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ABSTRACT

An historical, personal and idiosyncratic overview of stable

probability distributions in signal processing is presented.

1. INTRODUCTION

From 1972 to 1976 the author worked at Bell Laboratories in

Murray Hill NJ in the Mathematics Research Center.  Part of that

time was devoted to studying stable probability distributions, and

then attempting to understand how signal processing might be

impacted if additive noise was perturbed away from a Gaussian

probability distribution toward a stable probability distribution

that was close (in the sense of having a characteristic exponent

less than two).   This work was motivated by studying noise on

analog telephone lines, which number in the hundreds of millions

around the world, and which increasingly are being used to send

digital information via dialup modems (Stuck and Kleiner,

1974).  In addition, there has been a significant amount of

statistical data analysis of fluctuations of logarithms of stock

prices which suggests that a family of stable probability

distributions would fit to within statistical fluctuations

(Mandelbrot, 1963 and 1967; Fama, 1965).  Finally, a variety of

workers had concentrated on numerical aspects of arbitrary stable

distributions (DuMouchel, 1971; Cross, 1974) and statistical

parameter estimation (Fama and Roll, 1968; Fama and Roll,

1971; DuMouchel, 1971).

This led to a research program into examining the impact of

stable probability distributions on classic statistical hypothesis

testing for discrete time finite samples (Stuck, 1976a) and for

continuous time analogs (Stuck, 1976b; Newman and Stuck,

1979a, 1979b).  A natural generalization of the discrete time

Kalman filter was obtained for a class of discrete time moving

average autoregressive stable processes (Stuck, 1977).  A natural

generalization of the well-known Gaussian random variable

generation to stable random variable generation was obtained

(Chambers, Mallows, Stuck, 1977).  Finally, an analysis of

investment portfolios was carried out assuming a log stable

random walk for the underlying security price (Stuck, 1976).

Our intent is to discuss each of these in turn.

II TELEPHONE NOISE

The initial work on statistically characterizing the noise from

tape recording measurements on five analog telephone lines was

carried out in 1972-1973.  This work involved two activities, an

exploratory data analysis stage where the data are characterized

through various non-parametric statistics, and a model-building

stage where the data are matched or fit to models to within

statistical fluctuations.  The exploratory data analysis stage

involved examination of noise waveforms, power spectra, and

covariance estimates.  The results showed that the data consisted

of a deterministic component (sinusoids at various frequencies

that are audible tones) plus a stochastic component, which was

assumed to be independent.  After filtering the data to remove the

sinusoids, histograms and empirical cumulative distribution

functions for the filtered data were examined, as well as central

moment estimates.  The filtered data appeared to be wide-sense

stationary over short periods of time, typically one second.

Based largely on quantile-quantile plots, it was concluded that,

although close to Gaussian, the filtered data for three of the five

samples were distinctly non-Gaussian; the filtered data for the

remaining two lines appeared to be Gaussian.

The model building stage involved fitting the filtered data to two

classes of models.  The first class of models was stable

probability distributions.  Based on a series of parameter

estimation procedures including robust estimation, maximum

likelihood estimation, and quantile-quantile plots, and back up

by a likelihood ratio test on the goodness-of-fit, the three non-

Gaussian samples could be adequately modeled by a stable

distribution with characteristic index of roughly 1.95 (the

Gaussian distribution has characteristic index of 2.0).  The

second class of models were a mixture or sum of two processes, a

low-variance component from a stationary Gaussian process, and

a high-variance component from a filtered Poisson process.  The

parameters for the Gaussian compnent were estimated using

trimmed means and trimmed variances.  The parameters

specifying the filtered Poisson process were much more

complicated to estimate.  The instants of time at which noise

bursts occurred and the intervals between bursts were first

examined; based on power spectra as well as covariance

estimates, the intervals appeared to come from a renewal process.

Histograms and empirical cumulative distribution functions

indicated that the time intervals came from a Poisson process;

empirical survivor and hazard function plots showed that a

Poisson process with constant rate parameter was not an

adequate model, however.  Because of the small number of bursts

observed, it was quite difficult to fit the time intervals to a

Poisson process with varying rate parameter, and for expediency

a constant Poisson rate parameter was chosen to model noise

burst times of occurrence.  The amplitudes of the noise bursts



were adequately modeled by a log normal and power Rayleigh,

or generalized gamma.  The durations of actual noise bursts were

used to estimate parameters in the noise burst-shaping filter.  A

simple indication is presented of how well the filtered data fit the

Gaussian-plus-filtered-Poisson-process model.

III HYPOTHESIS TESTING

The problem of classifying a series of observations as coming

from one of two or more possible classes or hypotheses has

received a great deal of attention in the statistical and engineering

literature.  In many physical situations, a variety of disturbances

corrupt the observations; rather than model each disturbance

separately, it is often argued on physical grounds that the

disturbances add and are independent, and the central limit

theorem of mathematics is invoked to model this sum using a

Gaussian distribution.  This approach is adequate as long as the

sum of disturbances is not dominated by one or a few of the

summands; if one or a few of the summands does dominate the

sum total disturbance, the disturbances can possibly be modeled

as a stable distribution, using the generalized central limit

theorem of mathematics.

The Gaussian distribution has enjoyed great popularity in

hypothesis testing because it is analytically tractable and because

it is the only stable distribution with finite variance.  Although it

may be argued that mathematical models with infinite variance

are physically inappropriate, this view conveniently overlooks

the fact that the Gaussian distribution is unbounded, which is

also a physically inappropriate mathematical model.  The

Gaussian model may adequately model disturbances over a

narrow range of amplitudes; an infinite variance stable

distribution model may adequately model disturbances over a

larger range of amplitudes.  Both distributions may be physically

inappropriate mathematical models, but the infinite variance

distribution may, in this sense, be the better model.

One of the difficulties with carrying out statistical hypothesis

testing using arbitrary statistical distributions is the underlying

numerical analysis can be quite challenging compared with that

for Gaussian distributions.  Furthermore, closed form analytical

expressions that would provide useful rules of thumb can be few

and far between.  On the other hand, with the advent of the

relatively inexpensive personal computers that are capable of

performing hundreds of millions of calculations per second, the

utility of closed form analytic expressions can in some cases be

mitigated by having a graphical display of numerical calculations

using parameter estimates, and this by itself can be quite useful.

Hence, the bulk of the hypothesis testing work was presented in

numerical graphical form.

Two special cases were examined in detail, when the underlying

distributions differ only in location, and when they differ only in

scale.  The probabilities of error of the first and second kind are

found for three analytically tractable cases (Gaussian, Cauchy,

and Pearson V) by calculating the characteristic function of the

log likelihood probability measure induced under each

hypothesis; the general case is apparently analytically intractable,

and quite challenging from a numerical analysis vantage point.

Exponentially sharp upper and lower bounds on both types of

probabilities of error, and also the total probability of error, can

be simply derived from the Laplace transform of the log

likelihood probability measure induced under each hypothesis.

These bounds are found analytically in three cases, and relatively

inexpensive numerical results are presented for selected other

cases.

When the two distributions differ only in location, the likelihood

ratio test is shown to be extremely sensitive to whether the

distribution is non-Gaussian, when nonlinear soft limiting of

large deviations is employed, or Gaussian, when linear

processing is used.  When the distribution is non-Gaussian

stable, performance is found analytically to be quite sensitive to

whether a linear (suboptimum) or likelihood (optimum) decision

rule is used; asymptotics are developed.

When the two distributions differ only in scale, the likelihood-

ratio test is extremely sensitive to whether the distribution is non-

Gaussian stable when nonlinear soft limiting of large deviations

is used, or Gaussian when a chi-squared test is used.

Performance for non-Gaussian stable distributions is extremely

sensitive to whether a suboptimum (chi-squared) or optimum

(likelihood ratio) test is used; asymptotics are developed.

The analysis of the two remaining cases, distinguishing between

one of two characteristic indices and between one of two

skewness parameters, closely parallels the analysis that

distinguishes between two scale factors.

IV MINIMUM ERROR DISPERSION LINEAR

FILTERING OF SCALAR SYMMETRIC STABLE

PROCESSES

The well known Kalman-Bucy linear filtering theory for

Gaussian Markov processes is generalized (Stuck, 1977) to cover

a particular class of non-Gaussian Markov processes, scalar

symmetric stable Markov processes.  Results are presented for

discrete time that are quite analogous to those for Gaussian

Markov processes.  On the other hand, there is no analogous

Wiener-Hopf spectral factorization theory for this class of

problems, and the natural extension to the multivariate case is

still an open issue.

V STATISTICAL ANALYSIS OF CONTINUOUS TIME

PROCESSES

A number of works dealt with continuous time analogs of

discrete time processes (Stuck, 1976b; Newman and Stuck,

1979a and 1979b).  These works have received limited attention

because of the sample path pathologies of continuous time

independent increment processes and continuous time Markov

processes that are generated from Gaussian distributions or from

stable distributions.
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