1 +

K =1
Σ
N

PK

(P −1)T max_ _________






The first term is simply the average time per processor to execute jobs. If no one job requires much
more processing time than any other job, i.e., if

(P −1)T max < <
K =1
Σ
N

TK

then the total time to execute all the jobs is roughly the total execution time per processor:

TF ∼∼
P

K =1
Σ
N

TK

_ _____

If one job requires much more processing time than any other job, i.e., if

T max ∼∼
K =1
Σ
N

TK

then the total time to execute all the jobs is roughly equal to the single processor execution time:

TF ∼∼
K =1
Σ
N

TK

On the other hand, if one job takes virtually all the time, then effectively only one processor can be
used, so this should not be that surprising.
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2.3.5 Speedup At any given instant of time there are JE (t ) jobs in execution on P processors. Since
job K requires TK time units to be executed, the total execution time of jobs must equal the integral or
area of JE (t ) from the initial time t =0 to the end of execution of all jobs TF :

K =1
Σ
N

TK =
0
∫
T

F

JE (t )dt

On the one hand, the total time required to execute all jobs with one processor P =1 is simply the sum
of all the job execution times:

TF (P =1) =
K =1
Σ
N

TK

On the other hand, the definition of speedup in going from P =1 to P >1 processors is simply

speedup =
TF (P >1)

TF (P =1)_ _______

Combining all of the above, the speedup can be written as

speedup =
TF

1_ __
0
∫
T

F

JE (t )dt = E [JE ]

mean number o f jobs in execution = E [JE ] = speedup

This result is fundamental: if there is one resource (such as a single processor), there is no opportunity
for speedup. If there are multiple resources (one processor, one disk, one printer, one terminal), there
can be as many opportunities for multiplying the mean throughput rate as there are resources.

2.4 Preemptive vs Nonpreemptive Scheduling

What about preemptive versus nonpreemptive scheduling? Here we see that we can in fact achieve the
lower bound on make span. Two cases arise: either there is one job that takes longer than the average
time per processor of all the jobs, i.e.,

Tf inish =
K

max TK = T max

or there is no job that takes longer than the average time per processor:

Tf inish =
P

K =1
Σ
N

TK

_ _____

Combining all this, we see

Tf inish = max




 K
max TK ,

P
K =1
Σ
N

TK

_ _____






The figure below shows a nonpreemptive schedule for three processors with a fixed workload to make
this concrete.

Preemption will allow us to achieve the smaller of these two bounds. How can this be achieved? One
way is to assign jobs to the first processor until Tf inish is passed, and then assign the overlap plus other
jobs to the next processor until Tf inish is passed, and so on until we assign all the work.

EXERCISE: How in fact can we achieve this schedule? It appears that we run the end of the job
before we run its beginning.

EXERCISE: How do we circumvent the problem that no job can execute in parallel with itself?

In fact this bound is achievable if there is no precedence ordering among the jobs, i.e., some jobs must
be done earlier than others.
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Figure 2.13A.Three Processor Nonpreemptive Schedule

The figure below illustrates a preemptive schedule, and shows that the make span for the preemptive
schedule equals the average processor time.

Figure 2.13B.A Preemptive Schedule for Three Processors

2.5 Impact of Partial Ordering and Fluctuations

Suppose we have a list of N jobs, and for convenience we suppose N =2P . We break the list of jobs
into two lists, J 1,...,JP ,J′ 1,...,J′P . The jobs are not independent: some jobs must be executed before
other jobs. We denote by J′K <JK ,K =1,...,P the constraint that J′K must be executed before JK can
begin execution. Each unprimed job requires one unit of memory to be executed; each primed job
requires P units of memory to be executed. The execution time for the unprimed jobs are all identical
and equal to one; the execution time for each of the primed jobs is identical and equal to ε which we
will make very small compared to one:

TK = 1 > > T′K = ε K =1,...,M

We have a total of P units of memory and P processors. We wish to investigate two different
schedules:

• Schedule one: J′ 1,...,J′M ,J 1,...,JM

• Schedule two: J 1,...,JM ,J′ 1,...,J′M
For the first schedule, in order to satisfy the partial order constraint, we execute the primed jobs in
order, and then execute in parallel on the M processors all the unprimed jobs: The make span or total
time to finish all the jobs is

Tf inish = P ε + 1 schedule one

For the second schedule, in order to satisfy the partial order constraint, we execute a primed job and
then an unprimed job in pairs until we execute all the jobs: The make span or total time to finish all the
jobs is
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Figure 2.14.Schedule One for Three Processors

Figure 2.15.Schedule Two for Three Processors

Tf inish = P (1 + ε) schedule two

The ratio of these two can vary immensely. For example if ε=1 then

Tf inish ,II

Tf inish ,I_______ =
1 + P ε

P (1 + ε)_ _______  ε=1 =
P +1
2P_ ____

P →∞
→ 2

and hence we can be off by no more than a factor of two with these two schedules. On the other hand,
if ε< <1, then

Tf inish ,II

Tf inish ,I_______  ε< <1 =
1+P ε

P (1+ε)_ ______
ε→0
→ P

and hence we can be off by a factor of P which could be much greater than just a factor of two!

2.6 Polynomial Evaluation

Job precedence constraints arise in evaluation of polynomials, which is frequently done in practice in
signal processing. These give us additional concrete examples to build intuition concerning the
performance of parallel processors. Our problem is to evaluate a polynomial Y :

Y =
K =0
Σ
N

AK X K

The inputs are the coefficients AK ,K =0,...,N and the value of X , while the output is the scalar Y . Given
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P processors, we want to understand what is the minimum time required to completely evaluate one
such polynomial. We will do so in special cases, to build insight.

2.6.1 Addition We begin with the case where all the coefficients are arbitrary, but X =1. We must
evaluate Y where

Y =
K =1
Σ
N

AK

Each addition is assumed to take one time unit. If we had one processor, this would require N −1
additions, and hence N −1 time units. Given four processors, and N=15, the table below shows the
operations of each step of the evaluation.

Table 2.4.Summation Evaluation with Four Processors_ ________________________________________________________ _______________________________________________________
Time Processor 1 Processor 2 Processor 3 Processor 4_ ________________________________________________________ _______________________________________________________

1 Z 1=A 0+A 1 Z 2=A 2+A 3 Z 3=A 4+A 5 Z 4=A 6+A 7

2 Z 5=A 8+A 9 Z 6=A 10+A 11 Z 7=A 12+A 13 Z 8=A 14+Z 1

3 Z 9=Z 2+Z 3 Z 10=Z 4+Z 5 Z 11=Z 6+Z 7 IDLE
4 Z 12=Z 8+Z 9 Z 13=Z 10+Z 11 IDLE IDLE
5 Y =Z 12+Z 13 IDLE IDLE IDLE

For four processors, the total time required to sum fifteen coefficients is now five, while for one
processor the total time was fourteen. The speedup is the ratio of these two:

speedup =
Tf inish (P >1)

Tf inish (P =1)_ __________ =
5
14_ __ = 2.8 N =15

The best possible speedup would be to keep all processors busy, and hence this would be a factor of
four. Effectively, we have 4−2.8=1.2 idle processors.

What happens as N →∞? Now all four processors are continuously busy, and hence

speedup =
Tf inish (P >1)

Tf inish (P =1)_ __________ = P =4 N →∞

What happens as P →∞? At the first step, each processor will add one term to another term, reducing
the total number of items by a factor of two. This can be repeated, until log2(N ) time steps elapse for
summing all terms together.

Combining all these ideas, it can be shown that

Tf inish ≥


 P

N_ _




− 1 + 
 log2[min (P ,N )]

where X is the smallest integer greater than or equal to X.

EXERCISE: Show that for P =4,N =15 this lower bound on Tf inish is achieved.

2.6.2 Powers Suppose that AN =1,AK =0,K ≠N , so we wish to evaluate Y =X N . If one processor is
available, and multiplication requires one unit of time, then to evaluate Y worst case would require N −1
time steps. However, we can do better! Suppose that N =25, i.e., N is a power of two. Instead of
taking thirty one time steps to evaluate Y , consider the following procedure:

Table 2.5.Steps for Evaluating Y =X 32_ _________________________________ ________________________________
Step Value_ _________________________________ ________________________________

1 Z 1=X 2

2 Z 2=Z 1
2 =X 4

3 Z 3=Z 2Z 2=X 8

4 Z 4=Z 3Z 3=X 16

5 Y =Z 4Z 4=X 32
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If N →∞, it can be shown in general that even if N is not a power of two a single processor can
evaluate X N in log2(N ) multiplications:

Tf inish ∼∼ log2(N ) N →∞,P =1

On the other hand, for P →∞, i.e., with an infinite number of processors, P processors can evaluate X N

in log2(N ) multiplications:

Tf inish ∼∼ log2(N ) P →∞

Hence, one processor can evaluate X N as quickly as an infinite number of processors, and we can gain
nothing by parallelism.

2.6.3 General Case In general, we wish to evaluate Y where

Y =
K =0
Σ
N

AK X K

For P =1, a single processor, one algorithm for evaluating Y is given by

Y = ((..((AN X + AN −1)X + AN −2)X +AN −3)...)X + A 0

For N =22 this requires twenty five additions and multiplications for P =1.

On the other hand, for P =2, one algorithm for evaluating Y is given by

Y =
K =0
Σ
N ⁄2

A 2K X 2K + X
K =0
Σ

N ⁄2−1

A 2K +1X
2K +1

and hence we must evaluate two polynomials in X 2. For N =22 and P =2 this requires twenty four
additions and multiplications.

For P =3, one algorithm for evaluating Y involves writing Y as the sum of three polynomials in X 3, and
using all three processors.

Combining all these items, it can be shown that

P
2N_ __ log2(P ) ≤ Tf inish ≤

P
2N_ __ log2(P ) + o (log2(P ))

The final term, o (log 2(P )), is negligible as P →∞, in the sense that

P →∞
lim

P

o (log 2(P ))_ _________ = 0

Hence, the speedup, measured in the time required to evaluate this expression with P processors versus
P =1 is roughly given by

speedup =
Tf inish (P >1)

Tf inish (P =1)_ __________ ∼∼
log2(P )

P_ ______ P →∞

2.6.4 Summary We have shown that

• Evaluating roughly N binary operations with P processors can lead to a speedup approaching P

• Evaluating X N with P processors leads to no speedup over a single processor

• Evaluating a polynomial in N terms with P processors leads to a speedup of P ⁄log 2(P ) over a single
processor, which is in between the other two cases.

The lesson here: the workload can significantly impact the actual benefit of using multiple processors.

2.6.5 Additional Reading

[1] I.Munro, M.Paterson, Optimal Algorithms for Parallel Polynomial Evaluation, Journal of
Computer System Science, 7, 189 (1973).
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[2] A.H.Sameh, Numerical Parallel Algorithms--A Survey, in High Speed Computer and
Algorithm Organization, D.J.Kuck, D.H.Lawrie, A.H.Sameh (editors), pp.207-228, Academic
Press, NY, 1977.

2.7 Critical Path Scheduling

P parallel processors are available for executing jobs fed from a single queue. First, suppose there is no
precedence ordering among jobs, i.e., no job need be done before any other job. One scheduling rule
called critical path scheduling is to execute tasks according to their processing time, with longest tasks
first. The intuitive notion is that the longest jobs are critical in determining how short the make span
can be, and hence it is essential to be operating on the critical path schedule for shortest make span or
highest mean throughput rate. A different way of thinking about this is to allow the number of
processors P to become infinite: each job will be assigned to one processor, and the make span equals
the time to do the longest job. With a finite number of processors the make span will be longer than
with an infinite number of processors, and hence we have a lower bound on the total time to finish a
workload.

If there is a precedence ordering of jobs, then we sort times required for each job stream longest to
shortest, and schedule the first job as the job that is the start of the longest critical path or longest stream
that must be executed, and having scheduled this first job we now repeat this exercise with one less job,
until all jobs are scheduled.

EXERCISE: Construct a flowchart for critical path scheduling, and exhibit pseudo code for
implementing the flow chart.

Again, a different way of thinking about this is to allow the number of processors P to become infinite:
each job will be assigned to one processor, and the make span equals the time to do the longest path of
jobs. Viewed in this way, we see that

max



Tcritical path ,

P
1_ _

K =1
Σ
N

TK





≤ Tf inish (N )

where Tcritical path is the make span for a critical path schedule.

Tf inish (N ) ≤
P
1_ _

K =1
Σ
N

TK







1 +

K =1
Σ
N

TK

(P −1)Tcritical path_ ______________






If the make span for a critical path schedule is much less than the average time each processor is busy,
then

Tf inish (N ) ∼∼
P
1_ _

K =1
Σ
N

TK

and hence the make span is reduced by P or the mean throughput rate increases by P .

On the other hand, if the make span for a critical path schedule is much more than the average time
each processor is busy, then

Tf inish (N ) ∼∼ Tcritical path

and effectively there is no gain with more than one processor.

In a different vein, it can be shown that

SCHEDULE
min Tf inish ,SCHEDULE

Tf inish ,CRITICAL PATH_____________________≤
3
4_ _ −

3P
1_ __

In other words, critical path scheduling is no worse than any other single processor (P =1) scheduling
rule in minimizing Tf inish , is 1/6 longer than the best (in terms of minimizing Tf inish ) two processor
scheduling rule, and is 1/3 longer than the best infinite processor scheduling rule!
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2.8 P Identical Parallel Processors

In practice, the execution times of the jobs are not often known with any precision. This occurs for a
variety of reasons: the data to be manipulated varies from job to job, the text program executes different
branches depending upon the data, and so forth. Here we attempt to capture this phenomenon by fixing
the mean or average execution time of a job, and modeling the fluctuations of job execution times as
non negative random variables drawn from the same distribution.

A more precise statement of the problem is as follows: N jobs must be executed by P servers or
processors. The jobs are all present at an initial time, say zero. The time to execute job K =1,...,N is
denoted by TK . We will assume that the sequence of job execution times are non negative random
variables, with the same marginal distribution:

PROB [TK ≤ X ] = G (X ) K =1,2,...,N

The mean time to execute a job is denoted by E [T ] where

E [T ] =
0
∫
∞

XdG (X ) =
0
∫
∞

[1 − G (X )]dX < ∞

The time to completely execute all N jobs is denoted by CN .

The mean throughput rate of completing jobs is given by the ratio of the total number of jobs divided by
the mean time required to complete all the jobs:

mean throughput rate =
E [CN ]

N_ ______

The shortest that CN could be is

CN ≥
S
1_ _

K =1
Σ
N

TK

The longest that CN could be is

CN ≤ max [T max, S
1_ _

K =1
Σ
N

TK ]

where

T max =
K =1,...,N
max TK

The mean throughput rate is the ratio of the total number of jobs divided by the mean time to complete
these jobs:

mean throughput rate ≡ λN =
E [CN ]

N_ ______

Our goal is to allow the number of jobs to become larger and larger, N →∞, such that the mean
throughput rate stabilizes at an average or limiting value. In fact, this limit is

N →∞
lim λN =

E [T ]
P_ ____

In words, each job requires a mean execution time of E (T ), and we will realize a speedup of P because
all the processors will be busy. As a bonus, the upper and lower bounds on mean throughput rate will
also approach this limit under these conditions. This shows that the details of the workload may not
matter nearly so much as might be expected.

2.8.1 Analysis For any real number, say Y , we will use the following trick:

T max ≤ Y +
K =1
Σ
N

U−1[TK − Y ]

where U−1(X ) = 0 X <0, = 1 X >0 is a so called generalized unit step function. This allows us to write



-- --

18 PERFORMANCE ANALYSIS PRIMER CHAPTER 2

T max ≤ Y + N
Y
∫
∞

[1 − G (X )]dX

We denote by ω the small value of X such that 1 − G (X )=0:

ω =
X

inf { X  1 − G (X ) = 0}

Two cases arise:

2.8.2 ω finite For this case, ω<∞, we see that

T max ≤ ω → E [T max] ≤ ω

and hence

E [T ]
P_ ____

1 +
NE (T max)
(P −1)ω_ ________

1_____________ ≤ λN ≤
E [T ]

P_ ____

As the number of jobs becomes larger and larger, N →∞, the mean throughput rate as well as upper and
lower bounds approach the desired result:

N →∞
lim λN =

E [T ]
P_ ____

2.8.3 ω infinite For this case, we find it useful to define a related quantity µN :

µN =
X >0
inf




X  1 − G (X ) ≤

N
1_ _





Because ω=∞, it is clear that
N →∞
lim µN = ∞.

On the other hand, we see that

E [T max] ≤ µN + N
µ

N

∫
∞

[1 − G (X )]dX

Because

N →∞
lim

µ
N

∫
∞

[1 − G (X )]dX = 0

we see that

N
µ

N

∫
∞

[1 − G (X )]dX = o (N )

This implies that

1 − F (µN )≤
N
1_ _ → 1 − G (X ) = o



 X

1_ _




This in turn implies

o


 µN

1_ ___




≤
N
1_ _

and in turn that

µN = o (N )

Finally, we see that
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E [T max] = o (N )

and this allows us to show that

N →∞
lim λN =

E [T ]
P_ ____

as in the previous case.

2.8.4 An Example Suppose we examine a particular G (X ):

G (X ) = 1 − Qexp [−QX ⁄E [T ]] 0<Q ≤1

This has a mean at E [T ] and a great deal of fluctuation about the mean, with the fluctuations increasing
as Q →0.

The trick here is to fix 1 − G (µN ) at 1⁄N :

1 − G (µN ) = Qexp [−Q µN ⁄E [T ]] =
N
1_ _

This in turn fixes µn :

µN =
Q

E [T ] ln (NQ )_ ___________

Now if we substitute into the earlier expressions, we see

E [T max] ≤ E [T ]


 Q

ln (NQ )_ ______ +
Q
1_ __





Finally, the mean throughput rate is upper and lower bounded by

E [T ]
P_ ____

1 +
NQ

(P −1)[1+ln (NQ )]_ _______________

1_ ___________________ ≤ λN ≤
E [T ]

P_ ____

2.8.5 Bounds The longest possible completion time CN occurs when we execute all jobs but one, and
the remaining job requires the largest amount of processing time of all jobs:

CN ≤
P
1_ _

K =1
Σ

N −1

TK + (TN = T max) ≡ C max

The shortest possible completion time CN occurs when either all jobs finish execution at the same
instant of time on all P processors, or all but one job are executed on P −1 processors and the remaining
job executes on one processor and has the largest processing time:

CN ≥ max[T max, P
1_ _

K =1
Σ
N

TK ] = C min

The ratio of the longest to the shortest completion times is upper bounded by

C min

C max_ ____ ≤ 2 −
P
1_ _

In other words, as we go from P=1 to P=2 processors, the greatest relative change in the mean
completion time for any scheduling policy is 2 − 1⁄2=1.5, while going from P=2 to P=3 processors gives
a maximum gain due to scheduling of 2 − 1⁄3 = 5⁄3.

2.9 Single Processor Deadline Scheduling

In deadline scheduling, different classes of tasks have different urgencies; we denote by WK the
allowable queueing time window that we can tolerate for job K =1,...,N . At the arrival epoch of a job,
say job K, that arrives at time AK we look up its window in a table, add the window to its arrival time,
and call the result the deadline or priority or urgency number for that task:
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deadline for job K ≡ DK = AK + WK K =1,2,...,N

That job is inserted in a queue in priority order or deadline order, most urgent jobs first, with jobs
executed in deadline order. Note that windows need not be positive! We compare performance via
queueing time statistics and via a different pair of quantities. If we have two classes of jobs, each with
its own window, and we fix the difference between the two windows but allow the smaller (or larger)
window to become infinite in size, then we approach static priority scheduling. Very roughly speaking,
static priority scheduling allows control over first moments of queueing times of tasks, while deadline
and other dynamic scheduling policies allow control of asymptotic distributions of queueing and waiting
times. The measures of performance of interest are

• lateness-- the lateness of job K is defined as its completion time minus its deadline;

LK = CK − DK K =1,2,...

Negative lateness implies the job queueing time was less than its deadline, while positive lateness
means the job queueing time exceeded its deadline.

• tardiness-- the tardiness of job K is zero if the job is finished by its deadline, and equals the lateness
otherwise; put differently, the tardiness is the maximum of zero and the lateness

TK = max [0,LK ] K =1,2,...

What are desirable properties of deadline scheduling? One is that deadline scheduling minimizes the
maximum lateness or maximum tardiness over any scheduling policy. This suggests that deadline
scheduling will be useful in time critical jobs, which is perhaps not so surprising! How do we show this
property? Suppose we had a schedule that violated deadline scheduling ordering yet had a smaller
maximum lateness than deadline scheduling. This means that there is at least one time interval where
one job, say job J, is waiting and another job, say job I, is executing, even though the deadline for job J
is less than the deadline for job I. We denote the non deadline schedule by S′ while the deadline
schedule is denoted by S . Since the maximum lateness is smaller using S′ we see

max [L (S′ )] ≤ max [max [L (S )],L (S′ )]

Since the completion time of job I under schedule S′ is given by

CI (S′ ) = max [CJ (S ),CI (S )]

we see that

max [L (S′ )] ≤ max [max [L (S ),CJ (S )−DI ,LI (S )]

Finally, since the deadline for I is greater than that for J, we see

max [L (S′ )] ≤ max [max (L (S )),LJ (S ),LI (S )] = max [L (S )]

This is precisely what we wanted to show.

Several consequences follow immediately:

• Even knowing the arrival pattern in advance cannot help minimize the maximum lateness better than
deadline scheduling

• If the windows are equal to the service times for the respective jobs, then deadline scheduling
minimizes the maximum waiting time

• If all the windows are equal to one another, then deadline scheduling is equivalent to service in order
of arrival

Suppose we have two types of jobs, A and B, with processing times and windows as shown:

Table 2.6.Job Statistics Summary_ _____________________________________ ____________________________________
Job Type Service Window_ _____________________________________ ____________________________________

A TA =3 seconds WA =5 seconds
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B TB =2 seconds WB =3 seconds

The figure below shows an arrival pattern consisting of one type A arrival at time t=0 followed by a
type B arrival at time t=1 and t=4, with the resulting work pattern for deadline scheduling, and static
priority scheduling (A higher priority than B, B higher priority than A).

Figure 2.16.Illustrative Comparison of Deadline vs Static Priority Scheduling

Note that neither static priority schedule can meet all deadlines, while the deadline schedule can. Hence
the need for dynamic rather than static priority scheduling!

Suppose we had N distinct types of jobs, with each job type having its own service time TK with
associated window WK and maximum storage for job K of BK bytes, where K=1,...,N. A natural
measure of utilization is given by U where U is defined to be the storage multiplied by the service time,
and divided by the window, summed over all job types:
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U =
K =1
Σ
N

WK

BK TK_ _____

If U <1 then we want to show that all deadlines can be met. Let’s examine the worst case, where the
maximum number of requests are always present and the service time is the largest possible. This
implies that server is busy handling type K requests at a rate of BK ⁄WK . Since the requests are
absorbing the maximum possible processing times, the utilization of the server will equal U ; but for the
entire system to keep up with its work, we must demand U <1.

Example: Suppose we had a set of sources (memory boards, disk controller boards, terminal controller
boards, processor boards, and so on) that each demand access to a shared bus. If each source can only
have one request outstanding at one time, and we choose the window equal to the service time for each
type of bus access request, and all the service demands will be met if and only if

K =1
Σ
N

TK

1___ ≤ 1

2.10 Pipelining

Suppose that each processor is dedicated to executing a given function. One special case of this is to
construct a pipeline of processors, where the input of one processor is the output of another processor,
and so forth:

1 2 3

Figure 2.17.Three Stage Pipeline
Each job consists of a series of steps, that must be done in exactly this order.

2.10.1 An Example Six jobs each require the following processing at each of three steps:

Table 2.7.Execution Times for Six Jobs_ ___________________________________ __________________________________
Job Step 1 Step 2 Step 3_ ___________________________________ __________________________________
1 3 2 4
2 2 4 1
3 1 5 2
4 3 2 2
5 1 1 1
6 2 1 4

The schedule for this set of jobs is (1,2,3,4,5,6), i.e., execute the jobs in the order of job number. A
schedule is shown in the figure below:

2.10.2 A More Sophisticated Example Suppose N jobs must be executed on a P =N stage pipeline.
The execution times of job step I for job K =1,...,N is denoted by TIK . Suppose that the execution times
are given by

TIK = ε, I ≠K TIK =1, I =K

Two different schedules are of interest:

• Schedule one: (1,2,...,N )

• Schedule two: (N ,N −1,...,1)

For schedule one, the figure below shows an illustrative plot of the activity of each processor: The total
time required to execute all the work for P processors is
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Figure 2.18.Three Stage Pipeline Schedule For Six Jobs

Figure 2.19.Schedule One Processor Activity(P=3,N=3)

Tf inish ,I = P + (P −1)ε

For schedule two, the figure below shows an illustrative plot of processor activity:

Figure 2.20.Schedule Two Processor Activity(P=3,N=3)

The total time required to execute all the work for P processors is

Tf inish ,II = 1 + (P +1)ε

There are two cases of interest: ε=1 so all jobs take the same amount of time, and hence

Tf inish ,I = Tf inish ,II = P

and ε< <1, so that only stage K of job JK requires one time unit of processing, and hence

Tf inish ,I ∼∼ P Tf inish ,II ∼∼ 1 ε→0

If there is radical imbalance, the time required to execute all the work can differ by the number of
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processors!

2.11 Bounding The Make Span for Pipelines of Single Processors

Our goal in this section is to find upper and lower bounds on the make span for a pipeline of single
processors, much as we did earlier for parallel processors.

Suppose a list or schedule of N jobs is to be followed, with the jobs ordered (1,2,...,N). P processors
are available. Each job consists of S =P steps. Each processor is dedicated to executing one and only
one step. The time required to execute step I =1,...,S of job K =1,...,N is denoted by TIK .

2.11.1 Upper Bound on Make Span One immediate upper bound on the total time required to execute
all jobs is to simply execute the jobs one at a time:

Tf inish ≤
K =1
Σ
N

I =1
Σ
S

TIK

EXERCISE: Can you find a sharper upper bound that is less than or equal to this upper bound and
includes the same model parameters?

2.11.2 Lower Bound on Make Span In order to lower bound the make span, the total time required to
execute all jobs, we realize that there are three possible contributions to the make span:

• The time required to execute job one from step one through step J −1:
S =1
Σ
J −1

T 1S

• The time required to execute every job at step J :
K =1
Σ
N

TKJ

• The time required to execute job N from step J +1 through step S :
I =J +1
Σ
S

TNI

Combining all these, we see that for one particular step in the pipeline, J ,

I =1
Σ
J −1

T 1I +
K =1
Σ
N

TKJ +
I =J +1
Σ
S

TNI ≤ Tf inish (J )

To get the best possible lower bound, we should look for the largest this set of lower bounds could be,
for all steps:

1≤J ≤S
max



 I =1
Σ
J −1

T 1I +
K =1
Σ
N

TKJ +
I =J +1
Σ
S

TNI





≤ Tf inish

This development can be made more formal as follows. Suppose that CKJ denotes the completion time
of job step J =1,...,S for job K =1,...,N . For convenience, we assume there is a fictitious initial stage,
labeled zero, with CK 0=0 for all K . The completion times of step J of job one obey the following
recursion:

CJ 1 = CJ −1,1 + TJ 1 J =1,...,S

The completion times of step J of job K obey the following recursions:

CKJ = max[CK ,J −1,CK −1,J ] + TKJ J =1,...,S

If we use the inequalities X <max [X ,Y ] and Y <max [X ,Y ] then we see

CKJ ≥ CK −1,J + TKJ

The completion time of step J of job N is similarly given by

CNJ ≥ CN ,J −1 + TNJ

Combining all of these bounds, we obtain the result sketched earlier.
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2.12 Johnson’s Rule

Now we turn to a two stage pipeline.

1 2

Figure 2.21.Two Stage Pipeline
N jobs have associated processing times T 1,K at stage one and T 2,K at stage two, K =1,...,N . Our goal is
to minimize the total system busy time to completely execute all this work.

As an example, suppose we have five jobs (A, B, C, D, E) that must each be executed in two stages,
with the execution times for each job summarized as follows:

Table 2.8.Job Execution Times_ ___________________________ __________________________
Job Stage 1 Stage 2_ ___________________________ __________________________
A 6 3
B 0 2
C 3 4
D 8 6
E 2 1

The jobs are executed according to an alphabetical priority ordering. The total time to execute all the
jobs according to this schedule, the make span, is 22.

Can you find a priority list schedule that achieves this?

The principal result here, due to Johnson, is

• Execute tasks on the second stage in the same order as on the first stage

• JK is executed before JI if

min[TK ,1,TI ,2] ≤ min[TK ,2,TI ,1]

An algorithm for finding a scheduling that does this is

• Find the minimum TI ,K where I =1,2 and K =1,...,N

• If I=1 put this at the head of the schedule; if I=2 put it at the end of the schedule

• Delete this task from the schedule and repeat the above procedure until no tasks remain

Roughly speaking, we want to put tasks requiring big processing times at the start of the schedule and
small processing time tasks at the end of the schedule. Now, how bad can we do? It can be shown that

SCHEDULE
min Tf inish ,SCHEDULE

Tf inish ,SCHEDULE_____________________≤ P

or in other words, we could be off by the total number of processors in the pipeline!

2.13 S Stage Pipeline

Earlier, when we were analyzing parallel processor groups, we remarked that the workload is not
precisely known in practice. We modeled that by allowing the mean execution time for each job to be
fixed, and the fluctuations about the mean were modeled by random variables. Here we carry out
exactly the same exercise.

2.13.1 Problem Statement N jobs must be executed by a system of P processors. Each job consists of
S steps that must be done one after another; each step consists of execution of a given amount of text
code operating upon a different amount of data, depending on the nature of the job. The system consists
of a pipeline of stages: stage K consists of PK processors fed from a single queue. Each processor can
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execute only one job at a time. The execution time for step K is denoted by TK ,K =1,...,S .

The completion time for all N jobs is denoted by CN . The mean throughput rate is the number of jobs
divided by the mean completion time:

λN =
E [CN ]

N_ ______

Our goal is to show that the mean throughput rate approaches a limit as the number of jobs becomes
larger and larger:

N →∞
lim λN =

K
min



 E (TK )

PK_ _____




In words, the stage with the lowest maximum mean throughput rate, the so called bottleneck stage, will
determine the system total maximum mean throughput rate. Furthermore, the upper and lower bounds
on mean throughput rate approach this value. Hence, the details of the workload do not matter as much
as might be expected.

2.13.2 Upper Bound on Mean Throughput Rate One upper bound on mean throughput rate is given by
the number of jobs in the system:

λN =

K =1
Σ
N

E [TK ]

N_ ________

A second upper bound on mean throughput rate is given by all the processors at a given stage being
completely busy:

λN =
K =1,...,S
min

E [TK ]

PK_ _____

Combining all this, we see

λN ≤ min






K =1,...,S
min

E [TK ]

PK_ _____ ,

K =1
Σ
N

E [TK ]

N_ ________






If the processing time at each stage has no fluctuations about the mean processing time, i.e., the
processing times are deterministic, then we claim that this upper bound is achievable. Finally, as N →∞
we obtain the desired result.

2.13.3 Lower Bound on Mean Throughput Rate The longest completion time, and hence the lowest
mean throughput rate, is given by executing only one job at a time:

E [CN ] ≤ N
K =1
Σ
S

PK

E [TK ]_ _____ + o (N )

If each service time is assumed to be an independent random variable, with

PROB [TK ≤X ] = 1 − αexp 
−αX ⁄E [TK ] K =1,...,S ;X >0

so that the mean service time at stage K is fixed at E (TK ),K =1,...,S but α→0 results in greater and
greater fluctuations about the mean.

In order to obtain our desired result, we must show that for any positive number, say ε>0, that

α→0
limE [CN ] ≥ N

K =1
Σ
S

PK

E [TK ]_ _____ − ε

To see this, we need introduce additional notation and machinery.
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Let X 1,...,XN be nonnegative independent random variables with distribution functions given by
G 1(),..,GN () respectively. We define X max as the maximum of these random variables:

X max = max[X 1,...,XN ]

Let EK be the event that XK >Y . The probability that the maximum X max exceeds Y is given by

PROB [X max>Y ] = PROB [
J =1
∪
N

EJ ]

This can be upper and lower bounded as follows:

PROB [
J =1
∪
N

EJ ] ≤
J =1
Σ
N

PROB [EJ ]

PROB [
J =1
∪
N

EJ ] ≥
J =1
Σ
N

PROB [EJ ] −
J <K
ΣPROB [EJ ∩EK ]

If we substitute in, we see

J =1
Σ
N

[1 − GJ (Y )] −
J <K
Σ [1 − GJ (Y )][1 − GK (Y )] ≤ PROB [X max>Y ]

PROB [X max>Y ] ≤
J =1
Σ
N

[1 − GJ (Y )]

An alternate way of computing this event is to define YK as the total time that stage K =1,..,S is not
empty, and hence

CN ≥ max[Y 1,...,YS ]

On the other hand, each YK can be lower bounded by the total service time at stage K over the total
number of processors at stage K

YK ≥ỸK ≡
PK

total stage K service time_ ______________________

Now we realize that

PROB [ỸK ≤X ] = GK (X ) =
J =0
Σ
N 


 J

N 


αJ (1 − α)N −J




1 −

K =0
Σ
J −1

ẼK





ẼK ≡
K !
X K
_ ___exp [−X ] X = PK αX ⁄E [TK ]

Hence, we see that

1 − GK (X ) =
J =1
Σ
N 


 J

N 


αJ (1 − α)N −J

K =0
Σ
J −1

ẼK

The mean of ỸK is given by

E [ỸK ] =
PK

NE [TK ]_ _______

while

1 − GK (X ) ≤ constant (K ) [1 − (1 − α)N ]

We see that

α→0
lim

X >0
sup[1 − GK (X )] = 0

so that
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E [CN ] ≥ E [max (Ỹ 1, . . . , ỸS )]

≥ N
K =1
Σ
S

PK

E (TK )_ _____ −
J <K
Σ

0
∫
∞

[1 − GJ (X )][1 − GK (X )]dX

However, the last term can be made as small as possible by choosing α as close to zero as needed.

Finally, as we allow N →∞, we obtain the desired result for the mean throughput rate.

2.14 General Problem Classification

N jobs, labeled JK ,K =1,...,N are to be executed. Each job can be processed on at most one processor at
a time. This means that if a job can be processed on more than one processor at a time, we will break it
up into one or more distinct jobs, each of which can be processed on only one processor at a time.
Furthermore, each processor can execute at most one job at any instant of time.

2.14.1 Job Data Each job has its release time or arrival time, the earliest time it can begin execution,
denoted by AK ,K =1,...,N . Each job has its deadline denoted by DK ,K =1,...,N which is the time by
which it should ideally be completed.

Each job requires a number of steps, with SK ,K =1,...,N denoting the number of steps for JK ,K =1,..,N .

A precedence relation denoted by < between jobs may exist. We denote by JI <JK the requirement that
JI is to complete before JK can start. One way to show all of these is via a table, showing for each job
step all the job steps that must be completed before that job step can be executed. A second way to
show all of these is via a block diagram or graph: each job is a node in a graph, with arrows into each
node emanating from job step nodes that must be completed prior to that job step. This is a directed
graph: the arrows have direction. This graph has no cycles: there is no chain of arrows that completes
a closed chain or cycle. This is an acyclic graph.

Example: Consider the following set of six jobs with a given precedence relationship:

Table 2.9.Six Job Precedence Relationships_ ______________________________________ _____________________________________
This Must Be This
Job Preceded By Job_ ______________________________________ _____________________________________
2 1
3 1
4 3
5 2,6
7 4,5

The precedence relationships are summarized in the directed acyclic graph shown in Figure 2.22.

Figure 2.22.Precedence Constraints for Six Jobs
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Each job can have its own weight to reflect the relative importance of a job: WK ,K =1,...,N . A
nondecreasing real valued cost function, FK (t ), measuring the cost incurred if JK is completed at time t .

2.14.2 Resource Configuration There are P processors, with each processor being capable of executing
a job step at a different rate. Each step of each job will require a given amount of processing time. Let
TIKM denote the amount of processing time required at step I =1,...,SK for job K =1,...,N on processor
M =1,...,P . If all processors are identical, we will ignore or suppress the subscript M due to different
types of processors. If TIKM =∞ then we assume this step of this job will never by convention be
executed on that processor (because it will take forever).

Each job will require one processor, which may be thought of as an active resource, and zero or more
passive resources, such as memory or storage, an operating system file, and so forth. RIKL denotes the
amount of passive resources L =0,...,R̃ (possibly zero) required by job JK ,K =1,...,N at step I =1,...,SK .
We assume that the total amount of resource type L available will not be exceeded by any one step of
any one job.

2.14.3 Scheduling Policy The scheduling policy determines which job is executed at any given instant
of time with a given set of resources. Competition for resources occurs implicitly via scheduling of
resources, and explicitly via cooperation and precedence ordering between jobs.

We assume that if work is ready to be executed, that it will immediately be assigned to an idle processor
(this rules out a variety of pathological situations from this point on).

Schedules can be nonpreemptive where once a job begins execution it runs to completion, or preemptive
where once a job begins execution it can be interrupted by more urgent jobs. Preemptive scheduling can
involve resuming execution at the point of interruption (and hence we call these schedules preemptive
resume) or repeating execution anew (and hence we call these schedules preemptive repeat) The total
amount of resource L available, R̃L ,L =0,...,M , cannot be exceeded at any instant of time by any
allowable scheduling rule.

2.14.4 Performance Measures We will focus on a variety of performance measures for jobs.

Here are some examples of job oriented performance measures:

• The completion time for job JK , denoted CK

• The lateness for job JK , denoted LK ≡CK − DK

• The tardiness for job JK , denoted TK ≡max [0,LK ]

Here are some examples of system oriented performance measures:

• The total time required to execute all the jobs, Tf inish , assuming all the ready times are zero, i.e., the
jobs are all present at the same initial time. This is called the make span because it is the span of
time it takes to make or execute all jobs

• The mean throughput rate, which is the total number of jobs executed divided by the total time
interval

mean throughput rate =
Tf inish

N_ _____

• The fraction of time each processor is busy at all or its utilization

• The fraction of time two different processors are simultaneously busy

EXERCISE: Can you think of any more?

2.14.5 Parallelism and Concurrency Two jobs are said to be executing concurrently at a given time t
if both started execution before time t and neither has completed execution. An example might be two
programs that have been submitted by different people to be link edited and compiled on the same
processor and are waiting for the compilation to be completed: the processor is concurrently executing
each job, but at any given instant of time one job is using the single processor. This is called logical
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concurrency.

Two jobs are said to be executing in parallel at a given time t if both are actively being executed or
moving to completion at time t. An example would be a computer system with a single processor and a
single secondary storage unit: two units can be executing in parallel, one using the processor and one
using the secondary storage unit, at the same instant of time, providing the operating system supports
this mode of operation. This is called physical concurrency.

2.14.6 Additional Reading

[1] R.L.Graham, E.L.Lawler, J.K.Lenstra, A.H.G.Rinnooy Kan, Optimization and Approximation in
Deterministic Sequencing and Scheduling: A Survey, Annals of Discrete Mathematics, 5, 287-
326(1979).

[2] E.G.Coffman, Jr. (editor), Computer and Job Shop Scheduling Theory, Wiley, NY, 1976.

[3] M.S.Bakshi, S.R.Arora, The Sequencing Problem, Management Science, 16, B247-263 (1969).

2.15 A Packet Switching System

A computer communication system receives packets from any of L lines and transmits packets over the
same L lines. Two types of packets can be received: data packets and control packets. Control packets
are required to set up a communication session between a transmitter and receiver pair, to acknowledge
proper receipt of W data packets, and to conclude a communication session between a transmitter and
receiver pair. Data packets are made up of pieces of a message stream between a transmitter and
receiver. Each transmitter and receiver session demands one logical or passive resource, a virtual circuit
that will be set up over a single physical circuit to allow time division multiplexing or sharing of the
physical circuit among multiple pairs of transmitters and receivers. Two types of processors are
available called slow and fast: the slow processor requires less buffering for each data packet than the
fast processor, and is less expensive. For simplicity, the ready time of each control and data packet is
assumed to be zero, i.e., all packets are available at time zero. Control packets have a deadline or
urgency of ten milliseconds, while data packets have a deadline or urgency of one hundred milliseconds.
A nonpreemptive schedule is used: once execution is begun, a packet is processed to completion. The
table below summarizes the information needed to specify the performance of this system:

Table 2.10.Job Steps_ ______________________________________________ _____________________________________________
Step Job Type Can Be Preempted By_ ______________________________________________ _____________________________________________

1 Control Startup Step 2
2 Control Takedown No Job
3 Data Transmit Step 1,2

The resources required are summarized below:

Table 2.11.Job Step Resource Requirements_ ________________________________________________________________ _______________________________________________________________
Job Slow Processor Fast Processor Passive Resources
Step Time Buffer Time Buffer VC Packet ID_ ________________________________________________________________ _______________________________________________________________

1 5 msec 32 Bytes 2 msec 64 Bytes 1 1
2 7 msec 32 Bytes 4 msec 64 Bytes 1 1
3 10 msec 512 Bytes 5 msec 1024 Bytes 1 1





















The following information is available concerning the performance goals of the system:
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Table 2.12.Packet Switching System Performance Goals_ ________________________________________________________ _______________________________________________________
Step Criterion Normal Business Hour Peak Business Hour_ ________________________________________________________ _______________________________________________________

1 Window 50 msec 200 msec
2 Window 25 msec 100 msec
3 Window 100 msec 500 msec
1 Weight 10 100
2 Weight 20 500
3 Weight 1 10
1 Cost 1 5
2 Cost 2 10
3 Cost 2 8

Finally, the precedence ordering for jobs is as follows

Table 2.13.Job Step Precedence Ordering_ _____________________________________ ____________________________________
This Must Be This
Step Preceded By Step_ _____________________________________ ____________________________________

2 1,3
3 1

EXERCISE: Compare the performance during a normal and peak business hour of a static priority
schedule with priority ordering (2,1,3) with a deadline priority schedule.

2.15.1 Additional Reading

[1] R.W.Conway, W.L.Maxwell, L.W.Miller, Theory of Scheduling, Chapters 1-7, Addison Wesley,
Reading, Mass., 1967.

[2] E.G.Coffman (editor); J.L.Bruno, E.G.Coffman, Jr., R.L.Graham, W.H.Kohler, R.Sethi,
K.Steiglitz, J.D.Ullman (coauthors), Computer and Job-Shop Scheduling Theory, Wiley, New
York, 1976.

[3] R.L.Graham, Combinatorial Scheduling Theory, pp.183-211, in Mathematics Today: Twelve
Informal Essays, edited by L.A.Steen, Springer-Verlag, NY, 1978.

[4] M.R.Garey, R.L.Graham, Bounds for Multiprocessor Scheduling with Resource Constraints,
SIAM J.Computing, 4, 187-200 (1975).

[5] M.R.Garey, R.L.Graham, D.S.Johnson, Performance Guarantees for Scheduling Algorithms,
Operations Research, 26, 3-21 (1978).

[6] D.J.Kuck, A Survey of Parallel Machine Organization and Programming, Computing Surveys, 9
(1), 29-59 (1977).

[7] J.T.Schwartz, Ultracomputers, ACM Transactions on Programming Languages and Systems, 2
(4), 484-521 (1980).

[8] G.R.Andrews, F.B.Schneider, Concepts and Notations for Concurrent Programming, Computing
Surveys, 15 (1), 3-43 (1983).
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Problems

1) Two N tuples denoted by X_ _ =(X 1,...,XN ) and Y_ _ =(Y 1,...,YN ) are inputs to a computer system. The
output of the system is the scalar inner product, denoted <X_ _,Y_ _>, of the two inputs:

<X_ _,Y_ _> =
K =1
Σ
N

XK YK

P identical processors are used to evaluate the inner product expression. Each processor is capable of
executing one addition or one multiplication in one second.

A. For P =1 and N =16 find a schedule that minimizes the total time, Tf inish , required to evaluate one
inner product <X_ _,Y_ _>.

B. For P =4 processors and N =16 find a schedule that minimizes Tf inish to evaluate one inner product
<X_ _,Y_ _>. Compute the speedup in going from one to four processors.

C. Repeat all the above for N =17

D. If the number of inputs is a power of two, i.e., N =2J ,J =1,2,.. and the number of processors is a
power of two, i.e., P =2K ,K =1,2,.., show that the total time Tf inish required to evaluate an inner
product need not exceed



 P

2N_ __




− 1 + 
 log2(P )

where

X = smallest integer greater than or equal to X

2) A computer system takes as input a sixteen tuple (A 1,..,A 16) and generates a scalar output X :

X = A 1(A 2 + A 3(A 4 + A 5(A 6 +.. + A 13(A 14 + A 15A 16)))))))

A. One processor is used to evaluate X . The binary operations of operations of addition and
multiplication each take one unit of time to perform. How long does it take to evaluate X ?

B. With two processors, show that it is possible to evaluate X in ten units of time.

3) Nine jobs are present at time zero. Each job requires one processor for the amount of time shown
below:

Table 2.14.Job Execution Time_ ____________________________________ ___________________________________
Job Time Job Time Job Time_ ____________________________________ ___________________________________
1 3 4 2 7 4
2 2 5 4 8 4
3 2 6 4 9 9










































Each job requires one processor for execution; no job can execute in parallel with itself. Nonpreemptive
scheduling is used: once a job begins execution, it runs to completion. These jobs are not independent,
but have a precedence ordering:
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Table 2.15.Job Precedence_ ___________________________ __________________________
This Must Be This
Job Preceeded By Job_ ___________________________ __________________________
9 1

5,6,7,8 4

A. Construct a schedule for three processors. What is the minimum time required to complete all
nine jobs?

B. Repeat part (A) for two processors

C. Repeat part (A) for four processors

D. Repeat part (A) with three processors but all the execution times reduced by one

E. Repeat part (A) with three processors but the precedence constraint is now weakened as shown in
the table below:

Table 2.16.Job Precedence Summary_ _________________________________ ________________________________
This Must Be This
Job Preceded By Job_ _________________________________ ________________________________
9 1

7,8 4

4) You have just been put in charge of an assembly line for bicycle manufacturing. The first thing you
learn is that assembling a bicycle is broken up into a number of specific smaller jobs:

• FP-- Frame preparation, including installation of the front fork and fenders

• FW-- Mounting and front wheel alignment

• BW-- Mounting and back wheel alignment

• DE-- Attaching the derailleur to the frame

• GC-- Attaching the gear cluster

• CW-- Attaching the chain wheel to the crank

• CR-- Attaching the crank and chain wheel to the frame

• RP-- Mounting right pedal and toe clip

• LP-- Mounting left pedal and toe clip

• FA-- Final attachments (including mounting and adjustment of handlebars, seat, brakes)

Each step takes a person a given number of minutes, summarized in the table below:

Table 2.17.Job Step Summary_ _____________________________________________________________________ ____________________________________________________________________
Job FP FW BW DE GC CW CR RP LP FA_ _____________________________________________________________________ ____________________________________________________________________

Time(Minutes) 7 7 7 2 3 2 2 8 8 18

Certain jobs must be done before others: try mounting the front fork to the bicycle frame if the brake
cables are already attached! The table below summarizes which jobs must precede which others during
assembly:
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Table 2.18.Job Precedence Summary_ _______________________________________ ______________________________________
This Must Be These
Job Preceded By Jobs_ _______________________________________ ______________________________________
FA FP,FW,BW,GC,DE
BW GC,DE,FP
FW FP

GC,CW DE
LP,RP CR,CW,GC

CR CW

Because of space and equipment constraints, the twenty assemblers are paired into ten teams of two
people each. The goal is to have each team assemble fifteen bicycles in one eight hour shift. The
factory quota is one hundred fifty bicycles assembled in one eight hour shift. For a team of two
assemblers, the standard priority schedule has been FP, DE, CW, CR, GC, FW, BW, LP, FA, RP. This
means that each assembler scans this list of work, highest priority on down, until a job is found that can
be done while meeting the precedence constraints. The assembler will work on this job until it is
finished, with no interruptions.

A. Plot the activity of each assembler on a team versus time for each bicycle. Will the factory meet
its quota?

B. You rent all electric power tools for all assemblers. This reduces the time to do each job by one
minute. For the standard schedule plot the activity of each assembler versus time for one bicycle.
Will the factory meet its quota?

C. You return the rented tools, and hire a third assembler for each team. For the standard schedule,
plot the activity of each assembler versus time for one bicycle. Will the factory meet its quota?

D. For two assemblers per team, using a critical path schedule, plot the activity of each assembler
versus time for one bicycle. Will the factory meet its quota?

E. BONUS: Repeat B),C) using a critical path schedule. Will the factory meet its quota?

5) Four processors are arranged in a pipeline to execute a stream of jobs.

1 2 3 4

Four Stage Processor Pipeline

Six jobs are executed on this system, and require the following processing at each step:

Table 2.19.Processing Times per Step_ ____________________________________ ___________________________________
Job Step 1 Step 2 Step 3 Step 4_ ____________________________________ ___________________________________
1 4 4 5 4
2 2 5 8 2
3 3 6 7 4
4 1 7 5 3
5 4 4 5 3
6 2 5 5 1

A. Construct a schedule for executing the six jobs on this processor pipeline.

B. Compute the mean flow time for the above schedule:
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E (F ) =
N
1_ _

K =1
Σ
N

FK N =6

C. Let J (t ) denote the number of jobs in the system, either waiting to be executed or in execution, at
time t . Calculate the mean number of jobs in the system, E (N ):

E (N ) =
TF

1_ __
0
∫
T

F

J (t )dt

D. Show that

E (N ) =
TF

N_ __ E (F )

6) During passage through a computer system, a job is processed by two different processors in
sequence. We denote by the ordered pair (T 1,T 2) the processing time required at the first stage T 1 and
at the second stage T 2 by each job. Assume that six (6) jobs arrive simultaneously for service. The
processing times for this workload are given by (4,2), (2,3), (3,1), (3,1), (6,4), (2,4). Construct a
schedule which processes the six jobs in the minimum time.

7) A system consists of P identical processors, each of which can execute IPS maximum assembly
language instructions per second. This system must execute N identical tasks, all present at an initial
time say zero, and each of which comprises Ninst assembly language instructions. The time to execute
one task on one processor is TP =1 and is given by

Ninst = TP =1 IPS → TP =1 =
IPS

Ninst_ ____

With P processors, the time required to execute a single task is TP . The speedup is defined as the ratio
of the single to multiple processor (single task) execution times:

speedup =
TP

TP =1_ ____

A. If π(K ),K =1,...,P denotes the fraction of time K processors are simultaneously active executing
work, show that

speedup = mean number o f busy processors =
K =1
Σ
P

π(K )K

B. Let Ninst (K ) denote the number of instructions executed by K simultaneously active processors.
Show that

Ninst (K ) = π(K )TP [K IPS ] K =1,2,...,P

C. With P processors, F(K), K=1,...,P, denotes the fraction of assembly language instructions that are
executed concurrently or in parallel on K processors. Show that

F (K ) =

J =1
Σ
P

Ninst (J )

Ninst (K )_ _________ K =1,2,..,P

D. Show that

speedup =

K =1
Σ
P

K
F (K )_ _____

1_ _________
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E. We wish to evaluate repetitively sums consisting of fifteen terms:

Y = A 1 + . . . + A 15

for different choices of AK ,K =1,...,15. We have four processors, (P=4); each processor can
evaluate one partial sum at a time. The total sum can be evaluated in five steps as follows:

Table 2.20.Four Processor Evaluation of Fifteen Term Summations_ ___________________________________________________________ __________________________________________________________
Processor Processor Processor Processor

Step One Two Three Four_ ___________________________________________________________ __________________________________________________________
1 B 1=A 1+A 2 B 2=A 3+A 4 B 3=A 5+A 6 B 4=A 7+A 8

2 B 5=A 9+A 10 B 6=A 11+A 12 B 7=A 13+A 14 B 8=A 15+B 1

3 C 1=B 2+B 3 C 2=B 4+B 5 C 3=B 6+B 7 IDLE

4 D 1=B 8+C 1 D 2=C 2+C 3 IDLE IDLE

5 Y=D 1+D 2 IDLE IDLE IDLE

The intermediate scratch values are denoted by B 1,...,B 8,C 1, . . . , C 3 and D 1,D 2 in the steps
above. Find π(K ),F (K );K =1,2,3,4. Compute the speedup factor directly from the table above, and
from π(K ) and F (K ) directly.

F. For F(K)=1/P, show that

speedup =

K =1
Σ
P

K
1_ _

P_ _____ ∼∼
ln (P + 1) + γ

P____________ as P →∞

where γ = Euler′s constant = 0.5772156649

G. Verify that the algorithm for evaluating fifteen term summations with four processors obeys the
following formula:

maximum speedup =

N −1
P_ ____



 P

N_ _




−
N −1

P_ ____ +
N −1

P log2[min (N ,P )]_ _______________

P_ ___________________________________

x = smallest integer greater than or equal to x

It can be shown* that if we wish to evaluate N degree polynomials on P processors,

Y =
K =0
Σ
N

AK X K

maximum speedup =
log2P

P_ _____

1 +
2N log2P
P F (P )_ _______

1_ ____________
P →∞
lim

log2P
F (P )_ _____ → 0

8) Messages are processed by a transmitter and then a receiver. The order of processing messages at the
transmitter and receiver is identical. The processing time for message K by the transmitter is denoted by
TK , and by the receiver is denoted by RK . There are a total of N messages to be transmitted at time
zero. We define TN +1=0, R 0=0 for simplicity. The receiver can buffer at most two messages at any one
time; once the receiver has two messages, the transmitter stops processing messages until the receiver
only has one message.

__________________

* I.Munro, M.Paterson, Optimal Algorithms for Parallel Polynomial Evaluation, Journal of Computer System Science, 7, 189
(1973).
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A. What are the precedence relations for processing N messages?

B. Show that the total time or make span to process all N messages is given by

make span = TF =
K =0
Σ
N

max 
TK +1,RK




C. Show that the total time or make span to process all N messages can be written as

make span = Tf inish =
K =1
Σ
N

(TK +RK ) −
K =1
Σ

N −1

min 
TK +1,RK




D. The mean throughput rate is defined as

mean throughput rate =
N →∞
lim

Tf inish

N_ _____

Show that

mean throughput rate =
E [max(T ,R )]

1_ ___________

E [max (T ,R )] ≡
N →∞
lim

N
1_ _

K =1
Σ
N

max (TK +1,RK )

where E [max (T ,R )] is the average of the maximum of the transmitter and receiver time per
message. For TK =T =constant ,RK =R =constant , explicitly evaluate this expression. For R =1 and
T =1,0.5,0.2 what is the mean throughput rate?

E. Show that

Tf inish ≥ max



RN +

K =1
Σ
N

TK ,T 1 +
K =1
Σ
N

RK





F. What changes if the receiver can buffer an infinite number of messages?
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