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CHAPTER 1: INTRODUCTION

Why do performance analysis? There are two basic reasons:

[1] To improve productivity: more work is accomplished in the same amount of time.

[2] To add functionality: totally new functions will be performed that offer the potential for new
productivity gains or new revenue.

Productivity has two components:

[1] Comparisons of different configurations of an existing system doing an established set of
functions. Here are some illustrative examples:

• A file system is stored on a disk. Where should the files physically be located to provide
acceptable access times for typical usage?

• An office contains three groups. Should there be one secretary per group, or a pool of three
secretaries for all the groups?

[2] Changing the configuration of an existing system doing an established set of functions to
improve performance. Here are some examples to illustrate this point:

• A computer system for program development is configured with one megabyte of memory.
What information is needed to determine how much memory is really needed?

• A file system for billing inquiries is stored on two disk spindles. A single controller governs
access to the two spindles. What information is needed to determine if a third disk spindle is
needed? What about adding another controller?

• An application program that generates management reports reads one file repeatedly. What
information is needed to determine if this file should be replicated and stored on more than
one disk spindle, to improve performance?

• A packet switch has four communication links. Should there be a pool of buffers for all
messages on all links, or should buffers be dedicated to different types of packets (e.g.,
control packets versus data packets, or so many buffers per line)

• A telephone switching system is controlled by a single processor. What information is
needed to determine if this processor should be replaced by a single faster processor, or two
processors of the same speed, in order to handle fifty per cent more telephone calls per hour?

Here are some examples of added functionality:

• An office already owns a computer controlled word processing system. What information is needed
to determine if this system can support electronic mail?

• A bank wishes to install a network of automatic teller machines. What information is needed to
determine what type of computer will be needed to handle this work?

• A CATV franchise wishes to supply voice communications over TV channels not used for
entertainment. What type of computer system will be needed to handle billing for this purpose?

Coupled with any performance analysis must be an economic analysis to quantify benefits and costs.
All too often costs are ignored altogether, for a variety of reasons. If costs are ignored, then, de facto,
costs are assumed negligible. However, costs are lost benefits. If costs are studied, then the outcome
must be worse than before the study, because now costs are not negligible. Costs quantify the benefits
of different alternatives, which is one aspect of decision making.

Remember, issues of computer performance evaluation cannot be answered absolutely. They must be
addressed relative to other factors, such as economic issues, political considerations, and many more.
The aspects of performance dealt with here are still only a subset of all the factors that must be
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considered in evaluating a total system to determine if it is suitable for a given application.

Although we focus on performance analysis here, we can be more specific, and list some of these other
considerations:

• Economic: What is the cost to the user and the provider for a set of services?

• Marketing: What are the long term strategies or goals? What products attempt to meet those goals?

• Service: What service must be provided by the vendor, and by the purchaser? At what cost?

• Human engineering and psychological: What do human beings see and hear and feel when they
interact with the system?

• Logical correctness and functionality: What functions should the system perform? How do we
know these functions are being correctly executed?

• Systems engineering: Should products be leased or purchased? From what vendors? What
hardware configuration is cost effective? What software configuration?

1.1 An Example

The figure below shows a representative hardware block diagram of a computer system.

Figure 1.1.Computer System Hardware Block Diagram

Operators at terminals spend some time reading, thinking and entering commands. The commands are
fed into the computer system, and executed, and the cycle repeats itself. In order to say anything at all
quantitative concerning performance, we must describe how the system works. The simplest script for
describing this would be to have only one type of job done by every operator. The script that each
operator would follow might be

• Read, think and enter a command

• Wait for the response to the command

The process then repeats itself, again and again and again. This is summarized in the flow chart below.
We measure the average time to do each step. There are two entities, an operator (at a terminal) and a
computer system. The table below is a summary of what entities are needed at each step, and the
average time per step:
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Figure 1.2.Operator Interaction With Computer System Flow Chart

Table 1.1.Steps, Entities and Mean Time per Step_ _____________________________________________ ____________________________________________
Step Operator Computer Time_ _____________________________________________ ____________________________________________

Read,Think,Type 1 0 Tthink

Wait for Response 0 1 Tsystem

The times that are tabulated are measured with no contention, i.e., with only one operator at one
terminal using the computer system. We will use the no contention measurements to extrapolate to
system behavior with contention. But before doing so, we must take a diversion.

1.2 What Is a Resource?

The entities in the example above are concrete examples of what we call resources. In order to
understand the performance of a computer or communication system, we must understand what state the
system is in at any instant of time. It is often useful to summarize the system state by what jobs are
holding what resources at each step of execution. What is a resource? A resource is anything that
can block subsequent execution of a job. A job requires one or more resources at each stage of
execution, and if it does not have them all, it is blocked from execution until the necessary resources are
available. What are the resources in the previous example?

• Each operator is a resource

• Each terminal is a resource

• Each command is executed on a computer system, so the computer system is a resource

We could aggregate this set of resources in different ways. For example, in order for an operator to
interact with the system, an operator needs a terminal, so we might combine these two resources and
talk about operators and terminals interchangeably. We could disaggregate this set of resources in
different ways. For example, we might look inside the computer system, and find a processor, memory,
a disk controller handling one or more disk spindles, and so on, as well as operating system software
and application programs, each of which might usefully be thought of as resources. Whatever
description is most useful in a given situation will determine what level of aggregation and
disaggregation is needed.

The state of the system at any instant of time is given by the number of operators at terminals actively
reading, thinking, and typing, and hence holding a terminal resource, and the number of jobs inside the
system in execution or waiting to be executed. More formally, Joperator denotes the number of operators
reading, thinking and typing, while Jsystem denotes the number of jobs inside the system. Each of these
can take on integer values ranging from zero to N , the total number of terminals with operators, but
there is a constraint that every job must be somewhere, either with an operator or inside the system, and
hence
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Joperator + Jsystem = N

The state space Ω is given by all ordered pairs (Joperator ,Jsystem ) such that the total number of jobs equals
the total number of active operators:

Ω = {(Joperator ,Jsystem ) Joperator ,Jsystem =0,1,...,N ;Joperator + Jsystem =N }

A useful picture of the system state is a queueing network block diagram. For our earlier example of
terminals connected to a single system this is shown in the figure below:

Figure 1.3.Queueing Network Block Diagram

We see two queues, represented by a box with an open left end. Resources are shown by circles or
servers: each terminal is represented by a circle, while the system is represented by one circle. Jobs
circulate from the terminals into the system and back again.

Both physical and logical resources are required at each stage of execution of computer programs, and
we must know these in order to say anything about performance. Resources can be

• Serially reusable--one job at a time can use a processor, a data link, a given secondary storage
device, a protected file, a critical region of operating system code

• Shared concurrently--multiple buffers in an operating system allow different jobs to share the buffer
resource concurrently

• Consumable--messages between software modules exemplify this resource type

In our previous example, the system is serially reusable, while the terminal resource can be thought of as
shared concurrently: there is a pool of terminals, and we are not distinguishing anything about the work
going on at each terminal (if we did, then each terminal would be a serially reusable resource). Because
the notion of resource is essential to performance analysis, we will motivate this basic concept with
additional examples in later sections.

1.3 Resource Allocation Policy

The choice of policy or schedule for allocation of resources is central to performance evaluation. We
will focus on a variety of policies to allocate resources throughout this book, because the central issue in
modern digital system design is the ability to allocate resource as demands change with time in a cost
effective and flexible manner. Any scheduler will execute the highest priority job in the system at any
one time. An illustrative flow chart of a scheduler is shown on page seven.

The details of how to set the priorities will concern us throughout the rest of this book. Again, we only
have finite resources, due to economic concerns, that must be allocated amongst competing tasks in
order to meet diverse and perhaps conflicting goals.
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Figure 1.4.Scheduler Flow Chart

1.4 Likelihoods and Statistics

One problem with characterizing performance of computer communication systems is their intrinsic
complexity. Even if we could know the state of every logic gate, which could be billions upon billions
of states, what would we do with the information: it is simply too difficult to track and comprehend. On
the one hand, for logically correct operation, we are interested in knowing all the states: is the system in
a working state, or is it in an unacceptable state? On the other hand, for performance, we are not
always interested in all the states, but only the most likely that the system would be operating in.
Statistics are a natural way of summarizing this type of complexity. Statistics allow us to quickly draw
cause and effect inferences. Computer communications systems do not operate in a random manner,
which is one aspect of statistics. Our purpose in using statistics is to study the most likely behavior,
averaged over a suitably long time interval. Finally, how long is long? This is a relative notion: we are
assuming that the measurements and statistics we gather stabilize, and are well characterized by an
average value or mean. Transients will be ignored until later.

1.5 Performance Measures

Our intent is to focus on some of the many facets of what is called performance of a computer or
communication system. This had its origin in voice telephony, determining how many voice telephones
could be connected to a switching system to provide acceptable service. The demands placed on such
systems can generate traffic or congestion for different resources. We will refer to performance
interchangeably with traffic handling characteristics of such systems from this point on.

Traffic handling measures are either quantitative or qualitative. Two types of measures arise: those
oriented toward customers or users of the system, and those oriented toward the system as a whole.
Each of these measures has its’ own costs.

1.5.1 Customer Oriented Goals, Inputs and Outputs >From the point of view of a customer or user of
a system, we might be interested in the time delay (both execution and waiting) for each step of each
job: from arrival, to the initial wait for service, through service, and the final clean up prior to
completion. Service might involve some work to set up a job (e.g., handle an appropriate interrupt of a
processor), followed by execution of the job (e.g., processing followed by input/output to secondary
storage followed by processing and so forth), followed by clean up (e.g., handle an appropriate interrupt
of a processor). The time epochs of interest are the arrival or ready time of a job, the job completion
time, the desired completion time or due time or window or deadline.
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>From these statistics we could compute for each job its

• queueing or flow time--time from arrival until completion

• waiting or ready time--time to start processing less arrival time

• lateness--actual completion time minus desired completion time

• tardiness--maximum of zero and lateness

Can you think of any more? These are summarized in the figure below:

Figure 1.5.Illustrative Time Epochs for Processing a Job

For each measure or time interval, there would be a cost attached, which would reflect economic criteria.
We could compute these for each step of each job submitted by each user. This can be quite complex,
and instead we might compute a statistic, such as the average cost, averaged over all jobs by all users
over time.

1.5.2 System Oriented Goals, Inputs and Outputs >From the point of view of the system as a whole,
we might wish to record over a given time interval

• The fraction of time each resource is busy doing work

• The mean throughput rate of executing jobs: the mean number of jobs executed in a given time
interval

• The fraction of time two resources are simultaneously busy (in order to see how many steps are
being executed concurrently)

In our previous example, we would be interested in

• The fraction of time each operator is reading, thinking and typing

• The fraction of time the system is busy executing work

• The mean throughput rate of executing jobs

• The fraction of time at least two operators are busy

• The fraction of time the system plus at least one operator is busy

For each resource, we could attach a cost for being idle, and compute the cost per resource for each
user, or compute a statistic such as the average cost due to a resource being idle, averaged over all jobs
and all users and over time.
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1.6 An Example (Revisited)

Let’s calculate as many performance measures as possible for our previous example: operators at
terminals only doing one type of job, reading and thinking and typing followed by waiting for a
response for the system. We will compute these exactly for one operator using the system, and then use
this to bound performance with more than one operator, which is really the region of interest.

1.6.1 One Operator What is the response time for one operator? This is given by

mean response time for one terminal = Tresponse = Tsystem

The rate at which work is executed by the system is the reciprocal of the mean time to completely cycle
through a job. There are only two steps, and hence the mean throughput rate is given by

mean throughput rate for one terminal =
Tthink + Tsystem

1_ ____________

For example, if the mean time spent reading, thinking, and typing is fifteen seconds, while the mean
response time is one second, then we see

mean response time for one terminal = Tsystem = 1 second

mean throughput rate for one terminal =
Tthink + Tsystem

1_ ____________

=
15 sec + 1 sec

1_ ____________ = 1 command every 16 seconds

What is the utilization of the operator, the fraction of time an operator is busy?

operator utilization =
Tthink + Tsystem

Tthink_ ____________ =
15 sec + 1 sec

15 sec_ ____________ =
16
15_ __

What is the utilization of the system, the fraction of time the system is busy?

system utilization =
Tthink + Tsystem

Tsystem_ ____________ =
15 sec + 1 sec

1 sec_ ____________ =
15
1_ __

What is the fraction of time both the operator and the system are simultaneously busy? Zero!

1.6.2 Two Operators If two operators were using this system for command execution, what changes?
The best the mean response time could ever be would be as if each operator were using the system
separately. Hence, we see a lower bound on mean response time given by

mean response time with two terminals ≥ Tsystem = 1 sec

The worst the mean response time could ever be would be to have one operator submit a job and
immediately thereafter have the other job submitted, which gives us a upper bound on mean response
time:

mean response time with two terminals ≤ 2Tsystem = 2 sec

If we summarize all this, we find

Tsystem ≤ Tresponse ≤ 2Tsystem two terminals

The definition of mean throughput rate is simply the rate at which each operator is doing work,
multiplied by the total number of operators. Each operator spends some time reading, thinking, and
typing, and then waits for a response, so the mean throughput rate for each operator is

mean throughput rate per operator =
Tthink + Tresponse

1_ _____________

The upper bound on mean response time gives us a lower bound on mean throughput rate:
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mean throughput rate per operator ≥
Tthink + 2Tsystem

1_ _____________

The lower bound on mean response time gives us an upper bound on mean throughput rate:

mean throughput rate per operator ≤
Tthink + Tsystem

1_ ____________

For the total system, with two operators we have twice the mean throughput rate of one operator:

λlower ≤ total system mean throughput rate ≤ λupper

λlower =
Tthink + 2Tsystem

2_ _____________ = 2 commands every 17 seconds

λupper =
Tthink + Tsystem

2_ ____________ = 2 commands every 16 seconds

What is the utilization of each operator? The fraction of time each operator is busy is the mean rate
each operator does work multiplied by the mean time spent reading, thinking and typing:

operator utilization = mean throughput rate per operator × Tthink

Since we have upper and lower bounds on mean throughput rate, we have upper and lower bounds on
operator utilization. What is the system utilization?

system utilization = total mean throughput rate × Tresponse

Since we have upper and lower bounds on mean throughput rate and response time, we have upper and
lower bounds on system utilization.

What about bounding other measures of concurrency?

• The fraction of time both operators are busy reading, thinking and typing and the system is idle

• The fraction of time one operator is reading, thinking and typing and the other operator is waiting
for the system to respond

• The fraction of time both operators are waiting for the system to respond

EXERCISE: Explicitly calculate bounds on each of these measures.

1.6.3 N>2 Operators What happens if we increase the number of operators more and more? At some
point the system will be completely busy doing work, and this will occur at

total mean throughput rate =
Tsystem

1_ _____ = 1 command every second N →∞

This is a different upper bound from the upper bound on mean throughput rate we just found. Our first
upper bound was due to how the system was used by operators, while this upper bound is intrinsic to
the system. One way to measure this is to always have a command ready to be executed. Once a
command finishes execution, another command is immediately started in execution. Every system will
have a maximum rate at which it can execute jobs, and this is a key performance measure. We combine
both upper bounds in one expression:

mean throughput rate ≤ λupper = min


 Tsystem

1_ _____,
Tthink + Tresponse

N_ _____________




As we vary the number of active operators or terminals, N =1,2.., the upper bound on mean throughput
rate exhibits a breakpoint (denoted Nbreakpoint terminals or users) as a function of N , moving from an
operator limited regime to a system limited regime. The breakpoint marks that value of N for which the
two upper bounds equal one another:
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Tthink + Tsystem

Nbreakpoint_ ____________ =
Tsystem

1_ _____ Nbreakpoint =
Tsystem

Tthink + Tsystem_ ____________

Below this breakpoint, the terminals and operators cannot generate enough work to drive the system to
continuously execute commands. Above this breakpoint, the system is continuously busy, and the
operators are experiencing delays. This suggests the notion of a bottleneck: a resource that is
completely busy. The terminals and operators are a bottleneck, provided the number is less than the
breakpoint, and otherwise the system is a bottleneck. This breakpoint is a different measure of
concurrency.

The mean response time is related to the mean throughput rate via the definition of mean throughput
rate. A job is either with an operator (who is thinking) or inside the system (being executed):

total mean throughput rate =
Tthink + Tresponse

N_ _____________

If we solve for the mean response time (which is a function of the number of terminals, among other
things), we find

Tresponse =
total mean throughput rate

N_ _______________________ − Tthink

On the one hand, the worst the mean response time could be is to be the last job to be done, after all the
other operators submit jobs:

Tresponse ≤ NTsystem

This gives us a lower bound on mean throughput rate:

total mean throughput rate ≥
Tthink + NTsystem

N_ _____________

On the other hand, the best the mean response time could be is to be equal to the response time for one
terminal:

Tresponse ≥ Tsystem

Since the mean throughput rate can be upper bounded by two different expressions, we have two
possible lower bounds on mean response time, and we will choose the larger of the two:

Tresponse ≥ max 
Tsystem ,NTsystem − Tthink




These upper and lower bounds on mean throughput rate are plotted in the figure below versus number of
active operators. Figure 1.7 plots upper and lower bounds on mean response time versus number of
active operators.

1.6.4 Stretching Factor Ideally, as we increase the number of terminals, the mean throughput rate
increases, while the mean response time stays low. Unfortunately, at some point the mean response time
will grow, and the mean throughput rate will saturate. This suggests writing the mean throughput rate
as the product of two factors, one that is a dimensionless stretching factor and one that is the ideal mean
throughput rate, N times the mean throughput rate for one terminal:

mean throughput rate =
Tthink + Tresponse

N_ _____________

= stretching f actor ×
N mean throughput for N =1

mean throughput rate for N >1_ __________________________

By definition, we see

stretching f actor =
mean throughput rate for N ≥1

N mean throughput rate for N =1_ _____________________________

The upper and lower bounds on mean throughput rate for the system give us upper and lower bounds on
the stretching factor:
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Figure 1.6.Upper and Lower Bounds on Mean Throughput Rate

Figure 1.7.Upper and Lower Bounds on Mean Response Time

stretching f actor ≥
Tthink + NTsystem

NTsystem_ _____________

stretching f actor ≤




 Tthink + Tsystem

NTsystem_ ____________

1
N ≥ Nbreakpoint

N ≤ Nbreakpoint

The upper bound on stretching factor grows linearly with the number of active terminals, i.e., it stretches
proportional to N . Ideally, we want no stretching, i.e., a stretching factor of unity.

1.6.5 Additional Reading

[1] E.Arthurs, B.W.Stuck, Upper and Lower Bounds on Mean Throughput Rate and Mean Delay in
Queueing Networks with Memory Constraints, Bell System Technical Journal, 62 (2), 541-581
(1983).
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[2] H.Hellerman, T.F.Conroy, Computer System Performance, McGraw Hill, NY, 1975.

1.7 The Two Fundamental Approaches to Achieving Desirable Performance

The previous example shows the following: there are only two fundamental approaches to achieve a
desired level of performance in a computer communication system.

1.7.1 Execution Time Speeding up one or more steps of a job, or reducing the execution time of one or
more steps, is one way to impact performance. Recoding an application program, reducing the amount
of disk input/output or terminal character input/output are examples of application program speed
changes. Replacing a processor with a faster processor, or a data link with a faster data link are
examples of hardware speed changes.

1.7.2 Concurrency and Parallelism At a given instant of time, there are a given number of jobs in the
system that are partially executed, which are said to be concurrently in execution. In particular, a
certain number of the jobs concurrently in execution can in fact be actively in execution, and these jobs
are said to be executing in parallel. The greater the number of jobs actively in execution, the greater the
impact on performance. This will be the central theme for the remainder of the book. Note that the
execution time of each step of a job need not be reduced, so the total time to complete a job is the
same, but the total number of jobs per unit time that can be executed can be increased. A single
processor handling multiple terminals doing program development is an example of logically concurrent
execution of multiple jobs: at any instant of time, only one job is running on the processor, but there can
be many jobs partially executed in the system. An operating system that can support multiple disk
spindles off multiple controllers doing independent parallel data transfers is an example of parallelism
or physical simultaneous execution of multiple jobs.

1.8 Layered Models of Computer and Communication Systems

Layers accomplish two things:

• They allow us to deal with a subsystem internals in one way, and design this to meet a set of goals

• They allow us to deal with a subsystem externals (for handling input and output to other subsystems)
in a different way from the internals and design this to meet a different set of goals

What layers and resources lie inside the box labeled system? One way to answer this is hierarchically,
as a series of layers that are peeled away, with resources residing in each layer. Figure 1.8 shows an
illustrative layered model of the computer system described earlier:

Figure 1.8.Layered Model of Computer System

In this model we see subsystems labeled

• Hardware--Terminals, processor, memory, input/output handlers, disk controller, disks, tape drives,
printers and so forth

• Operating system--A set of programs that control the hardware and make use of it (i.e., the operating
system programs reside in secondary disk storage and in main memory and require processor time to
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run, and so forth)

• Application programs--A set of programs that make use of operating system functions to accomplish
a specific application

What are the resources here? Examples might be

• Hardware resources--Processors, memory, disk controller, disk spindle, printer, input/output handler,
terminal, cache, floating point accelerator, communications bus

• Operating system resources--Tables, files, events, signals, semaphores, messages, objects, processes,
capabilities, pages, segments, partitions

• Application resources--Data base manager, application level transaction manager, communications
manager, front end terminal manager, compilers, editors, report generators

Ultimately a resource involves using up hardware, but remember that anything that can block execution
of a job is a resource. Many viewpoints of the same thing are often useful here.

1.9 Layers and Performance

Each layer is a candidate for performance analysis. First, we might wish to speed up each:

• Hardware might be too slow for certain jobs and can be replaced with faster hardware with little or
no changes to the operating system and application software

• Operating system software might be too slow for certain jobs, and might be changed to speed up
certain system calls that demand a lot of resources (either because they are called frequently or
because they demand a lot or both)

• Application software might be too slow for certain jobs, and might be recoded to speed up certain
areas, to take better advantage of the operating system and hardware

At present, application programs are typically done with serial flow of control, while operating system
programs typically handle concurrent flow of control: to take better advantage of concurrency of the
hardware and software resources, the application programs might be recoded to take better advantage of
the operating system and hardware.

To improve performance, we might

• Keep the operating system and application software, and replace hardware with faster hardware

• Keep the operating system and hardware, and recode the application to take best advantage of the
operating system with its hardware

• Keep the application software and hardware, and change the operating system (adding more file
space, changing the scheduling algorithm, changing the buffering strategy)

We can aggregate and combine these different layers in talking about performance evaluation. At the
hardware level, we might be interested in the maximum mean instruction execution rate, the memory
access time per word, and so forth. At the operating system level we might be interested in system
functions and time required to execute each on a given hardware configuration. At the application level,
we might be interested in taking best advantage of operating system call implemented on a given
hardware configuration.

We have fixed the evaluation interface and the subsystems underneath it in describing performance.
This structures our data analysis and allows us to quickly draw cause and effect inferences about
performance problems. There is also a need to evaluate each layer by itself, or to evaluate sets of layers
together: this realm of testing and diagnostics is worthy of independent study by itself, and can be the
subject of more than one book. Here we are suggesting a methodology for representing total system
state for different purposes: many such state representations are fruitful.
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1.10 An Application Program Development View

The figure below shows a flow chart of the types of activities involved in application program
development.

Figure 1.9.Application Program Development Flowchart

First, a program is entered into a computer system using an interactive editor. Next, the program is
parsed to see if the syntax matches the rules of the language. If errors are reported, the program is
rewritten, and parsed again, until the program successfully passes this stage. Next, machine code is
generated, and this may produce a variety of new error messages that were not checked by the parser.
The program is rewritten, and now this may introduce parsing errors. If the program successfully is
parsed and generates executable code, we may wish to make use of optimizing features of the compiler
(to reduce the amount of storage and execution time). Again, this step may generate a variety of errors,
and cause the program to be rewritten. Finally, we have a program that passes all the rules of parsing,
code generation, and optimization. We still might have to rewrite this program, because although it does
what we say, it might not do what we mean.

Figure 1.10 is a block diagram summarizing all of these actions.

Figure 1.10.Program Development Block Diagram

1.10.1 Steps and Resources We can construct a step resource table for each activity outlined above.

Table 1.2.Step/Resource Table_ _______________________________________________________ ______________________________________________________
Step Programmer Processor Time
Type Required Required Symbol Value_ _______________________________________________________ ______________________________________________________

Read, Think 1 0 Tthink 15 sec
Edit Code 0 1 Tedit 1 sec
Parse Code 0 1 Tparse 1 sec
Generate Code 0 1 Tgenerate 30 sec
Optimize Code 0 1 Toptimize 30 sec
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Illustrative values of time for each step are shown in the table. Note the great discrepancy between the
time required to handle simple edits and parsing versus to handle code generation and optimization. To
simplify our analysis, we will aggregate together the steps for parsing, code generation and optimization.
Together we call these steps compilation with a total mean time of Tcompile .

1.10.2 Resource Allocation We want to examine the consequences of different schedules or resource
allocation policies about performance measures. We will study

• Executing jobs in the order of submission

• Round robin quantum scheduling

1.10.3 Execution in Order of Arrival There are two different job types, edits and compilations. We
have a total of N terminals, so the following cases might occur:

• There are no jobs in the system, and so once a job is submitted it immediately runs to completion

• Every other terminal has submitted a job, and we are the last in line.

For the first case, the mean queueing time is simply Tedit or Tgenerate or Toptimize , depending upon what
type of job was submitted. For the second case, the mean queueing time is as small as NTedit if all jobs
are edits, or as big as NTgenerate if all jobs are compilations.

The variation in response time can be huge: if an edit command was last in line, and all the other
commands were compilations, a relatively quickly executing command would have to wait for many
very long commands, and this might be unacceptable!

1.10.4 Execution via Quantum Round Robin Scheduling This schedule executes a job for a maximum
amount of time called a quantum, and either the job finishes or it goes to the end of the queue where it
will get another shot, until eventually it finishes. This is shown in the queueing network block diagram
below:

Figure 1.11.Round Robin Queueing Network Block Diagram

Let’s look at two cases, as before:

• There are no other jobs in the system, and provided nothing more arrives, a job will run until it is
executed

• All the other terminals have submitted commands, and we are last in line

For the first case, the mean response time is Tedit or Tcompile , depending upon the command type. For
the second case, caution is needed. If the quantum is set equal to Tedit , then if we have submitted an
edit, it will complete at NTedit , even if all the other commands were compilations; each of the other
commands would only get one quantum of time. On the other hand, if the quantum is set to Tcompile ,
then if we had an edit command and all the other commands were compilations we would wait for
(N −1)Tcompile + Tedit for a response, much much greater than for our first choice of quantum.
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1.10.5 Summary For this particular example, where we have a huge variation in the execution time of
jobs, with short jobs being much more urgent than long jobs, and where we do not know whether a
command will be short or long, quantum round robin scheduling with the quantum set at Tedit can offer
short response to short commands, while long commands take a long time.

If we set the quantum to Tcompile , then we are executing jobs in order of arrival, and encounter huge
variations in response time.

Note that if all jobs took the same amount of time, then we would set the quantum equal to that amount,
and execute jobs in order of arrival.

1.10.6 Additional Reading

[1] A.V.Aho, J.D.Ullman Principles of Compiler Design, Addison Wesley, Reading, Massachusetts,
1977.

[2] L.Kleinrock, Queueing Systems, Volume II: Computer Applications, Wiley, NY, 1976.

1.11 Local Area Network Interfaces

The hardware block diagram below shows one design for a local area network interface between a local
area network and a work station. The interface resources are a local bus that interconnects the work
station interface (called here the bus interface unit or BIU) to the network interface unit (NIU), a bus
controller to determine which device gains access to the bus, plus a local processor with memory for
buffering bursts of data (either from the work station to the network or vice versa).

Figure 1.12.Local Area Network Hardware Interface Block Diagram

The steps involved in transferring data from the work station out over the local area network are
summarized in the figure below.

The steps involved in data transfer are summarized in the table below:

Table 1.3.Work Station/Local Network Data Transfer_ ______________________________________________________________ _____________________________________________________________
Step Resources Time

Number Bus Processor Memory NIU BIU Interval_ ______________________________________________________________ _____________________________________________________________
WS->BIU 1 0 0 0 1 TWS →BIU

BIU->MEM 1 0 1 0 1 TBIU →MEM

Process 1 1 1 0 0 Tprocess

MEM->NIU 1 0 1 1 0 TMEM →NIU
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Figure 1.13.Work Station to Local Area Network Data Transfer

As is evident, more than one resource must be held at each step of execution of this type of job.

What is the maximum rate of executing network accesses?

• If the work station is completely busy transferring data to the bus interface unit, then

maximum mean throughput rate =
TWS →BIU

1_ _______

• If memory is completely busy, then

maximum mean throughput rate =
TBIU →MEM + TMEM →NIU

1_ ____________________

• If the processor is completely busy, then

maximum mean throughput rate =
Tprocessor

1_ _______

• If the network is completely busy, then

maximum mean throughput rate =
TMEM →NIU

1_ _________

The smallest of these, the one that becomes completely busy first, we call the bottleneck resource. In
any system, there will be some bottleneck; the design question is to choose where it should be, while the
analysis question is to find it.

1.12 A Communications System Example

A different type of layering model that is being widely used is the Open Systems Interconnection (OSI)
architecture of the International Standards Organization, shown in the figure below.

In the figure, we show the seven layers of the model, plus an illustrative example of the flow of control
and data to move a file from one system to another. The layers are as follows:

[1] Hardware level--Specifications of voltages, currents, media, waveforms, timing, and packaging.

[2] Frame or message level--Specifications of the meaning of each bit within a frame or packet of
bits, signifying either control (source and destination address, priority, error detecting or
correcting code) and data.
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Figure 1.14.Open Systems Interconnection Architecture

[3] Link level--Multiple transmitters and receivers send frames to one another over a logical
abstraction of a physical circuit called a virtual circuit.

[4] Transport level--Multiple transmitters and receivers send packets or frames to one another over
one or more logical circuits.

[5] Session level--Controlling initiation, data transfer, and completion clean up of a communication
session.

[6] Presentation level--Conversion of an application program protocol to a session level protocol.

[7] Application level--Description of application program behavior.

In the illustrative example, a file is transferred from one system to another as follows:

[1] An application program is accessed from a terminal to begin the process

[2] A chain of commands is retrieved from a local disk to control communication over a link

[3] Communications software controls initial access to the link and sends a request over the link to
the appropriate application in the other system

[4] The desired file is retrieved from secondary storage

[5] The file is transferred from one application to another via the link

[6] The application program notifies the operator the file has been retrieved

[7] The application program stores the file in local disk space

At each step, in order to say anything concerning performance, we would need to specify what
resources, software and hardware, are required for each step, for what time interval, along with a policy
for arbitrating contention for shared resources. Questions concerning the physical location of text and
data can only be answered by describing both the system operation and the staff or people operations.

What are the resources for this system?

[1] Hardware Level--Processor, memory, and bus time

[2] Frame or message level--Source and destination address tables

[3] Link level--Packet sequence numbers with associated priorities
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[4] Transport level--Network name tables, virtual circuit tables

[5] Session level--Number of sessions outstanding

[6] Presentation level--Table of each protocol conversion in progress

[7] Application level--Table of number of in progress communications

To be explicit, we suppose that there are two different computer systems, labeled A and B each with
their own processor and disk for handling this scenario. The table below is a summary of the steps and
resources required for the file transfer shown earlier:

Table 1.4.Step/Resource Summary_ _____________________________________________________________ ____________________________________________________________
Step CPU A DISK A LINK CPU B DISK B Time_ _____________________________________________________________ ____________________________________________________________

Start 1 0 0 0 0 Tstart

Load 1 1 0 0 0 Tload

Request 1 0 1 1 0 Trequest

Retrieve 0 0 0 1 1 Tretrieve

Transmit 1 1 1 1 1 Ttransmit

Notify 1 0 0 0 0 Tnoti f y

Store 1 1 0 0 0 Tstore

What is the maximum mean throughput rate, denoted by λupper , of doing file transfers?

• If CPU A is a bottleneck, then the maximum mean throughput rate is given by

λupper =
Tstart + Tload + Trequest + Ttransmit + Tnoti f y + Tstore

1_ _________________________________________

• If disk A is a bottleneck, then the maximum mean throughput rate is given by

λupper =
Tload + Ttransmit + Tstore

1_ ___________________

• If the link is a bottleneck, then the maximum mean throughput rate is given by

λupper =
Trequest + Ttransmit

1_ ______________

• If CPU B is a bottleneck, then the maximum mean throughput rate is given by

λupper =
Trequest + Tretrieve + Ttransmit

1_ ______________________

• If disk B is a bottleneck, then the maximum mean throughput rate is given by

λupper =
Tretrieve + Ttransmit

1_ ______________

Communication link data rates are only one component in controlling the maximum mean throughput
rate: the processors and disks at either end can also be important.

EXERCISE: What happens if we have only one processor and one disk?

1.12.1 Additional Reading

[1] A.Tanenbaum, Computer Networks, pp.15-21, Prentice-Hall, Englewood Cliffs, New Jersey,
1981.

[2] F.D.Smith, C.H.West, Technologies for Network Architecture and Implementation, IBM
J.Research and Development, 27 (1) 68-78 (1983).

1.13 Operating System Performance

An operating system is a set of logically concurrently executing programs. An operating system runs on
a given hardware configuration and provides services to application programs.
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1.13.1 Hardware Configuration We assume that the hardware configuration consists of one processor
with a fixed amount of memory, a set of terminals that are connected to the processor via a terminal
handler, and one disk. The disk is used for two purposes, to store programs and data that the programs
access, and for holding programs that cannot be held in main memory, so called swapped programs.

Figure 1.15.Hardware Block Diagram

1.13.2 Application Programs The operating system hides the details of the hardware operations of the
processor, disk input/output, terminal input/output, and memory administration or management, from the
application programs, by presenting a set of interfaces called system calls that allow these programs to
interact without knowing the details of the system call implementation. The operating system schedules
or manages or administers the physical and logical resources, which is the crux of performance. The
programs are virtual processors, and for short are called processes. Each process can be in the
following states: ready to run except that the processor is busy with higher priority work, idle, executing
or running on the processor, blocked on terminal input/output (waiting for a terminal to respond),
blocked on disk input/output (waiting for a disk to respond), or blocked on memory (waiting for
memory to become available). This is summarized in Figure 1.17.

Figure 1.16.States of a Process

The operating system, as it schedules each step of each job, would migrate or move each program or
process around, from one state to another, in the course of execution. The figure below shows one set
of processes that might be managed by the operating system: For each state of a process, we can list
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Figure 1.17.Illustrative Set of Processes Managed by Operating System

the resources required:

Table 1.5.State/Resource Summary_ ________________________________________________________________ _______________________________________________________________
State Processor Memory Disk Terminal Mean Time_ ________________________________________________________________ _______________________________________________________________

Idle 0 0 0 0 Tidle

Run 1 1 0 0 Tcpu

Blocked:
On Disk I/O 0 1 1 0 Tdisk

On Terminal I/O 0 1 0 1 Tterm

On Memory 0 0 0 0 Tmemory

Different resources are held at different steps. Each job migrates through a network of queues, as shown
in Figure 1.18.

Figure 1.18.Operating System Network of Queues

The resources of memory and processor time are allocated sequentially: a process must first be loaded
into memory, and holds this while waiting for the processor, or while waiting for input/output from the
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disk.

Processes that are resident in main memory are candidates for being swapped to secondary disk storage.
Processes that are swapped out of main memory are candidates for being loaded into main memory.

The policy for determining which processes are resident in main memory and which are not, and for
determining which processes are executed by the processor and by the disk, are separate from the
logically correct execution of each step of each program.

The maximum mean throughput rate of executing processes can be limited by memory, disk
input/output, terminal input/output, or processor time. Suppose we gathered measurements on the total
time the system processes were in each state over a given time interval.

• If memory is the bottleneck, then the time spent in the memory blocked state would be the greatest

• If the disk is the bottleneck, then the time spent in the disk blocked state would be the greatest

• If terminal handling is the bottleneck, then the time spent in the terminal blocked state would be the
greatest

• If the processor is the bottleneck, then the time spent in the processor running state would be the
greatest

EXERCISE: Suppose an operating system table contains a list of all active processes. What data
should be gathered to determine if this is limiting performance by simply being set too small?

1.13.3 Additional Reading

[1] A.L.Shaw, Principles of Operating Systems, Prentice-Hall, Englewood Cliffs, NJ, 1974

[2] D.M.Ritchie, K.Thompson, The UNIX TM * Time-Sharing System, Communications of the ACM,
17 (7), 365-374 (1974).

[3] K.Thompson, UNIX Implementation, Bell System Technical Journal, 57 (6), 1931-1946 (1978).

[4] D.M.Ritchie, UNIX Retrospective, Bell System Technical Journal, 57 (6), 1947-1870 (1978).

1.14 Processor Design

Many actual processors are made up of networks of smaller processors, as shown in the figure below:

A processor might consist of an arithmetic logic unit, that has three types of memory connected to it:

• General register or so called scratch pad memory connected via a special dedicated bus

• Program counter processor connected via both a special dedicated bus to the processor and via a
general purpose switch to cache memory

• Cache memory that is much higher speed memory than main memory for hiding recently used
segments of text and data on the assumption that it is highly likely they will be executed in the
immediate future

The resources here are the arithmetic logic unit, the program counter and general registers, and cache
memory, with the switch and switch controller necessary to allow communications between these
different devices.

The flow chart below illustrates how the processor would execute an instruction.

The steps and resources required are summarized in the table below:

__________________

* UNIX is a trademark of Bell Laboratories
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Figure 1.19.Processor Block Diagram

Figure 1.20.Processor Instruction Execution Flow Chart

Table 1.6.Steps/Resource Summary_ ___________________________________________________________ __________________________________________________________
Step PC ALU GR Cache Switch Time_ ___________________________________________________________ __________________________________________________________

Load PC 1 0 0 0 1 TPC

Fetch Instruction 0 1 1 0 1 Tf etch

Decode Instruction 1 1 1 1 0 Tdecode

Fetch Data 0 1 1 1 1 Tdata

Execute Instruction 1 1 1 1 1 Texecute

Store Results 0 1 1 1 1 Tstore

Each of these resources can execute at a maximum rate. The total system mean throughput rate is upper
bounded by λupper : As we raise the number of executing programs, one resource will become
completely busy first, which will be called the bottleneck.

• If the program counter is a bottleneck, then the maximum mean throughput rate is
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λupper =
TPC + Tdecode +Texecute

1_ __________________

• If the ALU is a bottleneck, then the maximum mean throughput rate is

λupper =
Tf etch + Tdecode + Tdata + Texecute + Tstore

1__________________________________

• The maximum rate at which the general registers can load and unload instructions is

λupper =
Tf etch + Tdecode + Toperand + Texecute + Tstore

1_ ____________________________________

• The maximum rate at which the switch can transfer instructions is

λupper =
TPC + Tf etch + Tdata + Texecute + Tstore

1_ _______________________________

Based on this analysis, we see that the bottleneck is the switch. This is because the switch is held for
the long time per instruction execution.

EXERCISE: What can be changed to move the bottleneck to the ALU?

1.14.1 Additional Reading

[1] G.Radin, The 801 Minicomputer, IBM J.Research and Development, 27 (3), 237-246 (1983)

[2] G.J.Myers, Advances in Computer Architecture, Second Edition, Wiley, NY, 1982.

[3] H.Lorin, Introduction to Computer Architecture and Organization, Wiley, NY, 1982.

1.15 Text Outline

The problems and chapters in the text are organized along the lines described in the preface.

1.15.1 Introductory Material First, we survey results from deterministic or static scheduling theory.
All of the work that must be executed is present at an initial time; we wish to study different
configurations and schedules to see how long it takes to finish all the work. The intent is to get used to
systematically described computer communication system operation: for each step, what resources are
required, for how long. This occurs in practice in telephone call processing, discrete manufacturing, and
data communications: a list of work is scanned at the start of a clock cycle and all the work must be
finished before the clock begins its next cycle.

Following this, data analysis and simulation is surveyed. This is a mandatory step in verifying self
consistency and having credibility in performance analysis. In order to summarize data with a model,
measurements must be gathered, and evidence presented showing how well the data fits the model.
Many would argue the issue of data interpretation is the crux of performance analysis.

Next, we study the long term time averaged behavior of systems that execute jobs requiring multiple
resources at each step of execution. An example would be a job that requires both a processor and a
given amount of memory and a given set of files. Both the mean throughput and mean delay per job are
studied for different hardware and software configurations and for different scheduling policies. The
concluding section reinforces this analysis with a series of examples drawn from office communication
systems: case studies, starting from models of simple everyday situations and building up to more
realistic and complex situations.

1.15.2 Jackson Networks Next additional modeling assumptions or restrictions are made beyond just
means or averages, which lead to so called Jackson queueing network models. These assumptions yield
sharper performance bounds on computer communication systems than mean values. Case studies are
studied, starting from the simple and proceeding to the more realistic and complicated. Each case is
analyzed first via mean values alone, and then refined using Jackson network models.
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1.15.3 Priority Scheduling In a computer communication system typically one resource is limiting the
maximum mean throughput rate of completing work, and this is called the bottleneck. Here we study in
detail how to effectively schedule work at the bottleneck resource in order to ameliorate delay, using
priority arbitration. We will make much stronger assumptions about the system statistical behavior here
than we did in earlier sections, and we will display much greater variety and accuracy (not just means
but variances and even statistical distributions) in the phenomena we will deal with.

1.16 Additional Reading

[1] D.Ferrari, Computer System Performance Evaluation, Prentice-Hall, Englewood Cliffs, N.J.,
1978.

[2] U.Grenander, R.F.Tsao, Quantitative Methods for Evaluating Computer System Performance: A
Review and Proposals, in Statistical Computer Performance Evaluation, W.Freiberger (editor),
Academic Press, NY, 1972.

[3] H.Lorin, Parallelism in Hardware and Software, pp.3-44, Prentice-Hall, Englewood Cliffs, NJ,
1972.

[4] M.Phister, Jr., Data Processing Technology and Economics, Second Edition, Digital Press,
1979.
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Problems

1) A data communications system consists of a single transmitter, a noisy link, and a single receiver.
The transmitter sends ones and zeros (bits) over the link. Each bit is equally likely to be transmitted
correctly a given fraction of time, 1−P , and to be incorrectly transmitted a given fraction of time P , due
to noise corrupting the transmission. The diagram below summarizes all this:

Figure 1.21.Bit Transmission Probabilities

Determine the data transmission rate, measured in successfully transmitted bits per second, of each of
the following communications systems

A. A three hundred bit per second data link that requires retransmission of one bit in every ten
thousand (P=0.0001) due to noise; repeat for retransmission of one bit in every one hundred due to
noise

B. A ninety six hundred bit per second data link that requires retransmission of one bit in every ten
thousand due to noise; repeat for retransmission of one bit in every one hundred due to noise

C. A courier delivery service that takes a twenty four hundred foot magnetic tape containing sixteen
hundred bits per inch of tape and will deliver it five thousand miles away in twenty four hours;
repeat if the tape contains six thousand two hundred and fifty bits per inch

D. A courier delivery service that takes a one hundred megabyte magnetic disk pack and will deliver
it five thousand miles away in twenty four hours; repeat for a five hundred megabyte magnetic
disk pack

2)* Imagine you have trained your St.Bernard, Bernie, to carry a box of three floppy disks, each
containing a quarter of a million bytes. The dog can travel to your side, wherever you are, at eighteen
kilometers per hour. For what range of distances does Bernie have a higher data rate than a twelve
hundred bit per second noiseless data link? Repeat for the case where Bernie can carry a single ten
megabyte disk pack.

__________________

* A.S.Tanenbaum, Computer Networks, p.30, Prentice-Hall, Englewood Cliffs, NJ, 1981.
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3) A computer system consists of three identical processors, each processor being capable of executing a
one second job in one second. The system must execute nine jobs, with the execution times for these
jobs as follows: (3, 2, 2, 4, 4, 2, 9, 4, 4).

A. If the jobs are selected for execution in the above order, how long does it take to completely
execute all jobs?

B. Can you find an order of execution which reduces the time to completely execute all the jobs? If
so, how long is it?

4) A computer system consists of a pipeline of N identical processors, with the input job stream going
into the first processor, the output of the first processor feeding the input of the second processor, and so
on:

1 2 3

Figure 1.22.Three Stage (N=3) Processor Pipeline

T (K ) denotes the time, which is constant, required to complete the Kth step of executing a job. Derive
the following results:

A)The time required to completely process one job, T 1:

T 1 =
K =1
Σ
N

T (K )

B)The time required to completely process M jobs, TM :

TM =
K =1
Σ
N

T (K ) + (M −1)
K

max T (K ) = T 1 + (M −1)T max T max ≡
K

max T (K )

C)The mean throughput rate of executing or processing M jobs in time TM :

mean throughput rate =
TM

M_ ___

D)The long term time averaged mean throughput rate M →∞:

long term time averaged mean throughput rate ≡

M →∞
lim mean throughput rate for M jobs =

TM

M_ ___

5) The figure below is a hardware block diagram of a multiple processor multiple memory computer
system: Two steps occur for each job:

[1] A processor executes code

[2] Data is fetched from memory

This is summarized in the table below:

Table 1.7.Job Step/Resource Summary_ __________________________________ _________________________________
Step Processor Memory Time_ __________________________________ _________________________________
1 1 0 Texecute

2 0 1 Tf etch
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Figure 1.23.Multiple Processor Multiple Memory Hardware Block Diagram

The hardware configuration for this system consists of three processors and four memories.

A. Draw a queueing network block diagram of this system

B. A total of M jobs can be held in the system at any one time. Plot upper and lower bounds on
mean throughput rate and mean delay versus M for Texecute =Tf etch =1

C. Repeat the above for Texecute =3Tf etch =1

D. What is the stretching factor for both cases?

6) The hardware configuration for a word processing system consists of four terminals, a central
processor, a disk controller, two disks, a high speed printer and a low speed printer. One terminal is
dedicated to express or rush jobs, and uses the high speed printer. The other terminals are dedicated to
normal jobs, and use the low speed printer or, if available, the high speed printer.

A. What are the hardware resources in this system?

B. Make a flow chart for each step required for a normal job. Repeat for a rush job.

C. What are the resources required for each step of a normal job? A rush job?

D. With no contention, what is the mean time to execute a normal job? A rush job?

E. What is the maximum mean throughput rate to execute J normal jobs? J rush jobs?

F. Suppose there are only normal jobs. Plot upper and lower bounds on mean throughput rate and
mean delay versus the total number of normal jobs. Repeat if there are only rush jobs.

G. Suppose we fix the mix or fraction of jobs of each type, rush and normal, that the system can
execute at any one time: Frush and Fnormal are the fraction of rush and normal jobs. If we submit
J total jobs and allow J →∞, what resource will become completely busy first?

H. Suppose jobs are executed either in order of arrival or with a quantum round robin scheduler.
What are the ranges on mean response time and mean throughput rate for each schedule?

7) The hardware configuration for an order entry system consists of sixteen terminals, four cluster
controllers (one for each four terminals), a dedicated link to a computer, and a computer. The computer
hardware configuration consists of a processor, memory, a disk controller, two disks connected to the
disk controller, a printer, and an interface to a data link to a second inventory control computer system.
The system operates as follows:
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• Clerks enter orders at terminals and then wait for the system to respond

• The order is sent by the cluster controller over the data link to the computer

• The computer does some initial processing on the order, and if it is valid, stores it in the secondary
disk storage

• The computer returns control to the operator at the terminal

• At a later point in time, the orders stored in secondary disk storage are retrieved and sent over a
communications line to the inventory control system

Answer the following questions:

A. Make a flow chart of this job work flow

B. Make a table showing the resources required at each step of execution

C. If we ignore the last step of retrieving orders from disk and communicating them to an inventory
control system, what is the fastest rate at which orders can be executed?

8) We want to study electronic mail pending performance at the hardware level in more detail. An
operator at a terminal submits a query, making use of the hardware configuration shown in Figure 1.24.

Figure 1.24.Hardware Block Diagram

The steps involved in mail query are as follows:

• The terminal controller seizes the switch and alerts the processor

• The processor transfers the query from the terminal via the terminal controller through the switch to
memory

• The processor executes the commands associated with mail pending on the data in memory via the
switch

• The processor seizes the switch and accesses the mail pending information which is stored on
secondary storage in a moving head disk

• The processor executes the code associated with this mail pending activity while holding the bus and
memory

• The terminal is notified of the mail pending by the processor seizing the switch and demanding the
information be transferred from memory to the terminal controller
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• The tape controller is seized by the processor via the bus in order to transfer information logging the
mail pending activity

• At a later point in time the processor will transfer data from the tape to memory via the switch

• The processor will generate a management report on mail activity and transfer this to the printer via
the switch from memory

Answer the following questions:

A. What are the hardware resources?

B. Make a table showing what resources are required at each step and for how long.

C. What is the maximum rate at which mail pending can be executed, assuming nothing else is
executed?

9) We want to study electronic mail pending performance at a higher level in more detail. The steps
involved in checking to see if electronic mail is pending are summarized in the figure below.

Figure 1.25.Electronic Mail Pending Flow Chart

In words, these steps are:

[1] The terminal interacts with the input/output handling routines to generate operating system
activity

[2] The operating system generates application program activity in turn

[3] The application program retrieves the mail pending from the data base manager
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[4] The operating system is fed the list of outstanding mail items

[5] The input/output handling routines generate the list of outstanding mail items on the terminal

Answer the following questions:

A. Make up a flow chart for mail pending.

B. The resources available here are hardware, operating system, data base management, and
application. Verify that the table below is a candidate for showing the resources held at each step:

Table 1.8.Mail Pending Step Resource Summary_ _____________________________________________________________ ____________________________________________________________
Step Resource Time

Number Hardware Op Sys Data Base Application Interval_ _____________________________________________________________ ____________________________________________________________
1 1 0 0 0 Thardware

2 0 1 0 0 Top sys

3 0 0 0 1 Tapplic

4 0 0 1 0 Tdata base

5 0 0 0 1 Tapplic

6 0 1 0 0 Top sys

7 1 0 0 0 Thardware























C. What is the mean response time with only one terminal using the system? What is the mean
throughput rate with only one terminal using the system?

D. Assuming only mail pending queries are made, what is the maximum mean throughput rate for
executing this command?



-- --

CHAPTER 2: CONCURRENCY AND PARALLELISM

In this chapter our goal is to explicitly calculate bounds on the mean throughput rate of executing a
single transaction type or a given transaction workload mix for a particular class of models of computer
communication systems. In many instances, this provides a fundamental limitation on system
performance: if a packet switch can only switch one hundred packets per second, then no amount of
chicanery (e.g., clever scheduling, increasing the degree of multiprogramming, adopting a new paging
strategy, and so forth) will allow this packet switch to switch two hundred packets per second. On the
other hand, we must ask ourselves what is the best that we might do: is there any intrinsic reason why
the packet switch can switch at most one hundred packets per second, or is it possible to increase this to
five hundred packets per second by judicious changes in hardware, operating system kernel, data base
manager, and application code?

The crux of performance analysis is describing how a computer communication system processes each
step of a job. The models described here require as inputs a detailed description of the step by step
processing of a job, and give as outputs bounds on system performance. By dealing with examples or
tractable models of parallelism and concurrency for computer systems, we hope to build up intuition
about the benefits of different approaches. A disclaimer is in order: systems that improve performance
via added concurrency are in many ways more sensitive to the workload than systems that improve
performance via raw speed, because in order to take advantage of concurrency some knowledge of the
workload must be used. What happens when the workload changes? Caveat emptor!

2.1 General Approaches

Figure 2.1 shows the two fundamental approaches to parallelism in computer communication systems.

Figure 2.1.Pipeline and Parallel Configurations

The hardware configuration and operating system are fixed: a group of processors interconnected by a
high speed bus, with a network operating system to coordinate resource allocation. How do we structure
a set of application programs to take advantage of this type of system?

At one extreme of parallelism, the group of processors operates in parallel (i.e., fed by a single queue or
work stream) Each processor does all the work for each job. As more processors are added, more work
can be done. The total delay will be approximately the processing time of a job, because if we have
sufficiently many processors it is highly likely that one will always be available to handle a job.
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At the other extreme of parallelism, processors are functionally dedicated to doing a given step of a job.
Each step of a job is done sequentially, or in tandem, like a bucket brigade or pipeline of processors.
All the input is handled at one stage and all the output at another stage. The pipeline has a great deal of
interaction between adjacent stages, unlike the purely parallel case, and hence the potential benefits may
not be nearly as great with the pipeline as with the parallel processor case, even though both systems
attempt to take advantage of concurrency in the workload.

Finally, we might have an arbitrary network of processors that jobs migrate amongst, which would be a
combination of the purely parallel and purely pipeline cases. We will discuss in more detail the two
simple cases of parallel and pipeline processing because we can gain insight into the more complicated
but realistic situation of the general network.

2.1.1 An Arithmetic Logic Unit An arithmetic logic unit must perform three jobs

Figure 2.2.Arithmetic Logic Unit Block Diagram

[1] Fetch an instruction from memory

[2] Decode the instruction

[3] Execute the instruction

This is an example of a pipeline with three distinct functions.

2.1.2 Floating Point Accelerator A floating point accelerator is a special purpose processor that can
accelerate or assist general purpose processors to perform floating point operations at high speed. Here
the steps that must be carried out are

Figure 2.3.Floating Point Accelerator Block Diagram

[1] Subtraction of the exponents

[2] Shifting right the fraction from the number with the smaller exponent by an amount
corresponding to the difference in exponents

[3] Addition of the other fractions to the shifted one

[4] Counting the number of leading zeroes in the sum

[5] Shifting left the sum by the number of leading zeroes and adjusting the exponent accordingly

Although this partitioning is typical, there are variations in practice to account for overflow and
underflow detection, representation of zero, and other number bases.

2.1.3 Additional Reading

[1] P.M.Kogge, The Architecture of Pipelined Computers, Hemisphere Publishing, Washington,
DC, 1981
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2.2 An Example: Printing Ten Jobs

Ten jobs are present at an initial time, say zero. Each job requires LK ,K =1,...,10 lines to be printed.
These number are given in the table below:

Table 2.1.Lines for Each Job_ _______________________________ ______________________________
Job Lines Job Lines_ _______________________________ ______________________________
A LA =2,000 F LF =1,000
B LB =1,000 G LG =1,000
C LC =1,000 H LH =2,000
D LD =1,000 I LI =2,000
E LE =2,000 J LJ =1,000

We see six jobs need one thousand lines to be printed, and four jobs need two thousand lines to be
printed. The mean number of lines that must be printed is:

Laverage =
10
1_ __

K =1
Σ
10

LK = 1,400 lines

The average is a useful statistic if most jobs require roughly the average (same) number of lines to be
printed. That is the case here; in fact, six jobs require less than the average, while four require more
than the average.

We want to compare the performance of the following configurations

• A single printer that can print one thousand lines per minute

• Two printers that are fed from a common buffer, each of which can print one thousand lines per
minute

• A single printer that can print two thousand lines per minute

We will measure total system performance via mean throughput rate which is defined as the total
number of jobs (denoted by N =10 here) divided by the total time to execute these jobs, denoted by
Tf inish , called the make span:

mean throughput rate =
Tf inish

N_ _____ jobs ⁄minute

We will measure job oriented performance by the mean time a job, say job K , spends in the system,
either waiting to be printed or being printed, until it is completed. We will call this time interval for job
K its flow time and denote it by FK ,K =1,...,N =10. The total mean flow time is the flow time averaged
over all jobs:

mean f low time =
N
1_ _

K =1
Σ
N

FK =
10
1_ __

K =1
Σ
10

FK ≡ E (F )

2.2.1 A Single Printer The single printer case gives us a baseline or benchmark for measuring
performance against. It is a natural starting point for virtually any investigation. No matter what order
is used to execute jobs, the total number of lines printed for this set of jobs is:

Lf inish ,single printer =
K =1
Σ
10

LK = 14,000 lines

The mean throughput rate is simply the total number of jobs divided by the mean time to print all the
jobs:

mean throughput rate for one printer =
Tf inish

N_ _____=
Taverage

1_ ______ Taverage =
N

Tf inish_ _____

If a single printer can print one thousand lines per minute, then
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mean throughput rate = 10 jobs in 14 minutes

while if a single printer can print two thousand lines per minute, then

mean throughput rate = 10 jobs in (14⁄2)=7 minutes

Suppose that we print the job stream according to a priority schedule. How will this impact the flow
time or time in system statistics? Let’s try two special cases to gain insight. The first priority schedule
operates as follows: job K is said to have higher priority than job J if LK ≤LJ ;K ,J =1,...,N =10. In other
words, the fewer the lines, the shorter the printing time of a job, the higher its priority. The motivation
is to let short jobs get printed quickly, so that they will not have to wait for long jobs, which take a long
time anyway. Shortest processing time first scheduling attempts to minimize job delay or flow time
statistics.

Two additional rules will be used:

• Once a job begins printing, it runs to completion, and cannot be preempted by any other job

• No job can be printed in parallel with itself. For one printer this is no problem, but for two printers
this would allow us to split a job, and we do not allow this

We will refer to this schedule as SPT/NP (shortest processing time has highest priority, with no
preemption) in what follows. The schedule for this case is shown below:

Figure 2.4.SPT/NP Single Slow Printer Schedule

The mean flow time for this schedule for a single one thousand line per minute printer is given by

E (FSPT ⁄NP ) =
10
1_ __[1+2+3+4+5+6+8+10+12+14] = 6.5 minutes

For a single two thousand line per minute printer, the mean flow time is simply half this.

The second priority schedule operates as follows: job K is said to have higher priority than job J if
LK ≥LJ ;K ,J =1,...,N =10. In other words, the longer the printing time of a job, the higher its priority.
We will refer to this schedule as LPT/NP (longest processing time has highest priority, with no
preemption) in what follows. The idea for choosing this schedule is that long jobs will take a long time
to print, so we might as well begin printing them as soon as possible in order to finish all the work as
soon as possible. The longest processing time first rule is oriented toward optimizing a system
performance measure, the fraction of time the system is busy doing work. The schedule for this case is
shown below:

Figure 2.5.LPT/NP Single Slow Printer Schedule

The mean flow time for this schedule for a single one thousand line per minute printer is given by

E (FLPT ⁄NP ) =
10
1_ __[2+4+6+8+9+10+11+12+13+14] = 8.9 minutes

For a single printer capable of two thousand lines per minute, the mean flow time is half this.
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Each schedule results in the same total system mean throughput rate, but radically different mean flow
time statistics.

2.2.2 Two Parallel Printers For the second case, two parallel printers, the worst we could do would be
to never use one processor. One alternative is to schedule the jobs, with the shortest execution time jobs
having the highest priority:

Figure 2.6.SPT/NP Two Slow Printer Schedule

This means the shortest amount of time to execute all ten jobs is Tf inish =7.

The mean throughput rate is given by

mean throughput rate for two parallel printersSPT ⁄NP =
7
10_ __ =

0.7 minute
1_ _________

The speedup compared with a single processor is given by comparing the time to finish all jobs on one
processor versus the time to finish all jobs on two processors:

speedupSPT ⁄NP =
Tf inish (P =2)

Tf inish (P =1)_ __________ =
7
14_ __ = 2

The mean flow time is given by

E (FSPT ⁄NP ) =
10
1_ __[1+1+2+2+3+3+5+5+7+7] = 3.6 minutes

On the other hand, we might print jobs with the longest processing time jobs having the highest priority:

Figure 2.7.LPT/NP Two Slow Printer Schedule

The mean throughput rate for printing jobs is given by

mean throughput rate for two parallel printersLPT ⁄NP =
7
10_ __ =

0.7 minutes
1__________

The speedup over a single printer is given by

speedupLPT ⁄NP =
Tf inish (P =2)

Tf inish (P =1)_ __________ =
7
14_ __ = 2

Note that the mean throughput rate and the speedup depend upon the scheduling algorithm. The best
possible speedup would be to do all the jobs in half the time of a single processor, while the worst
would be to just use one processor (and ignore the other):
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1 ≤ speedup ≤ 2

Finally, the mean flow time per job for this schedule is given by

E (FLPT ⁄NP ) =
10
1_ __[2+2+4+4+5+5+6+6+7+7] = 4.8 minutes

The mean flow time for scheduling longest jobs first is radically larger than the mean flow time for
scheduling shortest jobs first.

2.2.3 Summary We summarize all these findings in the table below:

Table 2.2.Performance Measure Summary_ _________________________________________________________________ ________________________________________________________________
Configuration Schedule Mean Throughput Rate Mean Flow Time_ _________________________________________________________________ ________________________________________________________________

One Slow Printer SPT/NP 1 job every 1.4 min 6.5 minutes
One Slow Printer LPT/NP 1 job every 1.4 min 8.9 minutes

Two Slow Printers SPT/NP 1 job every 0.7 min 3.6 minutes
Two Slow Printers LPT/NP 1 job every 0.7 min 4.8 minutes
One Fast Printer SPT/NP 1 job every 0.7 min 3.25 minutes
One Fast Printer LPT/NP 1 job every 0.7 min 4.45 minutes

What conclusions do we draw?

• Using one fast vs two slow printers has no impact on mean throughput rate

• One fast printer offers slightly better mean flow time compared with two slow printers

• Shortest processing time scheduling results in a lower mean flow time compared with longest
processing time scheduling

We will see these lessons repeated later.

2.2.4 Sensitivity One of the primary reasons for carrying out performance analysis studies is to
determine the sensitivity of the conclusions to parameters. We might not know the number of lines that
must be printed for each job, and are only using guesses or estimates. Two types of studies can be
done:

• Changing all the numbers by a small amount. For example, we might change the number of lines
printed for each job up or down by ten lines or less, and see what changes in mean throughput rate
and mean flow time.

• Changing a small set of numbers by a large amount. For example, we might change job J from one
thousand lines to ten thousand lines.

Let’s pursue the second type of study, changing job J from one to ten thousand lines of printing, and
study the consequences.

First, what about a single slow printer? The SPT/NP schedule is shown below:

Figure 2.8.SPT/NP Schedule for One Slow Printer (10,000 Lines for Job J)

The make span is the time required to completely execute all the work. The make span for this
schedule is twenty three minutes, and hence the mean throughput rate is
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mean throughput rate =
Tf inish ,SPT ⁄NP

N_ __________ = 1 job every 2.3 minutes

The mean flow time for SPT/NP is

E (FSPT ⁄NP ) =
10
1_ __ [1+2+3+4+5+7+9+11+13+23] = 7.8 minutes

For a single high speed printer, the mean flow time is simply half of this, and the mean throughput rate
is twice as high.

On the other hand, for LPT/NP scheduling on a single slow printer, we see the make span is identical
with SPT/NP, as shown in the figure below:

Figure 2.9.LPT/NP Schedule for One Slow Printer (10,000 Lines for Job J)

By inspection from this figure, the mean flow time is

E (FLPT ⁄NP ) =
10
1_ __ [10+12+14+16+18+19+20+21+22+23] = 17.5 minutes

For a single high speed printer, the flow time is half of this, while the mean throughput rate is twice as
big.

Next, for two parallel printers, the SPT/NP schedule is shown below:

Figure 2.10.SPT/NP Schedule for Two Slow Printers (10,000 Lines for Job J)

The mean throughput rate is simply

mean throughput rate =
Tf inish ,LPT ⁄NP

N_ __________ =
16 minutes

10_ _________

while the mean flow time is

E (FSPT ⁄NP ) =
10
1_ __[1+1+2+2+3+4+5+6+7+16] = 4.7 minutes

Finally, for two parallel printers, the LPT/NP schedule is shown below:

The mean throughput rate is simply

mean throughput rateLPT ⁄NP =
Tf inish ,LPT ⁄NP

N_ __________ =
12 minutes

10_ _________

while the mean flow time is

E (FLPT ⁄NP ) =
10
1_ __[10+2+4+6+8+9+10+11+11+12] = 8.3 minutes
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Figure 2.11.LPT/NP Schedule for Two Slow Printers (10,000 Lines for Job J)

All these calculations are summarized in the table below:

Table 2.3.Performance Measures(10,000 Lines for Job J)____________________________________________________________________________________________________________________________________
Configuration Schedule Mean Throughput Rate Mean Flow Time____________________________________________________________________________________________________________________________________

One Slow Printer SPT/NP 1 job every 2.3 minutes 6.5 minutes
One Slow Printer LPT/NP 1 job every 2.3 minutes 17.5 minutes
Two Slow Printers SPT/NP 1 job every 1.6 minutes 4.7 minutes
Two Slow Printers LPT/NP 1 job every 1.2 minutes 8.3 minutes
One Fast Printer SPT/NP 1 job every 1.15 minutes 3.9 minutes
One Fast Printer LPT/NP 1 job every 1.15 minutes 8.75 minutes

2.2.5 Summary What lessons have we learned?

• A single printer mean throughput rate is less insensitive to scheduling compared with a distributed
two printer system

• In order to achieve greater mean throughput rate, either we speed up a single printer or we add
printers; how many and where depend upon the workload

• Responsiveness or mean flow time is critically influenced for any of these examples by the workload
and the configuration

• One large job can impact the performance of the two printer system much more adversely than the
single high speed printer system

2.3 A More General Example

N jobs are present at some initial time, say zero, and are executed on P identical processors. The
execution times for the jobs are denoted by TK ,K =1,...,N . The jobs are independent of one another:
there is no precedence ordering among the jobs. How long does it take to execute all the jobs? One
way to answer this is to calculate the total execution time, Tf inish or TF , required for each possible
ordering of the jobs; since there are N jobs, there are N! schedules, and we will find out for moderate
values of N such as 20 to 30 that even trying out one schedule a second can take us centuries to
investigate all possible schedules. Our approach here is to find upper and lower bounds on the total
time required to execute all N jobs on P processors without investigating all possible scheduling rules.

2.3.1 One Processor Used First, suppose we had P processors, but only used one processor. This is
the worst we might do: it gives an upper bound on TF equal to the sum of the execution times for all
the jobs.

TF ≤
K =1
Σ
N

TK

Furthermore, this gives us a lower bound on mean throughput rate:
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mean throughput rate ≥
TF

N_ __ =

K =1
Σ
N

TK

N_ _____ =
Taverage

1_ ______ Taverage =
N

K =1
Σ
N

TK

_ _____

While this is an example of one type of upper bound on the total make span or an equivalent lower
bound on mean throughput rate, it is not the best possible set of bounds. How can we do better? A
digression is needed.

2.3.2 The Geometry of Static Scheduling The figure below shows an illustrative mode of operation for
this system: the number of busy processors versus time is plotted. Initially all processors are busy, until
one by one they become idle and all the work is completed at TF .

Figure 2.12.Illustrative Operation: Number of Busy Servers vs Time

We denote by S (t ) the number of busy servers at time t . The area under the curve formed by S (t ) is
simply the total amount of processor time all the jobs require:

0
∫
T

F

S (t )dt =
K =1
Σ
N

TK

In the figure above, we have denoted by T̃ the duration of time from the last instant when all the
processors are busy until all processors are first idle. Our program is to relate the model ingredients,
i.e., the area under the curve S (t ), the number of processors, the job processing times, and TF , by
bounding T̃ .

2.3.3 A Lower Bound on Makespan What is the shortest total execution time? Since we have P
processors, they could all start execution at the same time and finish at the same time:

P
K =1
Σ
N

TK

_ _____ ≤ TF

On the other hand, if one job requires more execution time than the average amount of processor time
per job, then this one job will determine the shortest possible make span:

K
max TK = T max ≤ TF

We can combine all these bounds:

max




T max, P

K =1
Σ
N

TK

_ _____




 ≤ TF

If no one job requires significantly more execution time than any other job, then
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T max < <
P

K =1
Σ
N

TK

_ _____

and hence all processors are simultaneously executing work.

On the other hand, if one job requires significantly more execution time than any other job, then

T max ∼∼
K =1
Σ
N

TK

and effectively only one processor is busy executing work.

2.3.4 An Upper Bound on Makespan The largest that T̃ might be is the largest time required to run
any single job:

T̃ <=
K

max TK = T max

On the one hand, we can lower bound the total area under this curve by demanding that all but one of
the processors finish all their work at the same time, and the final processor is busy executing one job
for T̃ :

P [TF − T̃ ] + T̃ ≤
K =1
Σ
N

TK

If we rearrange this, we see that

TF ≤
P

K =1
Σ
N

TK

_ _____ +
P

P −1_ ____ T̃ ≤
P

K =1
Σ
N

TK

_ _____ +
P

P −1_ ____T max

We can rewrite this as

TF ≤
P

K =1
Σ
N

TK

_ _____






1 +

K =1
Σ
N

PK

(P −1)T max_ _________






The first term is simply the average time per processor to execute jobs. If no one job requires much
more processing time than any other job, i.e., if

(P −1)T max < <
K =1
Σ
N

TK

then the total time to execute all the jobs is roughly the total execution time per processor:

TF ∼∼
P

K =1
Σ
N

TK

_ _____

If one job requires much more processing time than any other job, i.e., if

T max ∼∼
K =1
Σ
N

TK

then the total time to execute all the jobs is roughly equal to the single processor execution time:

TF ∼∼
K =1
Σ
N

TK

On the other hand, if one job takes virtually all the time, then effectively only one processor can be
used, so this should not be that surprising.
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2.3.5 Speedup At any given instant of time there are JE (t ) jobs in execution on P processors. Since
job K requires TK time units to be executed, the total execution time of jobs must equal the integral or
area of JE (t ) from the initial time t =0 to the end of execution of all jobs TF :

K =1
Σ
N

TK =
0
∫
T

F

JE (t )dt

On the one hand, the total time required to execute all jobs with one processor P =1 is simply the sum
of all the job execution times:

TF (P =1) =
K =1
Σ
N

TK

On the other hand, the definition of speedup in going from P =1 to P >1 processors is simply

speedup =
TF (P >1)

TF (P =1)_ _______

Combining all of the above, the speedup can be written as

speedup =
TF

1_ __
0
∫
T

F

JE (t )dt = E [JE ]

mean number o f jobs in execution = E [JE ] = speedup

This result is fundamental: if there is one resource (such as a single processor), there is no opportunity
for speedup. If there are multiple resources (one processor, one disk, one printer, one terminal), there
can be as many opportunities for multiplying the mean throughput rate as there are resources.

2.4 Preemptive vs Nonpreemptive Scheduling

What about preemptive versus nonpreemptive scheduling? Here we see that we can in fact achieve the
lower bound on make span. Two cases arise: either there is one job that takes longer than the average
time per processor of all the jobs, i.e.,

Tf inish =
K

max TK = T max

or there is no job that takes longer than the average time per processor:

Tf inish =
P

K =1
Σ
N

TK

_ _____

Combining all this, we see

Tf inish = max




 K
max TK ,

P
K =1
Σ
N

TK

_ _____






The figure below shows a nonpreemptive schedule for three processors with a fixed workload to make
this concrete.

Preemption will allow us to achieve the smaller of these two bounds. How can this be achieved? One
way is to assign jobs to the first processor until Tf inish is passed, and then assign the overlap plus other
jobs to the next processor until Tf inish is passed, and so on until we assign all the work.

EXERCISE: How in fact can we achieve this schedule? It appears that we run the end of the job
before we run its beginning.

EXERCISE: How do we circumvent the problem that no job can execute in parallel with itself?

In fact this bound is achievable if there is no precedence ordering among the jobs, i.e., some jobs must
be done earlier than others.
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Figure 2.13A.Three Processor Nonpreemptive Schedule

The figure below illustrates a preemptive schedule, and shows that the make span for the preemptive
schedule equals the average processor time.

Figure 2.13B.A Preemptive Schedule for Three Processors

2.5 Impact of Partial Ordering and Fluctuations

Suppose we have a list of N jobs, and for convenience we suppose N =2P . We break the list of jobs
into two lists, J 1,...,JP ,J′ 1,...,J′P . The jobs are not independent: some jobs must be executed before
other jobs. We denote by J′K <JK ,K =1,...,P the constraint that J′K must be executed before JK can
begin execution. Each unprimed job requires one unit of memory to be executed; each primed job
requires P units of memory to be executed. The execution time for the unprimed jobs are all identical
and equal to one; the execution time for each of the primed jobs is identical and equal to ε which we
will make very small compared to one:

TK = 1 > > T′K = ε K =1,...,M

We have a total of P units of memory and P processors. We wish to investigate two different
schedules:

• Schedule one: J′ 1,...,J′M ,J 1,...,JM

• Schedule two: J 1,...,JM ,J′ 1,...,J′M
For the first schedule, in order to satisfy the partial order constraint, we execute the primed jobs in
order, and then execute in parallel on the M processors all the unprimed jobs: The make span or total
time to finish all the jobs is

Tf inish = P ε + 1 schedule one

For the second schedule, in order to satisfy the partial order constraint, we execute a primed job and
then an unprimed job in pairs until we execute all the jobs: The make span or total time to finish all the
jobs is
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Figure 2.14.Schedule One for Three Processors

Figure 2.15.Schedule Two for Three Processors

Tf inish = P (1 + ε) schedule two

The ratio of these two can vary immensely. For example if ε=1 then

Tf inish ,II

Tf inish ,I_______ =
1 + P ε

P (1 + ε)_ _______  ε=1 =
P +1
2P_ ____

P →∞
→ 2

and hence we can be off by no more than a factor of two with these two schedules. On the other hand,
if ε< <1, then

Tf inish ,II

Tf inish ,I_______  ε< <1 =
1+P ε

P (1+ε)_ ______
ε→0
→ P

and hence we can be off by a factor of P which could be much greater than just a factor of two!

2.6 Polynomial Evaluation

Job precedence constraints arise in evaluation of polynomials, which is frequently done in practice in
signal processing. These give us additional concrete examples to build intuition concerning the
performance of parallel processors. Our problem is to evaluate a polynomial Y :

Y =
K =0
Σ
N

AK X K

The inputs are the coefficients AK ,K =0,...,N and the value of X , while the output is the scalar Y . Given
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P processors, we want to understand what is the minimum time required to completely evaluate one
such polynomial. We will do so in special cases, to build insight.

2.6.1 Addition We begin with the case where all the coefficients are arbitrary, but X =1. We must
evaluate Y where

Y =
K =1
Σ
N

AK

Each addition is assumed to take one time unit. If we had one processor, this would require N −1
additions, and hence N −1 time units. Given four processors, and N=15, the table below shows the
operations of each step of the evaluation.

Table 2.4.Summation Evaluation with Four Processors_ ________________________________________________________ _______________________________________________________
Time Processor 1 Processor 2 Processor 3 Processor 4_ ________________________________________________________ _______________________________________________________

1 Z 1=A 0+A 1 Z 2=A 2+A 3 Z 3=A 4+A 5 Z 4=A 6+A 7

2 Z 5=A 8+A 9 Z 6=A 10+A 11 Z 7=A 12+A 13 Z 8=A 14+Z 1

3 Z 9=Z 2+Z 3 Z 10=Z 4+Z 5 Z 11=Z 6+Z 7 IDLE
4 Z 12=Z 8+Z 9 Z 13=Z 10+Z 11 IDLE IDLE
5 Y =Z 12+Z 13 IDLE IDLE IDLE

For four processors, the total time required to sum fifteen coefficients is now five, while for one
processor the total time was fourteen. The speedup is the ratio of these two:

speedup =
Tf inish (P >1)

Tf inish (P =1)_ __________ =
5
14_ __ = 2.8 N =15

The best possible speedup would be to keep all processors busy, and hence this would be a factor of
four. Effectively, we have 4−2.8=1.2 idle processors.

What happens as N →∞? Now all four processors are continuously busy, and hence

speedup =
Tf inish (P >1)

Tf inish (P =1)_ __________ = P =4 N →∞

What happens as P →∞? At the first step, each processor will add one term to another term, reducing
the total number of items by a factor of two. This can be repeated, until log2(N ) time steps elapse for
summing all terms together.

Combining all these ideas, it can be shown that

Tf inish ≥


 P

N_ _




− 1 + 
 log2[min (P ,N )]

where X is the smallest integer greater than or equal to X.

EXERCISE: Show that for P =4,N =15 this lower bound on Tf inish is achieved.

2.6.2 Powers Suppose that AN =1,AK =0,K ≠N , so we wish to evaluate Y =X N . If one processor is
available, and multiplication requires one unit of time, then to evaluate Y worst case would require N −1
time steps. However, we can do better! Suppose that N =25, i.e., N is a power of two. Instead of
taking thirty one time steps to evaluate Y , consider the following procedure:

Table 2.5.Steps for Evaluating Y =X 32_ _________________________________ ________________________________
Step Value_ _________________________________ ________________________________

1 Z 1=X 2

2 Z 2=Z 1
2 =X 4

3 Z 3=Z 2Z 2=X 8

4 Z 4=Z 3Z 3=X 16

5 Y =Z 4Z 4=X 32
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If N →∞, it can be shown in general that even if N is not a power of two a single processor can
evaluate X N in log2(N ) multiplications:

Tf inish ∼∼ log2(N ) N →∞,P =1

On the other hand, for P →∞, i.e., with an infinite number of processors, P processors can evaluate X N

in log2(N ) multiplications:

Tf inish ∼∼ log2(N ) P →∞

Hence, one processor can evaluate X N as quickly as an infinite number of processors, and we can gain
nothing by parallelism.

2.6.3 General Case In general, we wish to evaluate Y where

Y =
K =0
Σ
N

AK X K

For P =1, a single processor, one algorithm for evaluating Y is given by

Y = ((..((AN X + AN −1)X + AN −2)X +AN −3)...)X + A 0

For N =22 this requires twenty five additions and multiplications for P =1.

On the other hand, for P =2, one algorithm for evaluating Y is given by

Y =
K =0
Σ
N ⁄2

A 2K X 2K + X
K =0
Σ

N ⁄2−1

A 2K +1X
2K +1

and hence we must evaluate two polynomials in X 2. For N =22 and P =2 this requires twenty four
additions and multiplications.

For P =3, one algorithm for evaluating Y involves writing Y as the sum of three polynomials in X 3, and
using all three processors.

Combining all these items, it can be shown that

P
2N_ __ log2(P ) ≤ Tf inish ≤

P
2N_ __ log2(P ) + o (log2(P ))

The final term, o (log 2(P )), is negligible as P →∞, in the sense that

P →∞
lim

P

o (log 2(P ))_ _________ = 0

Hence, the speedup, measured in the time required to evaluate this expression with P processors versus
P =1 is roughly given by

speedup =
Tf inish (P >1)

Tf inish (P =1)_ __________ ∼∼
log2(P )

P_ ______ P →∞

2.6.4 Summary We have shown that

• Evaluating roughly N binary operations with P processors can lead to a speedup approaching P

• Evaluating X N with P processors leads to no speedup over a single processor

• Evaluating a polynomial in N terms with P processors leads to a speedup of P ⁄log 2(P ) over a single
processor, which is in between the other two cases.

The lesson here: the workload can significantly impact the actual benefit of using multiple processors.

2.6.5 Additional Reading

[1] I.Munro, M.Paterson, Optimal Algorithms for Parallel Polynomial Evaluation, Journal of
Computer System Science, 7, 189 (1973).
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[2] A.H.Sameh, Numerical Parallel Algorithms--A Survey, in High Speed Computer and
Algorithm Organization, D.J.Kuck, D.H.Lawrie, A.H.Sameh (editors), pp.207-228, Academic
Press, NY, 1977.

2.7 Critical Path Scheduling

P parallel processors are available for executing jobs fed from a single queue. First, suppose there is no
precedence ordering among jobs, i.e., no job need be done before any other job. One scheduling rule
called critical path scheduling is to execute tasks according to their processing time, with longest tasks
first. The intuitive notion is that the longest jobs are critical in determining how short the make span
can be, and hence it is essential to be operating on the critical path schedule for shortest make span or
highest mean throughput rate. A different way of thinking about this is to allow the number of
processors P to become infinite: each job will be assigned to one processor, and the make span equals
the time to do the longest job. With a finite number of processors the make span will be longer than
with an infinite number of processors, and hence we have a lower bound on the total time to finish a
workload.

If there is a precedence ordering of jobs, then we sort times required for each job stream longest to
shortest, and schedule the first job as the job that is the start of the longest critical path or longest stream
that must be executed, and having scheduled this first job we now repeat this exercise with one less job,
until all jobs are scheduled.

EXERCISE: Construct a flowchart for critical path scheduling, and exhibit pseudo code for
implementing the flow chart.

Again, a different way of thinking about this is to allow the number of processors P to become infinite:
each job will be assigned to one processor, and the make span equals the time to do the longest path of
jobs. Viewed in this way, we see that

max



Tcritical path ,

P
1_ _

K =1
Σ
N

TK





≤ Tf inish (N )

where Tcritical path is the make span for a critical path schedule.

Tf inish (N ) ≤
P
1_ _

K =1
Σ
N

TK







1 +

K =1
Σ
N

TK

(P −1)Tcritical path_ ______________






If the make span for a critical path schedule is much less than the average time each processor is busy,
then

Tf inish (N ) ∼∼
P
1_ _

K =1
Σ
N

TK

and hence the make span is reduced by P or the mean throughput rate increases by P .

On the other hand, if the make span for a critical path schedule is much more than the average time
each processor is busy, then

Tf inish (N ) ∼∼ Tcritical path

and effectively there is no gain with more than one processor.

In a different vein, it can be shown that

SCHEDULE
min Tf inish ,SCHEDULE

Tf inish ,CRITICAL PATH_____________________≤
3
4_ _ −

3P
1_ __

In other words, critical path scheduling is no worse than any other single processor (P =1) scheduling
rule in minimizing Tf inish , is 1/6 longer than the best (in terms of minimizing Tf inish ) two processor
scheduling rule, and is 1/3 longer than the best infinite processor scheduling rule!
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2.8 P Identical Parallel Processors

In practice, the execution times of the jobs are not often known with any precision. This occurs for a
variety of reasons: the data to be manipulated varies from job to job, the text program executes different
branches depending upon the data, and so forth. Here we attempt to capture this phenomenon by fixing
the mean or average execution time of a job, and modeling the fluctuations of job execution times as
non negative random variables drawn from the same distribution.

A more precise statement of the problem is as follows: N jobs must be executed by P servers or
processors. The jobs are all present at an initial time, say zero. The time to execute job K =1,...,N is
denoted by TK . We will assume that the sequence of job execution times are non negative random
variables, with the same marginal distribution:

PROB [TK ≤ X ] = G (X ) K =1,2,...,N

The mean time to execute a job is denoted by E [T ] where

E [T ] =
0
∫
∞

XdG (X ) =
0
∫
∞

[1 − G (X )]dX < ∞

The time to completely execute all N jobs is denoted by CN .

The mean throughput rate of completing jobs is given by the ratio of the total number of jobs divided by
the mean time required to complete all the jobs:

mean throughput rate =
E [CN ]

N_ ______

The shortest that CN could be is

CN ≥
S
1_ _

K =1
Σ
N

TK

The longest that CN could be is

CN ≤ max [T max, S
1_ _

K =1
Σ
N

TK ]

where

T max =
K =1,...,N
max TK

The mean throughput rate is the ratio of the total number of jobs divided by the mean time to complete
these jobs:

mean throughput rate ≡ λN =
E [CN ]

N_ ______

Our goal is to allow the number of jobs to become larger and larger, N →∞, such that the mean
throughput rate stabilizes at an average or limiting value. In fact, this limit is

N →∞
lim λN =

E [T ]
P_ ____

In words, each job requires a mean execution time of E (T ), and we will realize a speedup of P because
all the processors will be busy. As a bonus, the upper and lower bounds on mean throughput rate will
also approach this limit under these conditions. This shows that the details of the workload may not
matter nearly so much as might be expected.

2.8.1 Analysis For any real number, say Y , we will use the following trick:

T max ≤ Y +
K =1
Σ
N

U−1[TK − Y ]

where U−1(X ) = 0 X <0, = 1 X >0 is a so called generalized unit step function. This allows us to write
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T max ≤ Y + N
Y
∫
∞

[1 − G (X )]dX

We denote by ω the small value of X such that 1 − G (X )=0:

ω =
X

inf { X  1 − G (X ) = 0}

Two cases arise:

2.8.2 ω finite For this case, ω<∞, we see that

T max ≤ ω → E [T max] ≤ ω

and hence

E [T ]
P_ ____

1 +
NE (T max)
(P −1)ω_ ________

1_____________ ≤ λN ≤
E [T ]

P_ ____

As the number of jobs becomes larger and larger, N →∞, the mean throughput rate as well as upper and
lower bounds approach the desired result:

N →∞
lim λN =

E [T ]
P_ ____

2.8.3 ω infinite For this case, we find it useful to define a related quantity µN :

µN =
X >0
inf




X  1 − G (X ) ≤

N
1_ _





Because ω=∞, it is clear that
N →∞
lim µN = ∞.

On the other hand, we see that

E [T max] ≤ µN + N
µ

N

∫
∞

[1 − G (X )]dX

Because

N →∞
lim

µ
N

∫
∞

[1 − G (X )]dX = 0

we see that

N
µ

N

∫
∞

[1 − G (X )]dX = o (N )

This implies that

1 − F (µN )≤
N
1_ _ → 1 − G (X ) = o



 X

1_ _




This in turn implies

o


 µN

1_ ___




≤
N
1_ _

and in turn that

µN = o (N )

Finally, we see that
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E [T max] = o (N )

and this allows us to show that

N →∞
lim λN =

E [T ]
P_ ____

as in the previous case.

2.8.4 An Example Suppose we examine a particular G (X ):

G (X ) = 1 − Qexp [−QX ⁄E [T ]] 0<Q ≤1

This has a mean at E [T ] and a great deal of fluctuation about the mean, with the fluctuations increasing
as Q →0.

The trick here is to fix 1 − G (µN ) at 1⁄N :

1 − G (µN ) = Qexp [−Q µN ⁄E [T ]] =
N
1_ _

This in turn fixes µn :

µN =
Q

E [T ] ln (NQ )_ ___________

Now if we substitute into the earlier expressions, we see

E [T max] ≤ E [T ]


 Q

ln (NQ )_ ______ +
Q
1_ __





Finally, the mean throughput rate is upper and lower bounded by

E [T ]
P_ ____

1 +
NQ

(P −1)[1+ln (NQ )]_ _______________

1_ ___________________ ≤ λN ≤
E [T ]

P_ ____

2.8.5 Bounds The longest possible completion time CN occurs when we execute all jobs but one, and
the remaining job requires the largest amount of processing time of all jobs:

CN ≤
P
1_ _

K =1
Σ

N −1

TK + (TN = T max) ≡ C max

The shortest possible completion time CN occurs when either all jobs finish execution at the same
instant of time on all P processors, or all but one job are executed on P −1 processors and the remaining
job executes on one processor and has the largest processing time:

CN ≥ max[T max, P
1_ _

K =1
Σ
N

TK ] = C min

The ratio of the longest to the shortest completion times is upper bounded by

C min

C max_ ____ ≤ 2 −
P
1_ _

In other words, as we go from P=1 to P=2 processors, the greatest relative change in the mean
completion time for any scheduling policy is 2 − 1⁄2=1.5, while going from P=2 to P=3 processors gives
a maximum gain due to scheduling of 2 − 1⁄3 = 5⁄3.

2.9 Single Processor Deadline Scheduling

In deadline scheduling, different classes of tasks have different urgencies; we denote by WK the
allowable queueing time window that we can tolerate for job K =1,...,N . At the arrival epoch of a job,
say job K, that arrives at time AK we look up its window in a table, add the window to its arrival time,
and call the result the deadline or priority or urgency number for that task:
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deadline for job K ≡ DK = AK + WK K =1,2,...,N

That job is inserted in a queue in priority order or deadline order, most urgent jobs first, with jobs
executed in deadline order. Note that windows need not be positive! We compare performance via
queueing time statistics and via a different pair of quantities. If we have two classes of jobs, each with
its own window, and we fix the difference between the two windows but allow the smaller (or larger)
window to become infinite in size, then we approach static priority scheduling. Very roughly speaking,
static priority scheduling allows control over first moments of queueing times of tasks, while deadline
and other dynamic scheduling policies allow control of asymptotic distributions of queueing and waiting
times. The measures of performance of interest are

• lateness-- the lateness of job K is defined as its completion time minus its deadline;

LK = CK − DK K =1,2,...

Negative lateness implies the job queueing time was less than its deadline, while positive lateness
means the job queueing time exceeded its deadline.

• tardiness-- the tardiness of job K is zero if the job is finished by its deadline, and equals the lateness
otherwise; put differently, the tardiness is the maximum of zero and the lateness

TK = max [0,LK ] K =1,2,...

What are desirable properties of deadline scheduling? One is that deadline scheduling minimizes the
maximum lateness or maximum tardiness over any scheduling policy. This suggests that deadline
scheduling will be useful in time critical jobs, which is perhaps not so surprising! How do we show this
property? Suppose we had a schedule that violated deadline scheduling ordering yet had a smaller
maximum lateness than deadline scheduling. This means that there is at least one time interval where
one job, say job J, is waiting and another job, say job I, is executing, even though the deadline for job J
is less than the deadline for job I. We denote the non deadline schedule by S′ while the deadline
schedule is denoted by S . Since the maximum lateness is smaller using S′ we see

max [L (S′ )] ≤ max [max [L (S )],L (S′ )]

Since the completion time of job I under schedule S′ is given by

CI (S′ ) = max [CJ (S ),CI (S )]

we see that

max [L (S′ )] ≤ max [max [L (S ),CJ (S )−DI ,LI (S )]

Finally, since the deadline for I is greater than that for J, we see

max [L (S′ )] ≤ max [max (L (S )),LJ (S ),LI (S )] = max [L (S )]

This is precisely what we wanted to show.

Several consequences follow immediately:

• Even knowing the arrival pattern in advance cannot help minimize the maximum lateness better than
deadline scheduling

• If the windows are equal to the service times for the respective jobs, then deadline scheduling
minimizes the maximum waiting time

• If all the windows are equal to one another, then deadline scheduling is equivalent to service in order
of arrival

Suppose we have two types of jobs, A and B, with processing times and windows as shown:

Table 2.6.Job Statistics Summary_ _____________________________________ ____________________________________
Job Type Service Window_ _____________________________________ ____________________________________

A TA =3 seconds WA =5 seconds
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B TB =2 seconds WB =3 seconds

The figure below shows an arrival pattern consisting of one type A arrival at time t=0 followed by a
type B arrival at time t=1 and t=4, with the resulting work pattern for deadline scheduling, and static
priority scheduling (A higher priority than B, B higher priority than A).

Figure 2.16.Illustrative Comparison of Deadline vs Static Priority Scheduling

Note that neither static priority schedule can meet all deadlines, while the deadline schedule can. Hence
the need for dynamic rather than static priority scheduling!

Suppose we had N distinct types of jobs, with each job type having its own service time TK with
associated window WK and maximum storage for job K of BK bytes, where K=1,...,N. A natural
measure of utilization is given by U where U is defined to be the storage multiplied by the service time,
and divided by the window, summed over all job types:
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U =
K =1
Σ
N

WK

BK TK_ _____

If U <1 then we want to show that all deadlines can be met. Let’s examine the worst case, where the
maximum number of requests are always present and the service time is the largest possible. This
implies that server is busy handling type K requests at a rate of BK ⁄WK . Since the requests are
absorbing the maximum possible processing times, the utilization of the server will equal U ; but for the
entire system to keep up with its work, we must demand U <1.

Example: Suppose we had a set of sources (memory boards, disk controller boards, terminal controller
boards, processor boards, and so on) that each demand access to a shared bus. If each source can only
have one request outstanding at one time, and we choose the window equal to the service time for each
type of bus access request, and all the service demands will be met if and only if

K =1
Σ
N

TK

1___ ≤ 1

2.10 Pipelining

Suppose that each processor is dedicated to executing a given function. One special case of this is to
construct a pipeline of processors, where the input of one processor is the output of another processor,
and so forth:

1 2 3

Figure 2.17.Three Stage Pipeline
Each job consists of a series of steps, that must be done in exactly this order.

2.10.1 An Example Six jobs each require the following processing at each of three steps:

Table 2.7.Execution Times for Six Jobs_ ___________________________________ __________________________________
Job Step 1 Step 2 Step 3_ ___________________________________ __________________________________
1 3 2 4
2 2 4 1
3 1 5 2
4 3 2 2
5 1 1 1
6 2 1 4

The schedule for this set of jobs is (1,2,3,4,5,6), i.e., execute the jobs in the order of job number. A
schedule is shown in the figure below:

2.10.2 A More Sophisticated Example Suppose N jobs must be executed on a P =N stage pipeline.
The execution times of job step I for job K =1,...,N is denoted by TIK . Suppose that the execution times
are given by

TIK = ε, I ≠K TIK =1, I =K

Two different schedules are of interest:

• Schedule one: (1,2,...,N )

• Schedule two: (N ,N −1,...,1)

For schedule one, the figure below shows an illustrative plot of the activity of each processor: The total
time required to execute all the work for P processors is
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Figure 2.18.Three Stage Pipeline Schedule For Six Jobs

Figure 2.19.Schedule One Processor Activity(P=3,N=3)

Tf inish ,I = P + (P −1)ε

For schedule two, the figure below shows an illustrative plot of processor activity:

Figure 2.20.Schedule Two Processor Activity(P=3,N=3)

The total time required to execute all the work for P processors is

Tf inish ,II = 1 + (P +1)ε

There are two cases of interest: ε=1 so all jobs take the same amount of time, and hence

Tf inish ,I = Tf inish ,II = P

and ε< <1, so that only stage K of job JK requires one time unit of processing, and hence

Tf inish ,I ∼∼ P Tf inish ,II ∼∼ 1 ε→0

If there is radical imbalance, the time required to execute all the work can differ by the number of
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processors!

2.11 Bounding The Make Span for Pipelines of Single Processors

Our goal in this section is to find upper and lower bounds on the make span for a pipeline of single
processors, much as we did earlier for parallel processors.

Suppose a list or schedule of N jobs is to be followed, with the jobs ordered (1,2,...,N). P processors
are available. Each job consists of S =P steps. Each processor is dedicated to executing one and only
one step. The time required to execute step I =1,...,S of job K =1,...,N is denoted by TIK .

2.11.1 Upper Bound on Make Span One immediate upper bound on the total time required to execute
all jobs is to simply execute the jobs one at a time:

Tf inish ≤
K =1
Σ
N

I =1
Σ
S

TIK

EXERCISE: Can you find a sharper upper bound that is less than or equal to this upper bound and
includes the same model parameters?

2.11.2 Lower Bound on Make Span In order to lower bound the make span, the total time required to
execute all jobs, we realize that there are three possible contributions to the make span:

• The time required to execute job one from step one through step J −1:
S =1
Σ
J −1

T 1S

• The time required to execute every job at step J :
K =1
Σ
N

TKJ

• The time required to execute job N from step J +1 through step S :
I =J +1
Σ
S

TNI

Combining all these, we see that for one particular step in the pipeline, J ,

I =1
Σ
J −1

T 1I +
K =1
Σ
N

TKJ +
I =J +1
Σ
S

TNI ≤ Tf inish (J )

To get the best possible lower bound, we should look for the largest this set of lower bounds could be,
for all steps:

1≤J ≤S
max



 I =1
Σ
J −1

T 1I +
K =1
Σ
N

TKJ +
I =J +1
Σ
S

TNI





≤ Tf inish

This development can be made more formal as follows. Suppose that CKJ denotes the completion time
of job step J =1,...,S for job K =1,...,N . For convenience, we assume there is a fictitious initial stage,
labeled zero, with CK 0=0 for all K . The completion times of step J of job one obey the following
recursion:

CJ 1 = CJ −1,1 + TJ 1 J =1,...,S

The completion times of step J of job K obey the following recursions:

CKJ = max[CK ,J −1,CK −1,J ] + TKJ J =1,...,S

If we use the inequalities X <max [X ,Y ] and Y <max [X ,Y ] then we see

CKJ ≥ CK −1,J + TKJ

The completion time of step J of job N is similarly given by

CNJ ≥ CN ,J −1 + TNJ

Combining all of these bounds, we obtain the result sketched earlier.
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2.12 Johnson’s Rule

Now we turn to a two stage pipeline.

1 2

Figure 2.21.Two Stage Pipeline
N jobs have associated processing times T 1,K at stage one and T 2,K at stage two, K =1,...,N . Our goal is
to minimize the total system busy time to completely execute all this work.

As an example, suppose we have five jobs (A, B, C, D, E) that must each be executed in two stages,
with the execution times for each job summarized as follows:

Table 2.8.Job Execution Times_ ___________________________ __________________________
Job Stage 1 Stage 2_ ___________________________ __________________________
A 6 3
B 0 2
C 3 4
D 8 6
E 2 1

The jobs are executed according to an alphabetical priority ordering. The total time to execute all the
jobs according to this schedule, the make span, is 22.

Can you find a priority list schedule that achieves this?

The principal result here, due to Johnson, is

• Execute tasks on the second stage in the same order as on the first stage

• JK is executed before JI if

min[TK ,1,TI ,2] ≤ min[TK ,2,TI ,1]

An algorithm for finding a scheduling that does this is

• Find the minimum TI ,K where I =1,2 and K =1,...,N

• If I=1 put this at the head of the schedule; if I=2 put it at the end of the schedule

• Delete this task from the schedule and repeat the above procedure until no tasks remain

Roughly speaking, we want to put tasks requiring big processing times at the start of the schedule and
small processing time tasks at the end of the schedule. Now, how bad can we do? It can be shown that

SCHEDULE
min Tf inish ,SCHEDULE

Tf inish ,SCHEDULE_____________________≤ P

or in other words, we could be off by the total number of processors in the pipeline!

2.13 S Stage Pipeline

Earlier, when we were analyzing parallel processor groups, we remarked that the workload is not
precisely known in practice. We modeled that by allowing the mean execution time for each job to be
fixed, and the fluctuations about the mean were modeled by random variables. Here we carry out
exactly the same exercise.

2.13.1 Problem Statement N jobs must be executed by a system of P processors. Each job consists of
S steps that must be done one after another; each step consists of execution of a given amount of text
code operating upon a different amount of data, depending on the nature of the job. The system consists
of a pipeline of stages: stage K consists of PK processors fed from a single queue. Each processor can
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execute only one job at a time. The execution time for step K is denoted by TK ,K =1,...,S .

The completion time for all N jobs is denoted by CN . The mean throughput rate is the number of jobs
divided by the mean completion time:

λN =
E [CN ]

N_ ______

Our goal is to show that the mean throughput rate approaches a limit as the number of jobs becomes
larger and larger:

N →∞
lim λN =

K
min



 E (TK )

PK_ _____




In words, the stage with the lowest maximum mean throughput rate, the so called bottleneck stage, will
determine the system total maximum mean throughput rate. Furthermore, the upper and lower bounds
on mean throughput rate approach this value. Hence, the details of the workload do not matter as much
as might be expected.

2.13.2 Upper Bound on Mean Throughput Rate One upper bound on mean throughput rate is given by
the number of jobs in the system:

λN =

K =1
Σ
N

E [TK ]

N_ ________

A second upper bound on mean throughput rate is given by all the processors at a given stage being
completely busy:

λN =
K =1,...,S
min

E [TK ]

PK_ _____

Combining all this, we see

λN ≤ min






K =1,...,S
min

E [TK ]

PK_ _____ ,

K =1
Σ
N

E [TK ]

N_ ________






If the processing time at each stage has no fluctuations about the mean processing time, i.e., the
processing times are deterministic, then we claim that this upper bound is achievable. Finally, as N →∞
we obtain the desired result.

2.13.3 Lower Bound on Mean Throughput Rate The longest completion time, and hence the lowest
mean throughput rate, is given by executing only one job at a time:

E [CN ] ≤ N
K =1
Σ
S

PK

E [TK ]_ _____ + o (N )

If each service time is assumed to be an independent random variable, with

PROB [TK ≤X ] = 1 − αexp 
−αX ⁄E [TK ] K =1,...,S ;X >0

so that the mean service time at stage K is fixed at E (TK ),K =1,...,S but α→0 results in greater and
greater fluctuations about the mean.

In order to obtain our desired result, we must show that for any positive number, say ε>0, that

α→0
limE [CN ] ≥ N

K =1
Σ
S

PK

E [TK ]_ _____ − ε

To see this, we need introduce additional notation and machinery.
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Let X 1,...,XN be nonnegative independent random variables with distribution functions given by
G 1(),..,GN () respectively. We define X max as the maximum of these random variables:

X max = max[X 1,...,XN ]

Let EK be the event that XK >Y . The probability that the maximum X max exceeds Y is given by

PROB [X max>Y ] = PROB [
J =1
∪
N

EJ ]

This can be upper and lower bounded as follows:

PROB [
J =1
∪
N

EJ ] ≤
J =1
Σ
N

PROB [EJ ]

PROB [
J =1
∪
N

EJ ] ≥
J =1
Σ
N

PROB [EJ ] −
J <K
ΣPROB [EJ ∩EK ]

If we substitute in, we see

J =1
Σ
N

[1 − GJ (Y )] −
J <K
Σ [1 − GJ (Y )][1 − GK (Y )] ≤ PROB [X max>Y ]

PROB [X max>Y ] ≤
J =1
Σ
N

[1 − GJ (Y )]

An alternate way of computing this event is to define YK as the total time that stage K =1,..,S is not
empty, and hence

CN ≥ max[Y 1,...,YS ]

On the other hand, each YK can be lower bounded by the total service time at stage K over the total
number of processors at stage K

YK ≥ỸK ≡
PK

total stage K service time_ ______________________

Now we realize that

PROB [ỸK ≤X ] = GK (X ) =
J =0
Σ
N 


 J

N 


αJ (1 − α)N −J




1 −

K =0
Σ
J −1

ẼK





ẼK ≡
K !
X K
_ ___exp [−X ] X = PK αX ⁄E [TK ]

Hence, we see that

1 − GK (X ) =
J =1
Σ
N 


 J

N 


αJ (1 − α)N −J

K =0
Σ
J −1

ẼK

The mean of ỸK is given by

E [ỸK ] =
PK

NE [TK ]_ _______

while

1 − GK (X ) ≤ constant (K ) [1 − (1 − α)N ]

We see that

α→0
lim

X >0
sup[1 − GK (X )] = 0

so that
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E [CN ] ≥ E [max (Ỹ 1, . . . , ỸS )]

≥ N
K =1
Σ
S

PK

E (TK )_ _____ −
J <K
Σ

0
∫
∞

[1 − GJ (X )][1 − GK (X )]dX

However, the last term can be made as small as possible by choosing α as close to zero as needed.

Finally, as we allow N →∞, we obtain the desired result for the mean throughput rate.

2.14 General Problem Classification

N jobs, labeled JK ,K =1,...,N are to be executed. Each job can be processed on at most one processor at
a time. This means that if a job can be processed on more than one processor at a time, we will break it
up into one or more distinct jobs, each of which can be processed on only one processor at a time.
Furthermore, each processor can execute at most one job at any instant of time.

2.14.1 Job Data Each job has its release time or arrival time, the earliest time it can begin execution,
denoted by AK ,K =1,...,N . Each job has its deadline denoted by DK ,K =1,...,N which is the time by
which it should ideally be completed.

Each job requires a number of steps, with SK ,K =1,...,N denoting the number of steps for JK ,K =1,..,N .

A precedence relation denoted by < between jobs may exist. We denote by JI <JK the requirement that
JI is to complete before JK can start. One way to show all of these is via a table, showing for each job
step all the job steps that must be completed before that job step can be executed. A second way to
show all of these is via a block diagram or graph: each job is a node in a graph, with arrows into each
node emanating from job step nodes that must be completed prior to that job step. This is a directed
graph: the arrows have direction. This graph has no cycles: there is no chain of arrows that completes
a closed chain or cycle. This is an acyclic graph.

Example: Consider the following set of six jobs with a given precedence relationship:

Table 2.9.Six Job Precedence Relationships_ ______________________________________ _____________________________________
This Must Be This
Job Preceded By Job_ ______________________________________ _____________________________________
2 1
3 1
4 3
5 2,6
7 4,5

The precedence relationships are summarized in the directed acyclic graph shown in Figure 2.22.

Figure 2.22.Precedence Constraints for Six Jobs
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Each job can have its own weight to reflect the relative importance of a job: WK ,K =1,...,N . A
nondecreasing real valued cost function, FK (t ), measuring the cost incurred if JK is completed at time t .

2.14.2 Resource Configuration There are P processors, with each processor being capable of executing
a job step at a different rate. Each step of each job will require a given amount of processing time. Let
TIKM denote the amount of processing time required at step I =1,...,SK for job K =1,...,N on processor
M =1,...,P . If all processors are identical, we will ignore or suppress the subscript M due to different
types of processors. If TIKM =∞ then we assume this step of this job will never by convention be
executed on that processor (because it will take forever).

Each job will require one processor, which may be thought of as an active resource, and zero or more
passive resources, such as memory or storage, an operating system file, and so forth. RIKL denotes the
amount of passive resources L =0,...,R̃ (possibly zero) required by job JK ,K =1,...,N at step I =1,...,SK .
We assume that the total amount of resource type L available will not be exceeded by any one step of
any one job.

2.14.3 Scheduling Policy The scheduling policy determines which job is executed at any given instant
of time with a given set of resources. Competition for resources occurs implicitly via scheduling of
resources, and explicitly via cooperation and precedence ordering between jobs.

We assume that if work is ready to be executed, that it will immediately be assigned to an idle processor
(this rules out a variety of pathological situations from this point on).

Schedules can be nonpreemptive where once a job begins execution it runs to completion, or preemptive
where once a job begins execution it can be interrupted by more urgent jobs. Preemptive scheduling can
involve resuming execution at the point of interruption (and hence we call these schedules preemptive
resume) or repeating execution anew (and hence we call these schedules preemptive repeat) The total
amount of resource L available, R̃L ,L =0,...,M , cannot be exceeded at any instant of time by any
allowable scheduling rule.

2.14.4 Performance Measures We will focus on a variety of performance measures for jobs.

Here are some examples of job oriented performance measures:

• The completion time for job JK , denoted CK

• The lateness for job JK , denoted LK ≡CK − DK

• The tardiness for job JK , denoted TK ≡max [0,LK ]

Here are some examples of system oriented performance measures:

• The total time required to execute all the jobs, Tf inish , assuming all the ready times are zero, i.e., the
jobs are all present at the same initial time. This is called the make span because it is the span of
time it takes to make or execute all jobs

• The mean throughput rate, which is the total number of jobs executed divided by the total time
interval

mean throughput rate =
Tf inish

N_ _____

• The fraction of time each processor is busy at all or its utilization

• The fraction of time two different processors are simultaneously busy

EXERCISE: Can you think of any more?

2.14.5 Parallelism and Concurrency Two jobs are said to be executing concurrently at a given time t
if both started execution before time t and neither has completed execution. An example might be two
programs that have been submitted by different people to be link edited and compiled on the same
processor and are waiting for the compilation to be completed: the processor is concurrently executing
each job, but at any given instant of time one job is using the single processor. This is called logical
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concurrency.

Two jobs are said to be executing in parallel at a given time t if both are actively being executed or
moving to completion at time t. An example would be a computer system with a single processor and a
single secondary storage unit: two units can be executing in parallel, one using the processor and one
using the secondary storage unit, at the same instant of time, providing the operating system supports
this mode of operation. This is called physical concurrency.

2.14.6 Additional Reading

[1] R.L.Graham, E.L.Lawler, J.K.Lenstra, A.H.G.Rinnooy Kan, Optimization and Approximation in
Deterministic Sequencing and Scheduling: A Survey, Annals of Discrete Mathematics, 5, 287-
326(1979).

[2] E.G.Coffman, Jr. (editor), Computer and Job Shop Scheduling Theory, Wiley, NY, 1976.

[3] M.S.Bakshi, S.R.Arora, The Sequencing Problem, Management Science, 16, B247-263 (1969).

2.15 A Packet Switching System

A computer communication system receives packets from any of L lines and transmits packets over the
same L lines. Two types of packets can be received: data packets and control packets. Control packets
are required to set up a communication session between a transmitter and receiver pair, to acknowledge
proper receipt of W data packets, and to conclude a communication session between a transmitter and
receiver pair. Data packets are made up of pieces of a message stream between a transmitter and
receiver. Each transmitter and receiver session demands one logical or passive resource, a virtual circuit
that will be set up over a single physical circuit to allow time division multiplexing or sharing of the
physical circuit among multiple pairs of transmitters and receivers. Two types of processors are
available called slow and fast: the slow processor requires less buffering for each data packet than the
fast processor, and is less expensive. For simplicity, the ready time of each control and data packet is
assumed to be zero, i.e., all packets are available at time zero. Control packets have a deadline or
urgency of ten milliseconds, while data packets have a deadline or urgency of one hundred milliseconds.
A nonpreemptive schedule is used: once execution is begun, a packet is processed to completion. The
table below summarizes the information needed to specify the performance of this system:

Table 2.10.Job Steps_ ______________________________________________ _____________________________________________
Step Job Type Can Be Preempted By_ ______________________________________________ _____________________________________________

1 Control Startup Step 2
2 Control Takedown No Job
3 Data Transmit Step 1,2

The resources required are summarized below:

Table 2.11.Job Step Resource Requirements_ ________________________________________________________________ _______________________________________________________________
Job Slow Processor Fast Processor Passive Resources
Step Time Buffer Time Buffer VC Packet ID_ ________________________________________________________________ _______________________________________________________________

1 5 msec 32 Bytes 2 msec 64 Bytes 1 1
2 7 msec 32 Bytes 4 msec 64 Bytes 1 1
3 10 msec 512 Bytes 5 msec 1024 Bytes 1 1





















The following information is available concerning the performance goals of the system:
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Table 2.12.Packet Switching System Performance Goals_ ________________________________________________________ _______________________________________________________
Step Criterion Normal Business Hour Peak Business Hour_ ________________________________________________________ _______________________________________________________

1 Window 50 msec 200 msec
2 Window 25 msec 100 msec
3 Window 100 msec 500 msec
1 Weight 10 100
2 Weight 20 500
3 Weight 1 10
1 Cost 1 5
2 Cost 2 10
3 Cost 2 8

Finally, the precedence ordering for jobs is as follows

Table 2.13.Job Step Precedence Ordering_ _____________________________________ ____________________________________
This Must Be This
Step Preceded By Step_ _____________________________________ ____________________________________

2 1,3
3 1

EXERCISE: Compare the performance during a normal and peak business hour of a static priority
schedule with priority ordering (2,1,3) with a deadline priority schedule.

2.15.1 Additional Reading

[1] R.W.Conway, W.L.Maxwell, L.W.Miller, Theory of Scheduling, Chapters 1-7, Addison Wesley,
Reading, Mass., 1967.

[2] E.G.Coffman (editor); J.L.Bruno, E.G.Coffman, Jr., R.L.Graham, W.H.Kohler, R.Sethi,
K.Steiglitz, J.D.Ullman (coauthors), Computer and Job-Shop Scheduling Theory, Wiley, New
York, 1976.

[3] R.L.Graham, Combinatorial Scheduling Theory, pp.183-211, in Mathematics Today: Twelve
Informal Essays, edited by L.A.Steen, Springer-Verlag, NY, 1978.

[4] M.R.Garey, R.L.Graham, Bounds for Multiprocessor Scheduling with Resource Constraints,
SIAM J.Computing, 4, 187-200 (1975).

[5] M.R.Garey, R.L.Graham, D.S.Johnson, Performance Guarantees for Scheduling Algorithms,
Operations Research, 26, 3-21 (1978).

[6] D.J.Kuck, A Survey of Parallel Machine Organization and Programming, Computing Surveys, 9
(1), 29-59 (1977).

[7] J.T.Schwartz, Ultracomputers, ACM Transactions on Programming Languages and Systems, 2
(4), 484-521 (1980).

[8] G.R.Andrews, F.B.Schneider, Concepts and Notations for Concurrent Programming, Computing
Surveys, 15 (1), 3-43 (1983).
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Problems

1) Two N tuples denoted by X_ _ =(X 1,...,XN ) and Y_ _ =(Y 1,...,YN ) are inputs to a computer system. The
output of the system is the scalar inner product, denoted <X_ _,Y_ _>, of the two inputs:

<X_ _,Y_ _> =
K =1
Σ
N

XK YK

P identical processors are used to evaluate the inner product expression. Each processor is capable of
executing one addition or one multiplication in one second.

A. For P =1 and N =16 find a schedule that minimizes the total time, Tf inish , required to evaluate one
inner product <X_ _,Y_ _>.

B. For P =4 processors and N =16 find a schedule that minimizes Tf inish to evaluate one inner product
<X_ _,Y_ _>. Compute the speedup in going from one to four processors.

C. Repeat all the above for N =17

D. If the number of inputs is a power of two, i.e., N =2J ,J =1,2,.. and the number of processors is a
power of two, i.e., P =2K ,K =1,2,.., show that the total time Tf inish required to evaluate an inner
product need not exceed



 P

2N_ __




− 1 + 
 log2(P )

where

X = smallest integer greater than or equal to X

2) A computer system takes as input a sixteen tuple (A 1,..,A 16) and generates a scalar output X :

X = A 1(A 2 + A 3(A 4 + A 5(A 6 +.. + A 13(A 14 + A 15A 16)))))))

A. One processor is used to evaluate X . The binary operations of operations of addition and
multiplication each take one unit of time to perform. How long does it take to evaluate X ?

B. With two processors, show that it is possible to evaluate X in ten units of time.

3) Nine jobs are present at time zero. Each job requires one processor for the amount of time shown
below:

Table 2.14.Job Execution Time_ ____________________________________ ___________________________________
Job Time Job Time Job Time_ ____________________________________ ___________________________________
1 3 4 2 7 4
2 2 5 4 8 4
3 2 6 4 9 9










































Each job requires one processor for execution; no job can execute in parallel with itself. Nonpreemptive
scheduling is used: once a job begins execution, it runs to completion. These jobs are not independent,
but have a precedence ordering:
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Table 2.15.Job Precedence_ ___________________________ __________________________
This Must Be This
Job Preceeded By Job_ ___________________________ __________________________
9 1

5,6,7,8 4

A. Construct a schedule for three processors. What is the minimum time required to complete all
nine jobs?

B. Repeat part (A) for two processors

C. Repeat part (A) for four processors

D. Repeat part (A) with three processors but all the execution times reduced by one

E. Repeat part (A) with three processors but the precedence constraint is now weakened as shown in
the table below:

Table 2.16.Job Precedence Summary_ _________________________________ ________________________________
This Must Be This
Job Preceded By Job_ _________________________________ ________________________________
9 1

7,8 4

4) You have just been put in charge of an assembly line for bicycle manufacturing. The first thing you
learn is that assembling a bicycle is broken up into a number of specific smaller jobs:

• FP-- Frame preparation, including installation of the front fork and fenders

• FW-- Mounting and front wheel alignment

• BW-- Mounting and back wheel alignment

• DE-- Attaching the derailleur to the frame

• GC-- Attaching the gear cluster

• CW-- Attaching the chain wheel to the crank

• CR-- Attaching the crank and chain wheel to the frame

• RP-- Mounting right pedal and toe clip

• LP-- Mounting left pedal and toe clip

• FA-- Final attachments (including mounting and adjustment of handlebars, seat, brakes)

Each step takes a person a given number of minutes, summarized in the table below:

Table 2.17.Job Step Summary_ _____________________________________________________________________ ____________________________________________________________________
Job FP FW BW DE GC CW CR RP LP FA_ _____________________________________________________________________ ____________________________________________________________________

Time(Minutes) 7 7 7 2 3 2 2 8 8 18

Certain jobs must be done before others: try mounting the front fork to the bicycle frame if the brake
cables are already attached! The table below summarizes which jobs must precede which others during
assembly:
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Table 2.18.Job Precedence Summary_ _______________________________________ ______________________________________
This Must Be These
Job Preceded By Jobs_ _______________________________________ ______________________________________
FA FP,FW,BW,GC,DE
BW GC,DE,FP
FW FP

GC,CW DE
LP,RP CR,CW,GC

CR CW

Because of space and equipment constraints, the twenty assemblers are paired into ten teams of two
people each. The goal is to have each team assemble fifteen bicycles in one eight hour shift. The
factory quota is one hundred fifty bicycles assembled in one eight hour shift. For a team of two
assemblers, the standard priority schedule has been FP, DE, CW, CR, GC, FW, BW, LP, FA, RP. This
means that each assembler scans this list of work, highest priority on down, until a job is found that can
be done while meeting the precedence constraints. The assembler will work on this job until it is
finished, with no interruptions.

A. Plot the activity of each assembler on a team versus time for each bicycle. Will the factory meet
its quota?

B. You rent all electric power tools for all assemblers. This reduces the time to do each job by one
minute. For the standard schedule plot the activity of each assembler versus time for one bicycle.
Will the factory meet its quota?

C. You return the rented tools, and hire a third assembler for each team. For the standard schedule,
plot the activity of each assembler versus time for one bicycle. Will the factory meet its quota?

D. For two assemblers per team, using a critical path schedule, plot the activity of each assembler
versus time for one bicycle. Will the factory meet its quota?

E. BONUS: Repeat B),C) using a critical path schedule. Will the factory meet its quota?

5) Four processors are arranged in a pipeline to execute a stream of jobs.

1 2 3 4

Four Stage Processor Pipeline

Six jobs are executed on this system, and require the following processing at each step:

Table 2.19.Processing Times per Step_ ____________________________________ ___________________________________
Job Step 1 Step 2 Step 3 Step 4_ ____________________________________ ___________________________________
1 4 4 5 4
2 2 5 8 2
3 3 6 7 4
4 1 7 5 3
5 4 4 5 3
6 2 5 5 1

A. Construct a schedule for executing the six jobs on this processor pipeline.

B. Compute the mean flow time for the above schedule:
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E (F ) =
N
1_ _

K =1
Σ
N

FK N =6

C. Let J (t ) denote the number of jobs in the system, either waiting to be executed or in execution, at
time t . Calculate the mean number of jobs in the system, E (N ):

E (N ) =
TF

1_ __
0
∫
T

F

J (t )dt

D. Show that

E (N ) =
TF

N_ __ E (F )

6) During passage through a computer system, a job is processed by two different processors in
sequence. We denote by the ordered pair (T 1,T 2) the processing time required at the first stage T 1 and
at the second stage T 2 by each job. Assume that six (6) jobs arrive simultaneously for service. The
processing times for this workload are given by (4,2), (2,3), (3,1), (3,1), (6,4), (2,4). Construct a
schedule which processes the six jobs in the minimum time.

7) A system consists of P identical processors, each of which can execute IPS maximum assembly
language instructions per second. This system must execute N identical tasks, all present at an initial
time say zero, and each of which comprises Ninst assembly language instructions. The time to execute
one task on one processor is TP =1 and is given by

Ninst = TP =1 IPS → TP =1 =
IPS

Ninst_ ____

With P processors, the time required to execute a single task is TP . The speedup is defined as the ratio
of the single to multiple processor (single task) execution times:

speedup =
TP

TP =1_ ____

A. If π(K ),K =1,...,P denotes the fraction of time K processors are simultaneously active executing
work, show that

speedup = mean number o f busy processors =
K =1
Σ
P

π(K )K

B. Let Ninst (K ) denote the number of instructions executed by K simultaneously active processors.
Show that

Ninst (K ) = π(K )TP [K IPS ] K =1,2,...,P

C. With P processors, F(K), K=1,...,P, denotes the fraction of assembly language instructions that are
executed concurrently or in parallel on K processors. Show that

F (K ) =

J =1
Σ
P

Ninst (J )

Ninst (K )_ _________ K =1,2,..,P

D. Show that

speedup =

K =1
Σ
P

K
F (K )_ _____

1_ _________
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E. We wish to evaluate repetitively sums consisting of fifteen terms:

Y = A 1 + . . . + A 15

for different choices of AK ,K =1,...,15. We have four processors, (P=4); each processor can
evaluate one partial sum at a time. The total sum can be evaluated in five steps as follows:

Table 2.20.Four Processor Evaluation of Fifteen Term Summations_ ___________________________________________________________ __________________________________________________________
Processor Processor Processor Processor

Step One Two Three Four_ ___________________________________________________________ __________________________________________________________
1 B 1=A 1+A 2 B 2=A 3+A 4 B 3=A 5+A 6 B 4=A 7+A 8

2 B 5=A 9+A 10 B 6=A 11+A 12 B 7=A 13+A 14 B 8=A 15+B 1

3 C 1=B 2+B 3 C 2=B 4+B 5 C 3=B 6+B 7 IDLE

4 D 1=B 8+C 1 D 2=C 2+C 3 IDLE IDLE

5 Y=D 1+D 2 IDLE IDLE IDLE

The intermediate scratch values are denoted by B 1,...,B 8,C 1, . . . , C 3 and D 1,D 2 in the steps
above. Find π(K ),F (K );K =1,2,3,4. Compute the speedup factor directly from the table above, and
from π(K ) and F (K ) directly.

F. For F(K)=1/P, show that

speedup =

K =1
Σ
P

K
1_ _

P_ _____ ∼∼
ln (P + 1) + γ

P____________ as P →∞

where γ = Euler′s constant = 0.5772156649

G. Verify that the algorithm for evaluating fifteen term summations with four processors obeys the
following formula:

maximum speedup =

N −1
P_ ____



 P

N_ _




−
N −1

P_ ____ +
N −1

P log2[min (N ,P )]_ _______________

P_ ___________________________________

x = smallest integer greater than or equal to x

It can be shown* that if we wish to evaluate N degree polynomials on P processors,

Y =
K =0
Σ
N

AK X K

maximum speedup =
log2P

P_ _____

1 +
2N log2P
P F (P )_ _______

1_ ____________
P →∞
lim

log2P
F (P )_ _____ → 0

8) Messages are processed by a transmitter and then a receiver. The order of processing messages at the
transmitter and receiver is identical. The processing time for message K by the transmitter is denoted by
TK , and by the receiver is denoted by RK . There are a total of N messages to be transmitted at time
zero. We define TN +1=0, R 0=0 for simplicity. The receiver can buffer at most two messages at any one
time; once the receiver has two messages, the transmitter stops processing messages until the receiver
only has one message.

__________________

* I.Munro, M.Paterson, Optimal Algorithms for Parallel Polynomial Evaluation, Journal of Computer System Science, 7, 189
(1973).
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A. What are the precedence relations for processing N messages?

B. Show that the total time or make span to process all N messages is given by

make span = TF =
K =0
Σ
N

max 
TK +1,RK




C. Show that the total time or make span to process all N messages can be written as

make span = Tf inish =
K =1
Σ
N

(TK +RK ) −
K =1
Σ

N −1

min 
TK +1,RK




D. The mean throughput rate is defined as

mean throughput rate =
N →∞
lim

Tf inish

N_ _____

Show that

mean throughput rate =
E [max(T ,R )]

1_ ___________

E [max (T ,R )] ≡
N →∞
lim

N
1_ _

K =1
Σ
N

max (TK +1,RK )

where E [max (T ,R )] is the average of the maximum of the transmitter and receiver time per
message. For TK =T =constant ,RK =R =constant , explicitly evaluate this expression. For R =1 and
T =1,0.5,0.2 what is the mean throughput rate?

E. Show that

Tf inish ≥ max



RN +

K =1
Σ
N

TK ,T 1 +
K =1
Σ
N

RK





F. What changes if the receiver can buffer an infinite number of messages?
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CHAPTER 3: DATA ANALYSIS AND SIMULATION

The widespread availability of inexpensive computing power is having a major impact on data analysis.
In times to come, greater volumes of data be collected and analyzed than ever before, and the
complexity of the data will mushroom. Computers allow us to carry out calculations and displays of
data that were literally unthinkable only a decade ago. This will have a profound impact on the design
of computer systems: an integral part of the design will be data gathering and analysis tools to determine
system performance. As more and more data is gathered on each design, iterations will be carried out
based on inferences from data.

Because so much data can be gathered (literally millions of items per day), it is essential that the data be
stored and displayed in a manner that guides someone in drawing cause and effect inferences quickly.
This means imposing some structure at the outset on the data gathering, storage and display. This
structure is a model. All models imposed on the data should be checked against both analytic or
simulation models. This could occur at any point in a product life cycle of a computer communication
system: during initial conception, during development, during manufacturing, and on into installation,
operations, maintenance, repair and salvage. Digital simulation provides a useful and effective adjunct
to direct analytical evaluation of communication system performance. Indeed, there are many situations
where explicit performance evaluation defies analysis and meaningful results can be obtained only
through either actual prototype hardware and software evaluation or digital computer simulations. The
former approach is generally cumbersome, expensive, time-consuming, and relatively inflexible. These
are considerations which typically weigh heavily in favor of digital simulation.

Simulation also frees the analyst from a great deal of repetitive work involved in substituting numbers
into formulae and tables and enables the analyst to concentrate on results. Another advantage is the
insight into system performance provided, both by the modeling process itself and by the experience
gained from simulation experiments. Again, computers can assist us: it may be quite difficult or
expensive to gather data or measurements, so computer assisted analysis can quantify the importance of
the data gathering and analysis procedures.

3.1 Methodology

There are two stages in this methodology. The first is a collection of techniques that together are called
exploratory data analysis to determine if any patterns arise. For example, if we have one hundred items
of data, and ninety nine of them are between zero and one, and one is at five hundred, what do we do:
Do we assume the ninety nine are fine and discard the one outlying value? Do we assume none of the
hundred data are valid because the one outlying value uncovered a fundamental flaw in the measurement
technique? Our point is that a great deal of judgement is required at this stage, intuition built upon
practice, hours and hours of checks and cross checks to ascertain that in fact the data gathered are valid,
hold together, and tell a story. Put differently, exploratory data analysis is an art, and some people are
better artists than others.

A second stage is to summarize the data using a small number of parameters that comprise a model
which must be tested on the data and then used to predict wholly new operations. The model can be
based on a mathematical analysis or it can be algorithmic in nature, a simulation model. In this chapter
we focus on exploratory data analysis, and on simulation models, while the remainder of the book
focuses on analytic models for the second stage.
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This is an iterative process: gathering data, analyzing, and modeling, followed by more data gathering,
analysis, and modeling. The trick is really knowing when to stop!

3.1.1 Additional Reading

[1] B.Efron, Computers and the Theory of Statistics: Thinking the Unthinkable, SIAM Review, 21,
460-480 (1979).

[2] U. Grenander, R. F. Tsao, Quantitative Methods for Evaluating Computer System Performance:A
Review and Proposals, in Statistical Computer Performance Evaluation, W. Freiberger
(editor), Academic Press, NY, 1972.

[3] F.Hartwig, B.E.Dearing, Exploratory Data Analysis, Sage Publications, Beverly Hills, 1979.

[4] F.Mosteller, J.W.Tukey, Data Analysis and Regression, Addison-Wesley, Reading, Mass, 1977.

3.2 Statistics

Three types of statistics will concern us here:

• First order statistics such as averages or mean values

• Second order statistics that measure fluctuations about averages and correlation with time of the
same thing or two different things

• Distributions or fractions of time that a given event is true

We now will examine each of these in more detail.

3.2.1 First Order Statistics Computer communication systems have states. This suggests we should
count the number of times each state is entered or left, and measure the time the system is in each state.

Suppose that N observations are made. For example, the data might be the time intervals that a system
is in a given state, say K , or the number of times a transition is made from state K to state J . Let
XI ,I =1,...,N denote the Ith observation. The mean of these observations, denoted E (X ), is given by

E (X ) =
N
1_ _

I =1
Σ
N

XI

For example, consider a job that goes through two steps: submission from a terminal by an operator and
processing. This cycle is repeated again and again. Typical types of data that might be gathered would
be

• The time spent reading and thinking and entering each job in

• The time an operator spends waiting for a response to a submission

• The time intervals the system is busy processing jobs which infers the fraction of time the system is
busy at all, its utilization, or equivalently, the fraction of time the system is idle at all, its idleness

• The number of jobs submitted to the system from operators, which should be checked against the
number of jobs actually executed by the system. This would infer the mean throughput rate: the
number of jobs executed over the observation time interval.

EXERCISE: Can you think of any more?

3.2.2 Second Order Statistics Two types of measures are of interest here: the fluctuations about the
mean or average, and the correlation between different events.

For our computer system model, we might look at the number of transitions from one state to another
state, or we might measure the time the system spends in a pair of states. The measure of fluctuation is
called the variance, denoted by σXX

2 and given by
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σXX
2 = E



I =1
Σ
N

(XI − E (X ))2




The subscript XX emphasizes that this is the average of the square of each value of X from the total
mean. A related measure of interest is its square root which is denoted by σXX and called the standard
deviation. Often it will be clear from the context what the underlying variable is, such as X here, and
this subscript will be dropped.

A related measure of interest is the so called squared coefficient of variation which is defined as the
variance over the mean squared:

squared coe f f icient o f variation =
E 2(X )

σXX
2

_ _____

In words, this measures the standard deviation in units of the mean or average. If the squared
coefficient of variation is much less than one, then there is little fluctuation about the mean. The
squared coefficient of variation will be zero when there is no fluctuation. When the squared coefficient
of variation is much greater than one, there is significant variability about the mean.

The measure of correlation called the cross-variance is denoted by σXY
2 and is given by

σXY
2 = E



I =1
Σ
N

(XI − E (X ))(YI − E (Y ))




The subscript XY emphasizes that this is the product of two measures of distance from the mean.
Because of our definition, the variance is also called the covariance, because it is a special type of cross
variance, one that is crossed with itself.

3.2.3 Examples In a computer system, what type of data might be aggregated into these statistics?

• The fraction of time terminals four, seven, and thirteen are busy submitting work.

• The fraction of time terminals one, five, and eight are busy submitting work and the system is busy
executing jobs, to get a quantitative measure of concurrency.

• The mean response time at terminal two

• The standard deviation and squared coefficient of variation of response times for terminal five

3.2.4 Distributions The final type of statistic we will examine is the fraction of time a given event
takes place, which is also the distribution of an event. For example, we might ask what fraction of data
are less than a given threshold:

PROB [XI ≤ Y ] = f raction o f data less than or equal Y

One example is the datum for which half the data are bigger and half are smaller, called the median.
This would be similar to an average or first order statistic.

A second example is the fraction of time X per cent of the data is below a given point, such as the
twenty fifth percentile (also called the first quartile) and denoted by P 0.25, or seventy fifth percentile
(also called the third quartile) and denoted by P 0.75. The difference between the twenty fifth and
seventy fifth percentile would be a measure of spread or fluctuation about the median.

A third example would be the minimum or maximum. These show the worst or most atypical pieces of
data. Often these uncover errors in underlying software and hardware, and should be in every
measurement package.

A fourth example would be the fifth percentile, denoted P 0.05, or the ninety fifth percentile, denoted
P 0.95. These also give a measure of the extremes or atypical patterns present in the data. On the other
hand, because the final five per cent of the data is being rejected or trimmed (in this sense of asking
where ninety five per cent of the data lies), this statistic can test the sensitivity or robustness to extreme
values of the minimum and maximum. This is like an insurance policy, that checks to see if the
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minimum and maximum really are telling what we think they are. Similar statements hold for the tenth
percentile, P 0.10, and the ninetieth percentile, P 0.90.

All of these measures are summarized in the figure below:

Figure 3.1.Statistical Measures

3.2.5 Sensitivity of Statistics to Assumptions Certain statistics are quite sensitive to two different
phenomena:

• A small number of values may be quite different from the majority of the data, and distort the
statistic

• Most of the data may be slightly off from the exact true measure, due to timing or rounding

We wish to have quantitative measures as well as heuristic measures to test to see if a statistic is in fact
robust or insensitive to either phenomenon.

In our example in the previous chapter, ten jobs had to be printed, with one job requiring ten thousand
lines to be printed, four jobs requiring two thousand lines each to be printed, and five jobs requiring one
thousand lines each to be printed. The mean or average number of lines per job was

mean number o f lines per job =
10
1_ __

K =1
Σ
10

LK = 2,300 lines

On the other hand, the median is simply

P 0.50 = median = 1⁄2(1,000 + 2,000) lines = 1,500 lines

and nine of the ten jobs are within five hundred lines of the median.

A different way of seeing this is to deal with a trimmed mean, where we discard an equal number of
extreme values. This tests the sensitivity of our analysis to extreme values. If we discard the highest
and lowest data, we find

trimmed mean =
8
1_ _

K =1
Σ
8

LK = 1,500 lines

which is much smaller than the total mean. If we trim two more extreme values off, we find

trimmed mean =
6
1_ _

K =1
Σ
6

LK = 1,500 lines

and hence this is stable or robust to trimming thresholds.
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What about fluctuations about the mean? The variance about this mean is given by

σL
2 =

10
1_ __

K =1
Σ
10

[LK − E (L )]2 = 6,810,000 lines 2 σL = 2,610 lines

Note that the standard deviation, which is one measure of fluctuation about the mean, is larger than the
data for all jobs but one. Again, this suggests the job that requires much more processing than the other
jobs is causing these problems. This can be seen by using the difference between the twenty fifth and
seventy fifth percentiles as a measure of spread about the mean:

P 0.75 = 2,000 lines P 0.25 = 1,000 lines P 0.75 − P 0.25 = 1,000 lines

EXERCISE: Can you think of any more tests for showing if data is anomalous?

EXERCISE: Can you construct a flowchart for automating this?

3.3 Measurement Criteria

Earlier we observed that there are two types of measurement criteria: first, user oriented criteria, such as
delay statistics for different transaction types, with examples being

• Arrival time to start of service, or waiting time

• Arrival time to end of service, or queueing time

• Arrival time to end of execution of a given step of a job

• Completion time minus deadline, or lateness

• The larger of zero and lateness, or tardiness

Second, system oriented criteria, such as utilization of different system resources with examples being

• Fraction of time a given single resource is busy, e.g., the fraction of time a processor is busy, or the
fraction of time a disk is busy

• Fraction of time two given resources are busy, e.g., the fraction of time both the processor and the
disk are simultaneously busy

• Fraction of time three given resources are busy, e.g., the fraction of time the processor, the disk, and
the terminal input/output handler are simultaneously busy

• Mean rate of execution of a given type of job, or mean throughput rate

Measurements should be designed to directly measure criteria such as these, so that a direct assessment
can be made: is the system in fact meeting its goals? what goals are reasonable?

The majority of measurement tools in the field at the present time are system oriented; it is quite rare to
directly measure delay statistics and throughput rates for different transaction types. Why is this so? In
some systems, the load placed on the system software to gather data will be comparable (or greater
than!) the load we wish to measure; this is dependent on the software and hardware technology
employed, and may well change in the future.

3.3.1 Additional Reading

[1] D.Ferrari, G.Serazzi, A.Zeigner, Measurement and Tuning of Computer Systems, Prentice-
Hall, Englewood Cliffs, NJ, 1983.

3.4 An Example: Report Generation on Two Printers

As an example, consider the statistics associated with printing a set of reports using two printers
attached to a computer system. First, we summarize the reports and how long each will take to print,
plus the desired time interval or window we can tolerate for printing each report:

All reports arrive at once, i.e., all reports are ready to be executed at time zero. The figure below shows
the completion times for one schedule where the priority is chosen according to the job letter: job A
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Table 3.1.Report Execution Time Summary_ ______________________________________ _____________________________________
Report Print Time Window Time_ ______________________________________ _____________________________________

A 3 minutes 5 minutes
B 2 minutes 3 minutes
C 10 minutes 15 minutes
D 2 minute 4 minutes
E 1 minutes 2 minutes

Figure 3.2.Printer Activity Using Alphabetic Priorities

has higher priority than job B, and so forth.

All jobs are completely executed at twelve minutes past zero. For each job, we can tabulate delay
statistics, and find:

Table 3.2.Alphabetic Priority Delay Statistics_ ___________________________________________________________ __________________________________________________________
Report Completion Waiting Queueing Lateness Tardiness_ ___________________________________________________________ __________________________________________________________

A 3 0 3 -2 0
B 2 0 2 -1 0
C 12 2 12 -3 0
D 5 3 5 1 1
E 6 5 6 4 4

A variety of companion statistical measures, averaged over all jobs, are summarized below:

Table 3.3.Alphabetic Priority Job Performance Measures_ _______________________________________________________________ ______________________________________________________________
Statistic Completion Waiting Queueing Lateness Tardiness_ _______________________________________________________________ ______________________________________________________________

Average 5.6 2.0 5.6 -0.2 1.0
σ 3.5 1.9 3.5 2.5 1.6
P 0.75−P 0.25 2.0 3.0 2.0 3.0 1.0
Minimum 2 0 2 -3 0
Maximum 12 5 12 4 4

Here is one interpretation of this summary: The average time in system consists of an average waiting
time of 2 plus an average service time of 3.6, equaling the average time in system of 5.6. The
maximum tardiness is four, while the average tardiness is one. Inspection reveals that twice the standard
deviation does not approximately equal the difference between the third and first quartile, which suggests
that the one long job has significantly skewed the statistics.

What about system oriented performance criteria? These are summarized below:

Table 3.4.Alphabetic Priority System Performance Measures_ _____________________________________________________ ____________________________________________________
Statistic Value_ _____________________________________________________ ____________________________________________________

Mean Throughput 5 jobs in 12 minutes
Fraction of Time Printer 1 Busy 50.0%
Fraction of Time Printer 2 Busy 100.0%
Fraction of Time Both Printers Busy 50.0%
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The lack of balance in utilization between the two printers makes it evident that the one long job has
significantly skewed the utilizations away from equality.

In contrast to this, we assign priorities such that the shorter the processing time of a job, the higher its
priority. This attempts to let the short jobs run quickly at the expense of the long job that will take a
long time anyway. The execution pattern for this schedule is shown in Figure 3.3.

Figure 3.3.Shortest Processing Time Priority Arbitration

As above, the same statistics are tabulated for each job in Table 3.5.

Table 3.5.Shortest Processing Time Priority Delay Statistics_ ___________________________________________________________ __________________________________________________________
Report Completion Waiting Queueing Lateness Tardiness_ ___________________________________________________________ __________________________________________________________

A 5 2 5 0 0
B 2 0 2 -1 0
C 13 3 13 -2 0
D 3 1 3 -1 0
E 1 0 1 -1 0

As before, the same job oriented statistical performance measures, averaged over all jobs, are
summarized below in Table 3.6.

Table 3.6.Shortest Processing Time Job Performance Statistics_ _______________________________________________________________ ______________________________________________________________
Statistic Completion Waiting Queueing Lateness Tardiness_ _______________________________________________________________ ______________________________________________________________

Average 4.8 1.2 4.8 -1 0
σ 4.3 1.2 4.3 0.6 0.0
P 0.75−P 0.25 1.0 2.0 1.0 0.0 0.0
Minimum 1 0 1 -2 0
Maximum 13 3 13 0 0

Here is one interpretation of this data: Each job has a mean waiting time of 1.2 plus a mean service
time of 3.6, resulting in a mean queueing time of 4.8. This is smaller than the first priority arbitration
rule. As with the alphabetic schedule, the one long job has skewed the standard deviation significantly
more than would be expected from the difference of the two quartiles.

What about system oriented performance measures? These are summarized below:

Table 3.7.Shortest Processing Time System Performance Statistics_ __________________________________________________________ _________________________________________________________
Statistic Value_ __________________________________________________________ _________________________________________________________

Mean Throughput Rate 5 jobs in 13 minutes
Fraction of Time Printer 1 Busy 38.46%
Fraction of Time Printer 2 Busy 100.0%
Fraction of Time Both Printers Busy 38.46%

The one long job has skewed the utilization of the two printers far away from equal loading.

A second point to keep in mind is that all five jobs are being printed, but some are printed ahead of
others. This means that logically all jobs are being printed concurrently (actually only one job at a time
can use a printer), but the choice of priorities can control the delay or responsiveness (waiting time or
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completion time) of a job, with the amount dependent on the workload. For these two priority
arbitration rules, these differences are summarized as follows:

Table 3.8.Job Delay Statistics Summary_ ________________________________________________ _______________________________________________
Performance Alphabetic Shortest Processing

Measure Priority Time Priority_ ________________________________________________ _______________________________________________
Average Completion 5.6 4.8
Average Waiting 2.0 1.2
Average Queueing 5.6 4.8
Average Lateness -0.2 -1.0
Average Tardiness 1 0

Judged on these measures alone, the shortest processing time arbitration rules offer superior performance
to the alphabetic arbitration rules.

Finally, what about system oriented performance measures:

Table 3.9.System Utilization Statistics Summary_ ________________________________________________________________ _______________________________________________________________
Performance Alphabetic Shortest Processing

Measure Priority Time Priority_ ________________________________________________________________ _______________________________________________________________
Mean Throughput Rate 5 jobs/12 min 5 jobs/13 min
Fraction of Time Printer 1 Busy 50.0% 38.46%
Fraction of Time Printer 2 Busy 100.0% 100.0%
Fraction of Time Both Printers Busy 50.0% 38.46%

>From the system operations point of view, it looks like a wash: neither priority scheme offers
significant benefits over the other.

3.4.1 Summary Our intent here was to take two printers and five jobs and walk through a data analysis
exercise of performance, from the point of view of each job and its delay, and from the point of view of
the system and its operations. We did not even begin to exhaust the list of statistics that we could in
fact generate for such a simple system. Our intent was not to bury you, the reader, with numbers, but
rather to show that the key ingredients are understanding the workload (look at how the one long job
impacted everything), understanding how the system executed jobs (for different schedules), and to
develop techniques for making judgements. The job delay statistics carried the day for shortest
processing time scheduling: the system performance statistics appeared to be comparable. Take from
this the methodology of data analysis, and not the conclusions per se.

3.5 Modeling

We impose structure at the outset on the data gathered for two reasons: first, there is simply too much
data so findings must be summarized in a small number of parameters; second, there are only a limited
number of actions that a performance analyst can suggest. Remember that the possible changes dealt
with application code, operating system, and hardware, with different costs associated with each type of
change: why not focus at the outset on these three topics? what types of models or structures could we
impose on the data at the outset that would suggest fruitful cause and effect changes in system
performance?

Here is one such model: different types of transactions require different amounts of hardware resources
(terminal processing time, data link transmission time, data base processing time, data retrieval access
time, and so forth) and operating system resources (files, tables, messages, processes), and application
program resources (input handler, data base manager, scheduler, communications controller). For each
transaction we would log or measure the amount of each resource actually used, on a per process basis,
i.e., a transaction is executed by a set of processes.

Here is a typical example of a model of a computer communication system. The system resources
consist of
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Table 3.10.Computer System Resources_ _____________________________________________________ ____________________________________________________
Hardware Amount Operating System Amount_ _____________________________________________________ ____________________________________________________
Processors 3 Processes 298
Disks 7 Files 365
Links 15 Buffers 149
Disk Controllers 3 Virtual Circuits 487
Terminals 29 Semaphores 732
Terminal Controllers 5
Tape Drive 1 











How do logical resources arise? They arise from attempting to control the flow of data through a
computer communication system. Each physical and logical resource has a name. Each resource must
be assigned to a given location. There is a policy for interconnecting or routing data and control
information among the different resources: disks are connected to disk controllers, terminals to terminal
controllers, and so forth. Conceptually, the logical resources are tables associated with these entities:
these tables must be accessed and contention arbitrated just as with physical resources. The reason
logical resources are often ignored is that a system administrator configures the system when it is
initially powered up so that these resources hopefully will never be bottlenecks. This must be examined
on a case by case basis.

Each job will be holding one or more resources at each step of execution. One possible representation
of state of the system at any instant of time is what jobs hold what resources. A second possible state
representation is what jobs are holding what resources and are queued waiting for other resources to
become available. One system statistic related to this is the fraction of time each resource is busy and
idle. One job statistic related to this is to determine what processes are busy and idle.

EXERCISE: What about the workload imposed on this system? How does this impact the
measurements?

3.5.1 Additional Reading

[1] G.E.P.Box, W.G.Hunter, J.S.Hunter, Statistics for Experimenters, Wiley, NY, 1978.

[2] D.Freedman, R.Pisani, R.Purves, Statistics, Norton, New York, 1978.

3.6 An Illustrative Example: Directory Assistance Operator Work Times

When directory assistance operators handle queries, two steps are involved: listening to the query, typing
it into a terminal, and perhaps the reading the terminal, followed by waiting for the response to the
query. What is the distribution of time to listen and enter the query?

Two stages are involved in answering this question: examining a variety of nonparametric statistics
which suggest naturally what distributions are reasonable candidates for what models, and a model
fitting.

3.6.1 Description of the Data The times for a directory assistance operator to answer a query were
measured. This was done by a stop watch and the results recorded on a paper by pencil. The 597 data
were aggregated into classes or bins, with the total width of the bin being five seconds, beginning with
zero. A visual inspection of the data gathered did not reveal any apparent outlying or spurious or
erroneous values. The data are summarized below:

3.6.2 Nonparametric Exploratory Data Analysis The figure below shows an empirical distribution for
the data, while the next figure shows a histogram. The table below summarizes a variety of statistics
computed from the observations:
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Table 3.11.Directory Assistance Operator Work Time Histogram_ ________________________________________________________________ _______________________________________________________________
Number of Observations Total Number of Observations Total

Greater Than But Less Than Observed Greater Than But Less Than Observed_ ________________________________________________________________ _______________________________________________________________
0 sec 5 sec 0 50 sec 55 sec 16

5 sec 10 sec 0 55 sec 60 sec 16

10 sec 15 sec 18 60 sec 65 sec 14

15 sec 20 sec 85 65 sec 70 sec 6

20 sec 25 sec 112 70 sec 75 sec 4

25 sec 30 sec 110 75 sec 80 sec 6

30 sec 35 sec 82 80 sec 85 sec 4

35 sec 40 sec 51 85 sec 90 sec 2

40 sec 45 sec 36 90 sec 95 sec 2

45 sec 50 sec 30 95 sec --- 3














Figure 3.4.Empirical Distribution Function

Figure 3.5.Histogram of Directory Assistance Operator Work Time Data

Table 3.12.Moment Estimates
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_ ____________________________ ___________________________
Mean 32.77 sec

Variance 238.99 sec2

Variance/(Mean2) 0.2224

On the other hand, the percentile order statistics are summarized below:

Table 3.13.Order Statistics_ ______________________________ _____________________________
1% 12.5 sec 75% 37.5 sec
5% 17.5 sec 90% 52.5 sec
10% 17.5 sec 95% 62.5 sec
25% 22.5 sec 99% 87.5 sec
50% 27.5 sec

It is of interest to compare the square root of the variance, or the standard deviation, with the difference
between the twenty fifth and seventy fifth percentiles:

standard deviation = 15.46 sec 75th to 25th percentile = 15 sec

This shows that the standard deviation significantly underestimates the actual fluctuation about the mean
compared with the differences in the third and first quartiles.

3.6.3 Model Fitting We choose to fit the data with a gamma distribution with integer parameter. These
are also called Erlang-K distributions, so called because each distribution is the K fold convolution of
identical exponential distributions. If we let G (X ) denote the fraction of time an observation is less than
or equal to X , then its moment generating function is given by

Ĝ (z ) =
0
∫
∞

e−zX dG (X ) =


 1 + τz

1_ _____




K

The first two moments of this distribution are given by

0
∫
∞

XdG (X ) = K τ

0
∫
∞

X 2dG (X ) = K (K +1)τ2

We have already computed the first two moments of this distribution, so let’s see what type of
distribution might fit these moments. One way to investigate this is to examine the ratio of the variance
to the mean squared. This is dimensionless, and in fact equals the reciprocal of the degree of the
distribution:

(mean )2

variance_ _______ =
K
1_ _

The data suggests this ratio is 0.224, so an Erlang-4 or Erlang-5 might be an adequate fit.

A quantile quantile plot is used to fit the data to the model. On the horizontal axis sorted observations
are plotted. For each observation, there is a corresponding quantile Q , i.e., that fraction of the data that
is less than or equal to that observation. We now ask what quantile in the model distribution yields the
same value of Q , and choose that for the vertical axis. If the model quantiles and observed quantiles
are identical, the plot should be a straight line with slope unity. We will tune the model parameters
until we have a visual straight line fit!

The figures below show different quantile quantile plots for an Erlang K distribution, where K=1,2,3,4,5.
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Figure 3.6.Erlang 1 vs Data Q-Q Plot

As is evident, an Erlang 1 or exponential distribution does not match the data very well.

Figure 3.7.Erlang 2 vs Data Q-Q Plot

An Erlang 2 does much better than an Erlang 1 at fitting the data, but the match is still not very good.
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Figure 3.8.Erlang 3 vs Data Q-Q Plot

An Erlang 3 appears to do an excellent job of fitting the data.

Figure 3.9.Erlang 4 vs Data Q-Q Plot

An Erlang 4 does not do as well as an Erlang 3 at fitting the data.
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Figure 3.10.Erlang 5 vs Data Q-Q Plot

An Erlang 5 does worse than an Erlang 4 in fitting the data.

The Erlang 3 comes closest to fitting the data over the entire range.

One way to quantify goodness of fit of model to data besides eye ball is to check an error measure. We
define local error as eK =  qmodel ,K − qdata ,K  where qmodel ,K is the Kth model quantile, and qdata ,K is
the Kth data quantile, and K=1,...,N. The first measure we will use is the mean absolute deviation of
data from the model, denoted E 1:

E 1 =
N
1_ _

K =1
Σ
N

eK

The second measure is the square root of the mean square deviation, denoted E 2:

E 2 =


 N

1_ _
K =1
Σ
N

eK
2




1⁄2

The third measure is the maximum deviation of the data from the model, denoted E max:

E max =
K =1,...,N
max eK

The table below summarizes the calculations for each measure of error:

Table 3.14.Error Criterion Summary_ _________________________________ ________________________________
Model E 1 E 2 E max_ _________________________________ ________________________________

Erlang 1 29.5 38.1 81.0
Erlang 2 15.6 17.5 31.3
Erlang 3 4.0 5.2 11.1
Erlang 4 8.3 10.2 18.4
Erlang 5 13.1 16.5 30.3

This suggests the Erlang 3 is the best model, confirming the graphical test.

3.6.4 Additional Reading

[1] M.B.Wilk, R.Gnanadesikan, Probability Plotting Methods for the Analysis of Data, Biometrika,
55, 1-17 (1968).
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3.7 Measurement Tools

There are two types of tools for measuring system traffic handling characteristics, hardware monitors and
software monitors.

3.7.1 Hardware Monitors A hardware monitor might consist of a set of high impedance probes (much
as are found in high performance oscilloscopes), a logic plugboard, a set of counters, and a display or
recorder of some sort. The probes are attached to memory locations, registers, bus connectors, and so
forth, as wished, and interface to the logic plugboard. The logic plugboard is used to count the number
of transitions of a given type that a probe measures: number of clock cycles that the processor or disk
controller is busy, number of clock cycles that both the processor and disk controller are busy, and so
forth. The display or recorder presents this information to a human in a useful manner, or records it for
processing elsewhere. One trend today is to build the hardware performance monitoring capabilities
directly into the computer communication system hardware, and to allow remote diagnostic capabilities
to also be built in. The value of this in field service and support can be immense: a remote site can
notify a central repair bureau site of a failure (either transient or permanent), the central site with trained
personnel can carry out specialized tests, and take an appropriate action, often without intervention of
the remote site personnel.

3.7.2 Software Monitors A software monitor makes use of physical resources, unlike the hardware
monitor, and thus can place some load on the system. How much of a load depends upon a variety of
factors: how frequently is the monitor invoked, how many resources are consumed per invocation, and
so forth. In practice the load placed on any one device by the measurement tool should be negligible,
but in point of fact for current systems it is difficult to drop the measurement load utilization below ten
per cent. On the other hand, a great deal of flexibility is gained in software versus hardware monitoring,
and the timeliness of the information can be invaluable. One approach to the problem of measurement
load is to simply insert software modules at the outset of system design that consume resources but do
no useful work: as the system software monitor is installed, more and more of these extraneous
modules are removed, and no one knows the difference!

3.7.3 Putting It All Together How do we use these tools? First, we must start up the system with a
controlled load, and then determine that the measurements being gathered have stabilized. Second, we
must examine the data to determine if the system behavior is stationary: do certain events occur at five
or ten or sixty minute time intervals that will impact performance? Put differently, when do we stop the
measurements? The measurements can be either event driven, i.e., gathered only at those time instants
when certain events have occurred, e.g., after one thousand transactions have been processed, or clock
driven, i.e., gathered at evenly spaced time instants. The load placed on the system by event driven
monitors is often much greater than clock driven monitors, but the event driven monitor may be more
useful and flexible for interpreting data.

3.7.4 Example Here is an illustrative set of measurements that might be gathered on a computer
communication system:

• Processors--Busy (application, monitor, system) or idle (blocked or true idle), system buffer hit rate,
cache hit rate, time from when a process is ready to run until it runs

• Disks--Busy (seeking, transferring) or idle, number of requests per unit time, number of reads,
number of writes, number of swaps, number of characters in/out

• Disk Controllers--Busy or idle, number of characters in/out, number of reads, number of writes

• Links--Busy or idle, number of characters in/out, number of reads, number of writes

• Terminals--Busy or idle, number of characters in/out, number of reads, number of writes, time from
last character input until first character output

• Terminal controllers--Busy or idle, number of characters in/out, number of reads, number of writes

• Process--Busy or idle (blocked or true idle), number of context switches per unit time, number of
characters in/out, number of page faults, number of active pages per unit time, number of messages
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in/out, number of files opened/closed, number of reads, number of writes

• Files--Busy or idle (locked or true idle), number of reads, number of writes, number of changes,
number of characters in/out

EXERCISE: Can you think of any more?

3.7.5 Additional Reading

[1] D.Ferrari, G.Serazzi, A.Zeigner, Measurement and Tuning of Computer Systems, Prentice-
Hall, Englewood Cliffs, NJ, 1983.

[2] P.A.W.Lewis, G.S.Shedler, Empirically Derived Micromodels for Sequences of Page Exceptions,
IBM J.Research and Development, 12, 86-100 (1973).

[3] S.Sherman, F.Baskett III, J.C.Browne, Trace-Driven Modeling and Analysis of CPU Scheduling
in a Multiprogramming System Communications of the ACM, 15 (12), 1063-1069 (1972).

[4] D.W.Clark, Cache Performance in the VAX-11/780, ACM Transactions on Computer Systems, 1
(1), 24-37 (1983).

3.8 Data Analysis and Interpretation

How do we interpret data? With great care! Data can be aggregated in a variety of ways: the
utilization of a given hardware device can be found by simply measuring the total time it is busy and
then dividing by the total measurement time interval. What good is this? Bottlenecks, hardware
resources that are completely utilized can be spotted quickly, and a variety of secondary avenues can
now be explored. Why is the hardware device busy? Is it intrinsic to the task it must do, i.e., more
resources of that type are needed? Is it a software error, e.g., a print statement was inadvertently left in
the code? Is it a structural problem of the operating system or application code using some logical
resource, e.g., a file, again and again when in fact the application or operating system could be changed
and this problem would simply not occur? Again, the consequences of each of these avenues must be
quantified before choosing one.

How can we aid this process? By graphically plotting utilization of one or more devices versus time:
this will show, first of all, which devices are bottlenecks, and second of all the correlation between the
utilization of different devices. A picture here is worth everything! Next, we can repeat this procedure
for different processes versus time. Does this picture of what is actually taking place match what should
take place: is there an error in the software? This approach can help to uncover it.

How do we do this in practice? First, we develop a clear picture of how control and data interact for
each step of each job. Second, we examine the utilization of each resource: which resources are close to
complete utilization, which are not?

Third, we examine which processes and files are associated with those resources that are generating this
load, and attempt to see which of these entities are generating the majority of the load on the bottleneck

Fourth, we ask ourselves if this is reasonable: maybe there is an error, maybe there is no reason for this
to be so, yet it is! If this is reasonable, we go to the next step.

Fifth, the evaluation of alternatives, either hardware or operating system or application software. In any
event, there is a bottleneck in the system: if it is not acceptable, the bottleneck should be moved to some
other resource. If it cannot be moved to some other resource, then perhaps scheduling of the bottleneck
to meet delay goals is possible.

3.9 Simulation

What are the stages in doing a simulation?

• Model Formulation--Gathering a precise description of the arrival statistics and resources consumed
for each transaction type, along with the policies for ameliorating contention for resources
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• Model Implementation--Programming the model in a language (e.g., assembler, BASIC, FORTRAN,
GPSS, and so forth) to match the formulation

• Model Validation--Generating controlled loads with known behavior on subsystems or modules, then
on aggregations of modules, and finally on the whole system, and matching that behavior against
expectations with negligible discrepancy

• Experimental Design--Creating a variety of controlled loads with unknown behavior; often the time
required to carry out all experiments can prove prohibitive, and systematic techniques must be
employed

• Data Analysis--Displaying the measurements using the tools described earlier in order to gather
cause and effect inferences concerning behavior

The figure below shows a time line of a simulation. We note three distinct items there:

• Event--Change in state of system entity

• Activity--Collection of operations that change state of entity

• Process--Sequence of events ordered in time

Figure 3.11.Representative Timing Diagram of a Simulation

In this figure the latter portion of activity I and the first portion of activity II can be executed
concurrently, but activity III must be done serially.

The table below summarizes some simulation languages that are in widespread use and the method they
use for timing control.

Table 3.15.Examples of Simulation Languages_ _________________________________________ ________________________________________
Event Activity Process

Scheduling Scanning Interaction_ _________________________________________ ________________________________________
GASP CSL GPSS

SIMSCRIPT SIMULA

Any simulation must present evidence of

• Stationarity--Are initial start up transients still in evidence? What about shut down transients? How
repeatable is the experiment? Or are the transients really what is of interest?
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• Variability--Are fluctuations severe? What types of confidence intervals or error brackets are
present?

• Correlation--What types of time scales are evident? Do all events occur on the same time scale or
are some short relative to others: what impact might this have? Is there coupling between events,
activities, processes?

A wealth of information on these topics is found in the reading, and elsewhere.

3.9.1 Additional Reading

[1] G.S.Fishman, Concepts and Methods in Discrete Event Digital Simulation, Wiley, NY, 1973.

[2] S.H.Fuller, Performance Evaluation, in Introduction to Computer Architecture, H.Stone
(editor), Science Research Associates, Chicago, Illinois, 1975.

[3] H.Kobayashi, Modeling and Analysis: An Introduction to System Performance Evaluation
Methodology, Addison Wesley, Reading, Mass., 1978.

3.10 The Structure and Mechanics of Simulation

In order to provide a maximum flexibility, simulation software packages used to aid communication
systems analysis and design should have a modular structure. Most of the software packages that are in
use now are made up of four major components:

• model library

• system configuration tools

• simulation exercise tools

• post processor tools

The system configuration tools select a set of models of functional blocks from the model library and
connect them in the desired topology as specified by the block diagram of the system being designed.
Parameters of various functional blocks are specified either when the system is being configured or
during the execution of the simulation which is supervised by the simulation exercise tools. Time
histories of events at various points in the system are generated and stored by the simulation exercise
tools. These time histories are examined by the post processing tools at the conclusion of the simulation
run, and performance measures are computed from the time histories. At the end of a simulation, the
design engineer uses the post processor output to verify if the performance requirements and design
constraints are met. If the design objectives are not met, then several iterations are made until a suitable
design is found.

3.10.1 Simulation and Programming Languages Software should be written in a higher level (than
assembly language) programming language such as FORTRAN, PASCAL or C. Unfortunately, these
languages do not allow input via block diagrams, which requires a preprocessor simulation language
description of the system being analyzed or designed. This approach lends itself to portability and frees
the user from having to know the details of the underlying operating system and hardware configuration
of the simulation facility. For discrete event simulation, three widely used languages are GPSS,
SIMSCRIPT and GASP. Each of these are preprocessors to a lower level language. For additional
flexibility the simulation software may permit the intermixing of statements written in the simulation and
programming languages. This will result in a minor restriction of the free format input of blocks,
namely the models will have to appear in the order of their precedence in the description of the
simulated system.

3.10.2 Topological Configuration The model configuration tools in the simulation package should
permit the design engineer to connect the functional blocks in any desired topological interconnection.
While this free topological requirement may complicate the simulation software structure, it provides the
maximum flexibility.
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3.10.3 Model Library The usefulness of a simulation package depends heavily on the availability of a
model library that contains a large number of models of various functional blocks that make up
transmission systems and networks. Computer routines that model functional blocks should be reentrant
so that functional blocks may be used at multiple and arbitrary instances in the simulation of a
transmission system. The model configuration tools should permit unlimited nesting of models such that
subsystem models may be built using library models. It is also desirable to make provisions to enable
user to write his own models, use it in the simulation directly, and/or enter it into the model library.

3.10.4 Time and Event Driven Simulation A simulator can be designed to be time driven where
processing is initiated at every "tick" of the simulation clock, or event driven where processing takes
place only when an event of interest (such as the arrival of a message) takes place. For maximum
flexibility, provisions should be made for both modes of processing such that some blocks in the system
are event driven whereas others could be time driven.

3.10.5 Testing for Stationarity The reason for checking the status of the simulation is to gather a
variety of either transient or long term time averaged statistics. If long term time averaged statistics are
of interest, then the question of how much data to gather at each sample point, and with what degree of
confidence, will influence the simulation parameters. This monitoring feature can be very useful in long
Monte-Carlo Simulations. As an aside, we note that just because one million separate pieces of data
have been collected does not guarantee we have a statistically significant sample: only if the samples are
uncorrelated from one another can we say that we have some confidence that the data set may be
sufficient.

3.10.6 Post Processor The postprocessing routines are an important part of a simulation package since
these routines are the ones that enable the design engineer to view the results of the simulation. The
model configuration tools and the simulation exercise tools should be designed to allow a designer to
draw direct cause and effect inferences about system operation. As a minimum, the postprocessor
package should have routines that perform the functions of common laboratory test equipment, (load
generators, profilers of resource utilization for each job step and for time delays of each job step).
Statistical analysis routines as well as graphics display routines are also essential.

3.10.7 User Interface Finally, the whole simulation package should be made user friendly. This
includes both online and offline documentation and help. Two currently popular approaches here are
using menus to trace a tree of commands or actions, and using key words (which appears to offer certain
advantages for sophisticated users) by allowing menus to be bypassed if need be. This is currently an
area of active research, encompassing novel interactive graphics and mouse controls, among other
approaches. The simulation software should also have the following provisions to aid the user: symbolic
debugging, run-time diagnostics, parameter checking and online error control for inputting.

3.10.8 Additional Reading

[1] N. R. Adam (editor), Special Issue on Simulation Modeling and Statistical Computing,
Communications ACM, 24 (4), 1981.

[2] G.W.Furnas, T.K.Landauer, L.M.Gomez, S.T.Dumais, Statistical Semantics: Analysis of the
Potential Performance of Key-Word Information Systems, Bell System Technical Journal, 62 (6),
1753-1806(1983).

[3] U. Grenander, R. F. Tsao, Quantitative Methods for Evaluating Computer System Performance:A
Review and Proposals, in Statistical Computer Performance Evaluation, W. Freiberger
(editor), Academic Press, NY, 1972.

[4] L. Kleinrock, W. E. Naylor, On Measured Behavior of the ARPA Network, Processing AFIPS
National Computer Conference, 43, 767-780(1974).

3.11 Simulation of Link Level Flow Control

Here is a case study in doing a simulation study. A transmitter sends packets to a receiver over a
channel and gets a positive acknowledgement. A hardware block diagram is shown in the figure below:
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Figure 3.12.Communications Link Hardware Block Diagram

Here is a model of the operation of such a system: Each packet is processed by the transmitter,
propagates through the channel to the receiver, is processed by the receiver, and leaves. An
acknowledgement propagates back to the transmitter, and requires zero transmitter processing time. The
receiver can only buffer a maximum of W packets. If the receiver buffer is full, the transmitter is shut
down until space is available in the receiver. A queueing network block diagram of this system is
shown in Figure 3.13.

Figure 3.13.Communications Link Queueing Network Block Diagram

An example of a simulation of such a system, done in GPSS, is shown below.

The sequence of transmitter and receiver packet processing times is constant. The channel propagation
time has a given mean value; the sequence of channel propagation times is constant. The packet
interarrival times are independent exponentially distributed random variables with a given mean
interarrival time. The remaining parameters are the maximum number of unacknowledged packets
transmitted, called the window size, denoted W , and the number of acknowledgements required to be
received by the transmitter to start sending packets once shut down, called the batch size, denoted B .
Flow control is used to make sure no messages are lost due to memory or buffers not being available in
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*LOC OPERATION A,B,C,D,E,F,G
*
* FULL DUPLEX LINK LEVEL WINDOW FLOW CONTROL
* WITH CHANNEL PROPAGATION DELAYS
*

SIMULATE
1 FUNCTION RN3,C24

0 0 0.1 0.1040.20.222
0.3 0.355 0.4 0.5090.50.69
0.6 0.915 0.7 1.20.751.38
0.8 1.6 0.84 1.830.882.12
0.9 2.3 0.92 2.520.942.81
0.95 2.99 0.96 3.20.973.5
0.98 3.9 0.99 4.60.9955.3
0.998 6.2 0.999 7.00.99978.0
*
* INTERARRIVAL TIMES IID EXPONENTIAL ARRIVALS
* WITH MEAN INTERARRIVAL TIME 280
*
1 GENERATE 280,FN1

*
* QUEUE 1--TRANSMITTER QUEUE
*
2 QUEUE 1

*
* LOW WATER MARK=5
*
3 TEST E Q3,K7,5
4 LOGICS 1

*
* HIGH WATER MARK=7
*
5 TEST E Q3,K6,7
6 LOGICR 1
7 GATE LR 1
8 SEIZE 1
9 DEPART 1
10 ADVANCE 100

*
* TRANSMITTER PACKET PROCESSING TIME=100
*
11 RELEASE 1
12 TABULATE 4

*
* QUEUE 2--FORWARD AND REVERSE CHANNEL
*
13 QUEUE 2
14 SEIZE 2
15 DEPART 2
16 ADVANCE 0

*
* CHANNEL PACKET DELAY=0
*
17 RELEASE 2
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18 TABULATE 5
*
* QUEUE 3--RECEIVER
*
19 QUEUE 3
20 ADVANCE 100

*
* RECEIVER PACKET PROCESSING TIME=100
*
21 SEIZE 3
22 DEPART 3
23 RELEASE 3
24 TABULATE 6
4 TABLE M1,100,10,40
5 TABLE M1,100,10,10
6 TABLE M1,200,50,40
25 TERMINATE 1

*
* GENERATE 10000 EVENTS
*

START 1000

Figure 3.14.GPSS Link Flow Control Simulation

the receiver. This occurs for a variety of reasons, for example, when there is a mismatch in the speed of
the two entities, or when the receiver must handle other work than just packet communication and is
effectively slowed, and so forth.

Ideally, controlling or pacing the rate at which the transmitter sends packets should have no impact on
performance. Our goal is to study not only mean throughput rate but also packet delay statistics, using
this simulation as a tool to understand design tradeoffs.

3.11.1 Nonnegligible Channel Propagation Delay First, the channel propagation delay is set to fifty
times that of the processing time required by the transmitter or receiver. This is representative of what
might be found in a ground to space satellite in synchronous orbit to ground data link. The first case
studied set the window size equal to fifty two packets, W =52. In this regime the transmitter and receiver
are the bottlenecks here, not the channel. It was suspected that the larger the window size, the better the
delay characteristics of packets. The two cases studied here were identical in their delay characteristics,
to within statistical fluctuations! It may well be that the details of the simulation used here versus an
actual field system may differ in critical ways that are not reflected here.

The simulation consisted of generating ten groups of packets, with each group comprising one thousand
packets. The results were examined for homogeneity, to see if the system had reached statistical steady
state. Statistics were gathered for ten groups of one thousand packets each; the observed variability was
felt to be within statistical fluctuations, and the uniformity of the statistics across the samples suggested
that long term time averaged statistics were in fact meaningful. An initial warmup of one thousand
packets was used before gathering statistics. A statistical summary of results is tabulated below:
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Table 3.16.Simulation Statistics--Finite Channel Propagation Delay(W=52)_ ___________________________________________________________________ __________________________________________________________________
E (Ttrans )=E (Trec )=1--E (Ttrans −rec )=E (Trec −trans )=25_ ___________________________________________________________________ __________________________________________________________________

Mean Inter- Mean Ar- Mean Standard 90th Delay 95th Delay Max Packets

arrival Time rival Rate Delay Deviation Percentile Percentile in Transmitter_ ___________________________________________________________________ __________________________________________________________________
4.00 0.25 50.169 0.375 50.730 50.934 4.3

2.20 0.45 50.443 0.741 51.369 51.927 6.6

1.80 0.56 50.654 0.985 51.855 52.584 7.9

1.50 0.67 51.056 1.402 52.785 53.805 9.9

1.30 0.77 51.748 2.053 54.625 55.955 12.4

1.10 0.91 55.140 4.564 59.314 61.593 21.3

Effectively, the system performance is dominated by the transmitter which is holding more and more
packets as the load increases; this is also clear from the simulation source code. On the other hand, this
may be acceptable engineering practice.

3.11.2 Negligible Channel Propagation Delay Next, the time spent in propagation from the transmitter
to the receiver and back again is assumed to be negligible compared to the transmitter and receiver
packet processing times. For this case, since we only have two resources, a transmitter and a receiver,
we only investigate two cases: W =1 so that one packet at a time is handled, and W =2 so that two
packets at a time are handled, offering the hope for keeping both the transmitter and the receiver busy,
and ideally doubling the mean throughput rate for the same or better delay statistics.

Table 3.17.First Two Moments of Packet Delay Statistics_ ________________________________________________________ _______________________________________________________
Mean Mean W=1 W=2

Interarrival Arrival Mean Standard Mean Standard
Time Rate Delay Deviation Delay Deviation_ ________________________________________________________ _______________________________________________________
6.67 0.15 3.366 4.085 2.088 0.257
4.00 0.25 3.378 3.453 2.169 0.375
2.80 0.36 4.248 3.194 2.292 0.546
2.20 0.45 4.983 3.316 2.442 0.741
1.70 0.59 -- -- 2.745 1.080
1.30 0.77 -- -- 3.748 2.052
1.10 0.91 -- -- 7.141 4.562


























Table 3.18.Percentiles of Packet Delay Statistics_ ________________________________________________________________ _______________________________________________________________
Mean Mean W=1 W=2

Interarrival Arrival 90th 95th 90th 95th
Time Rate Percentile Percentile Percentile Percentile_ ________________________________________________________________ _______________________________________________________________
6.67 0.15 6.395 10.610 2.393 2.722
4.00 0.25 8.145 10.635 2.710 2.930
2.80 0.36 8.670 10.675 2.915 3.400
2.20 0.45 9.615 11.295 3.365 3.955
1.70 0.59 -- -- 4.025 4.820
1.30 0.77 -- -- 6.585 7.965
1.10 0.91 -- -- 11.300 13.557


























The above tables suggest that, to within statistical fluctuations, the delay characteristics for W =2 and
W =1 appear to differ greatly. Furthermore, the delay statistics for W =2 and W =7 (which are not
presented here) appear to be virtually identical, to within fluctuations. The main difference in the delay
characteristics for the double buffering W =2 and W =7 case was the duration of the flow control startup
transient in each: as congestion rises, both systems will always be started up, and the impact of this
transient is apparently negligible for the numbers investigated above.

3.11.3 Additional Reading
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[1] B.Efron, Biased Versus Unbiased Estimation, Advances in Mathematics, 16, 259-277 (1975).

[2] S.H.Fuller, Performance Evaluation, in Introduction to Computer Architecture, H.Stone
(editor), Science Research Associates, Chicago, 1975.

[3] L.Kleinrock, On Flow Control, Proc.Int.Conf.Communications, Toronto, Canada, 27.2-1--27.2-5,
June 1978.

[4] L.Kleinrock, W.E.Naylor, On Measured Behavior of the ARPA Network, Proceedings AFIPS
National Computer Conference, 43, 767-780(1974).

[5] D.E.Knuth, Verification of Link-Level Protocols, BIT, 21, 31-36 (1981).

[6] G.W.R.Luderer, H.Che, W.T.Marshall, A Virtual Circuit Switch as the Basis for Distributed
Systems, Journal of Telecommunication Networks, 1, 147-160 (1982).

[7] G.W.R.Luderer H.Che, J.P.Haggerty, P.A.Kirslis, W.T.Marshall, A Distributed UNIX System
Based on a Virtual Circuit Switch, ACM Operating Systems Review, 15 (5), 160-168 (8th
Symposium on Operating Systems Principles, Asilomar, 14-16 December 1981), ACM 534810.

[8] C.A.Sunshine, Factors in Interprocess Communication Protocol Efficiency for Computer
Networks, AFIP NCC, pp.571-576(1976).

[9] K.C.Traynham, R.F.Steen, SDLC and BSC on Satellite Links: A Performance Comparison,
Computer Communication Review, 1977
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Problems

1) The figure below is the cumulative empirical distribution function for the interarrival times of twenty
jobs submitted to an online computer system. The data was measured in time units of milliseconds, and
was sorted smallest to largest:

Table 3.19.Interarrival Time Sorted Data (x1000)_ ___________________________________________ __________________________________________
6 6 7 9 15
24 29 32 37 39
41 42 42 68 83
84 88 97 116 134

Figure 3.15.Interarrival Time Empirical Cumulative Distribution Function

A. What is the mean and median of this data?

B. What is the standard deviation and P 0.25 first quartile and P 0.75 third quartile? What is the ratio of
the variance to the square of the mean?

C. What is the fifth percentile P 0.05? What is the tenth percentile P 0.10? What is the ninetieth
percentile P 0.90? What is the ninety fifth percentile P 0.95?

D. What are the minimum and maximum data values?

E. BONUS: Construct a quantile quantile plot versus an exponential or Erlang-1 distribution. How
good is the fit?

2) An online transaction processing system has the following hardware configuration:

Table 3.20.Hardware Configuration_ ________________________________ _______________________________
Processor 1
Memory 4 Megabytes
Disks 2
Asynchronous Ports 32

Each disk has its own controller. The two disks are identical with one used for swapping, and the other
used for retrieving text and data. Specification sheets for the disk state:
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Table 3.21.Disk Specification_ ________________________________________ _______________________________________
Velocity 3600 revolutions/minute
Transfer Rate 4 Megabytes/second
Time to Move Head
One Adjacent Track 5 milliseconds
Time to Move Head
Full Sweep 100 milliseconds
Average Seek Time 30 milliseconds

The operating system maintains a cache of buffers of fixed size (1024 bytes): programs first check the
buffers to see if required data is there before making any physical disk accesses. All disk accesses
involve transferring 1024 bytes of data per access.

The following measurements are carried out on the system in field operation during a peak busy hour:

[1] Processor measurements

• Nineteen per cent of the time spent executing application programs

• Fifty five per cent of the time spent executing operating system code

• Seventeen per cent of the time idle waiting for input/output to complete

• Nine per cent of the time idle with no work whatsoever

[2] Memory measurements

• Static text plus data requires one quarter of a megabyte

• With a desired peak busy hour load on the system, the amount of memory occupied
dynamically is 1.86 megabytes

[3] File system measurements

• Two hundred twenty four logical reads per second, with a sixty nine per cent cache hit rate
(i.e., sixty nine per cent of the time the logical read did not generate a physical read to
secondary storage)

• Seventeen logical writes per second, with a sixty seven per cent cache hit rate (i.e., sixty
seven per cent of the time the logical write did not require the entity to be retrieved from
secondary storage first, because it already was resident in main memory in a buffer; this will
still generate one physical write to secondary storage after the system buffer contents are
modified)

• Ten directory blocks per second were accessed

• Eleven accesses to file system tables per second were made

• Three name queries to the file system per second were made

[4] Disk activity measurements

• The swap disk was busy either accessing data or transferring data to and from main memory
seventy three per cent of the time; the text and data disk was busy sixty two per cent of the
time

• The swap disk averaged forty accesses per second (reads and writes); the text and data disk
averaged thirty nine accesses per second (reads and writes).

[5] Asynchronous terminal measurements

• Twenty four characters per second were received by all the different ports

• Two characters per second were transmitted by all the different ports
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[6] Operating system measurements

• One hundred seventy four system calls per second were made

• Fifty one system read calls per second were made

• Four system write calls per second were made

• One process per second was created or killed

• Roughly one semaphore per second was set, unlocked, or tested

• The mean number of jobs in the run queue was three

• The fraction of time the run queue contained at least one job was seventy eight per cent

• The mean number of jobs in the swap queue was three

• The fraction of time the swap queue contained at least one job was forty six per cent

• The maximum size of the process table was eighty eight out of a maximum allowable number
of two hundred

• The maximum number of simultaneously open files was one hundred thirty five out of a
maximum of six hundred

[7] Swap statistics

• Roughly one and a half swaps into main memory occurred every second

• Roughly one and a half swaps out of main memory occurred every second

• One hundred and two process context switches occurred every second

Answer the following questions:

a. What are the system resources?

b. What is the state of the system at any given instant of time?

c. Which if any resource is near complete utilization?

d. What can be done to reduce congestion?

3) Additional measurements are carried out on the above system. The asynchronous ports are used to
poll other computer systems. The number of ports used to poll was varied, and the duration of the
polling process for a fixed number of computer systems was measured:

Table 3.22.Controlled Experiment Summary_ _______________________________________________________ ______________________________________________________
Ports Poll Duration Processor Swap Disk Data Disk
Polled (Hours) Utilization Utilization Utilization_ _______________________________________________________ ______________________________________________________

4 5.5 0.58 0.35 0.15
6 3.6 0.74 0.45 0.20
8 2.9 0.82 0.55 0.25
10 2.9+ 0.93 0.70 0.35
12 2.9+ 0.97 0.90 0.35
14 2.9+ 0.98 0.92 0.35
16 2.9+ 0.99 0.92 0.37
18 2.9+ 0.99 0.93 0.38
20 2.9+ 0.99 0.93 0.38

Utilization refers to the fraction of time the processor and disks are busy doing anything whatsoever.
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a. As the number of ports increases from four, the mean throughput rate goes up. Why?

b. What resource is reaching complete utilization?

c. What can be done to reduce congestion?

3) A batch processing system has the following hardware configuration:

Table 3.23.Hardware Configuration_ ________________________________ _______________________________
Processor 1
Memory 2 Megabytes
Disks 4
Asynchronous Ports 32

Memory is sufficent to hold all application programs and operating system code with no swapping. The
four disks are identical, with one storing system and application code, and the other three data.
Specification sheets for the disk and controller state that the disk spins at 3600 revolutions per minute,
can transfer data at a maximum rate of four million bytes per second, requires five milliseconds to move
the head from one track to an adjacent track, and requires an average of thirty milliseconds to move the
head from one point to any other point on the disk. The operating system maintains a cache of fixed
size 512 byte buffers: programs first check the buffers to see if required data is there before making any
physical disk accesses. All disk accesses involve transferring 512 bytes of data per access.

The following measurements are carried out on the system in field operation during a peak busy hour:

[1] Processor measurements

• Thirty seven per cent of the time spent executing application programs

• Fifty seven per cent of the time spent executing operating system code

• Six per cent of the time idle waiting for input/output to complete

• Zero per cent of the time idle with no work whatsoever

[2] File system measurements

• Thirty seven logical reads per second, with a seventy one per cent cache hit rate (i.e., seventy
one per cent of the time the logical read did not generate a physical read to secondary
storage)

• Six logical writes per second, with a sixty five per cent cache hit rate (i.e., sixty five per cent
of the time the logical write did not require the entity to be retrieved from secondary storage
first, because it already was resident in main memory in a buffer; this will still generate one
physical write to secondary storage after the system buffer contents are modified)

• Forty two directory blocks per second were accessed

• Seventeen accesses to file system tables per second were made

• Seven name queries to the file system per second were made

[3] Disk activity measurements

Table 3.24.Disk Statistics Summary_ ___________________________________________________ __________________________________________________
Spindle Utilization Accesses/Sec Mean Waiting Time_ ___________________________________________________ __________________________________________________
1 41% 56 26 msec
2 41% 30 27 msec
3 9% 6 27 msec
4 25% 11 28 msec



-- --

CHAPTER 3 DATA ANALYSIS AND SIMULATION 29

[4] Asynchronous terminal measurements

• Seven thousand, two hundred and forty nine characters per second were received by all the
different ports

• One thousand, eight hundred and thirteen characters per second were transmitted by all the
different ports

[5] Operating system measurements

• Seventy three system calls per second were made

• Forty one system read calls per second were made

• Five system write calls per second were made

• One process per second was created or killed

• Roughly one semaphore per second was set, unlocked, or tested

• The mean number of jobs in the run queue was twenty one

• The fraction of time the run queue contained at least one job was ninety nine per cent

• The maximum size of the process table was thirty two out of a maximum allowable number
of sixty nine

• The maximum number of simultaneously open files was two hundred eighty one out of a
maximum of four hundred and fourteen

Answer the following questions?

a. What are the system resources?

b. What is the state of the system at any given instant of time?

c. Which if any resource is near complete utilization?

d. What can be done to reduce congestion?

4) A full duplex link is to be simulated. This consists of two half duplex or one way noiseless links,
connected to a transmitter and receiver, with a dedicated microprocessor and a quarter of a megabyte of
memory for the transmitter and receiver at each end of the link. Each physical link can have a
maximum of five hundred and twelve virtual circuits active at any one time. The control data associated
with each virtual circuit requires thirty two bytes of storage. Each virtual circuit can have a maximum
number of one, two, or seven data packets unacknowledged at any one time. Control packets are used
to set up virtual circuits, to acknowledge successful reception of packets, and to take down virtual
circuits. Data packets are used to handle data only. The processing time and storage for each type of
packet is summarized below:

Table 3.25.Packet Resources_ __________________________________________________ _________________________________________________
Type of Packet Processing Storage_ __________________________________________________ _________________________________________________

Control Packet/VC Set Up 50 msec 32 bytes
Control Packet/ACK 5 msec 32 bytes
Control Packet/VC Take Down 25 msec 32 bytes
Data Packet 100 msec 4096 bytes

A. Draw a block diagram of the hardware of this system.

B. Draw a block diagram of the steps with no contention for resources required to set up a virtual
circuit, transmit a message over the link in packets, and take down the virtual circuit.
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C. Control packets must be processed within one control packet transmission time. Data packets
must be processed within ten data packet transmission times. Compare the performance of a static
priority preemptive resume schedule with a deadline schedule assuming that there is always a data
message consisting of five packets waiting to be transmitted.

6) The performance of a local area network is to be simulated. The hardware consists of S stations
connected to a common coaxial cable or bus. Each station can send and receive packets. The stations
are polled in turn to see if a packet is ready for transmission: if it is, it is transmitted, and all stations
receive it. The total length of the network is such that it takes twenty microseconds for a signal to
propagate from one end to the other of the cable. The stations are physically equidistant from one
another on the cable. The electronics at each station require five microseconds to process signals,
irrespective of whether a packet is ready for transmission or not. Each packet requires one hundred
microseconds to be transmitted.

A. Draw a hardware block diagram of the system

B. Draw a flowchart showing the operation of each station

C. Code a simulation that accurately models the physical propagation characteristics of the problem,
and test it for two cases

• One station only always has a packet to transmit

• Every station always has a packet to transmit

D. Suppose the packet transmission time is reduced to ten microseconds: what changes?

7) You telephone a colleague, the colleague is not at the telephone, and a secretary takes your message
asking your colleague to return your call. Later, your colleague gets your message and telephones, but
now you are not in, and a secretary takes the message that your call has been returned. You call back,
and the process repeats itself, until eventually you both talk to one another via telephone. This is called
telephone tag because you and your colleague are tagging one another with telephone messages.

A. Draw a figure summarizing the flow of messages.

B. What are the resources held at each step?

C. Write a simulation for this problem. Test it using the following numbers: each secretary can take
one message every two minutes; thirty minutes elapse from when you are called and you pick up
your message; each telephone call is one quarter minute to leave a message with the secretary and
ten minutes when you finally talk plus each telephone call generates two tags or messages.

D. What if a voice message service is installed, so there is no need for telephone tag. This means
that your message is stored for retrieval at the convenience of the callee. How does the above
simulation have to be changed?

7) A paging memory management subsystem of an operating system is to be simulated. Hardware
memory addressing allows the physical location of each piece of a given program to be scattered
throughout main memory in units called pages. Logically the program appears to be resident in one
contiguous area of memory. A typical program first will initialize some data and then execute data
processing activities in tightly coded chunks of code that can be contained in one page before generating
output that is properly formatted. A typical program will stay within a page for one hundred machine
instructions on the average before switching to another page. The process repeats itself until the
program finishes execution. The degree of multiprogramming refers to the number of simultaneous
active programs contending for main memory.
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A. Construct a flowchart showing the memory reference patterns of a typical program

B. Suppose that all programs are identical and consist of P pages each. Code a simulation that will
estimate the length of time it takes to completely execute one thousand programs, assuming there
is sufficient memory to hold S programs, using the following numbers:

Table 3.26.Numerical Parameters_ ______________________________ _____________________________
Case I P=10,S=10
Case II P=100,S=1
Case III P=10,S=100

C. What is gained by using paging versus simply loading programs into a contiguous area of memory
from the point of view of performance?

9) A single processor must execute a given workload of jobs. Each job has three steps: interrupt
handling, job execution, and cleanup. Interrupt handling and cleanup make use of serially reusable
operating system tables, and cannot be preempted. Job execution can be preempted by more urgent
work. Two types of jobs are executed by this system, one urgent type that has an allowable execution
time window of ten milliseconds, and one less urgent type that has an allowable execution time window
of fifty milliseconds. The interrupt handling is identical for each job and is one millisecond. The
cleanup is identical for each job and is one half millisecond. The urgent job has an execution time of
two milliseconds, the less urgent has an execution time of twenty milliseconds. The less urgent job can
be preempted by the more urgent job and by interrupts and cleanup.

A. Draw a flowchart showing the steps required by each type of job

B. Code a simulation for this problem with the following two scheduling policies

• A deadline scheduler

• A static priority preemptive resume scheduler

Compare the simulation results. Which scheduler appears to be superior? Why?

10) One approach to speeding up performance of a computer is to attach a small scratchpad or cache of
memory that is much higher speed (typically a factor of four) than main memory. The processor will
load text and data into the cache, and if the cache is well designed, most of the time the next instruction
to be executed will be in the cache, effectively speeding up the processor.

A. Draw a flowchart showing the flow of control and data in a program.

B. What data must be gathered as input to the simulation?

C. What types of policies can be implemented for the cache operations?

11) The performance of a telephone switching system is to be simulated. The following information is
available about telephone call processing: the hardware configuration consists of one hundred
telephones connected fifty each to one of two local telephone switching systems with two trunks
between the local telephone switching systems. Each telephone makes one call every ten minutes on the
average, and the call offhook interarrival times are independent identically distributed exponential
random variables. Each telephone caller is equally likely to call any other telephone user. The talking
duration of each telephone call is a sequence of independent identically distributed exponential random
variables with a mean of five minutes.

The steps involved in telephone call processing are shown in the figure below:
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Figure 3.16.Offhook and Dial Tone Generation Steps

Assume that there is one terminal handler at each local switching system that requires ten milliseconds
to detect offhook. Furthermore, assume that each local switching system has four processors for call
processing, and one dial tone generator.

The steps involved in telephone call digit dialing are shown in Figure 3.17.

Figure 3.17.Digit Dialing and Billing

Assume that digit dialing requires one second for each of seven digits. The time to connect the loop to
a trunk is one hundred milliseconds, the time for recording accounting data is one hundred milliseconds,
and the time to generate an offhook signal on a trunk is ten milliseconds, with the dial tone generator
used at the start of call processing generating the offhook signal.

The steps involved in sending digits over a trunk to the other local switching system are shown in the
figure below:

Assume that the trunk handler detects an offhook in ten milliseconds, the time to connect an idle
processor to the trunk is fifty milliseconds, the time to generate an offhook signal on the trunk is ten
milliseconds, and the time to receive all digits is twenty milliseconds
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Figure 3.18.Local Office to Local Office Digit Transmission

The figure below shows the steps involved in setting up a path from the receiving local switching
system back to the originating local switching system:

Figure 3.19.Completion of Call Path from Receiver to Transmitter

Assume that all the steps take the same amount of time as cited above. The step of generating ringing
takes two hundred milliseconds.

The final steps involved in call processing are to generate an audible ringing (taking fifty milliseconds),
to stop all ringing (taking twenty milliseconds), and these are summarized in the figure below:

Answer all the questions:

A. Make a table showing each step of telephone call processing, the resources held at each step, and
the time required with no contention for each step
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Figure 3.20.Final Steps in Call Set Up Processing

B. Make a flowchart showing how control and voice information flows through this system from the
time a call is originated by going offhook, to the end of a voice telephone conversation

C. What is the state of each trunk at each step of call set up processing?

D. Code a simulation program of this system. Adopt the following priority arbitration policy for
contention for shared resources: step J has higher priority than step I if J >I . If two or more calls
are contending for a shared resource at the same step of call processing, break the tie by flipping a
fair coin. What is the fraction of time that dial tone delay exceeds one second for this load?
What is the fraction of time that dial tone delay exceeds three seconds? What happens if time
between call attempts is reduced to five minutes, and each call lasts for two minutes?



-- --

- 1 -

CHAPTER 4: MEAN VALUE ANALYSIS

Up to this point we have examined detailed operational descriptions of models of computer
communication systems. Much of the complexity in analysis seemingly disappears when the long term
time averaged behavior of these types of computer system models is analyzed. We now focus on mean
value analysis, long term time averaged behavior of mean throughput rate and mean delay. In our
experience with operational systems and field experience, this is possibly the single most important
fundamental result in analyzing computer communication system performance.

Our program here is to first analyze systems where there is only one type of job that takes only one step
and one resource. Once we understand that case, we will generalize to systems where multiple types of
jobs take multiple steps and demand multiple resources at each step.

4.1 Little’s Law

In the technical literature, a key result is attributed to Little. In order to motivate the result, we return to
a static model of a computer system. A system must process N jobs. All jobs are ready for processing
at time t =0. The figure below plots the number in system process J(t) versus time t for one possible
scenario.

Figure 4.1.Number in of Jobs in the System vs Time
Initial Work Present at T=0/No Arrivals for T>0

We wish to determine the mean number of jobs in the system over the time interval starting at zero until
the system becomes empty. CK denotes the time at which the Kth job completes execution and leaves
the system. Since there are a total of N jobs, the last job will leave at CN . The area under the function
J (t ) over the time interval (0,CN ) must by definition equal the mean number of jobs in the system,
denoted by E (J ), multiplied by the observation interval duration, CN :

E (J ) =
CN

1_ ___
0
∫

C
N

J (t )dt

Since CK is the completion time of the Kth transaction, K =1,...,N we see
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E (J ) =
CN

1_ ___ [NC 1 + (N −1)(C 2−C 1) + . . . + (CN −CN −1)]

E (J ) =
CN

1_ ___
K =1
Σ
N

CK

FK denotes the total time spent in the system by job K. Since job one spends C 1 amount of time in the
system, while job two spends C 1 + C 2 amount of time in the system, and so forth, we see that

E (J ) =
CN

1_ ___
K =1
Σ
N

FK

We now rearrange this expression, by multiplying and dividing by N, the total number of jobs:

E (J ) =
CN

N_ ___
N
1_ _

K =1
Σ
N

FK

We recognize the first term as the mean throughput rate, by definition the total number of jobs divided
by the observation interval:

mean throughput rate =
CN

N_ ___ ≡ λ

The second term is the mean time for a job to flow through the system, denoted by E (F ):

E (F ) =
N
1_ _

K =1
Σ
N

FK

Combining all this, we obtain the desired result:

_ _______________
E (J ) = λ×E (F )_ _______________  

The above result, that the mean number in system equals the mean throughput rate multiplied by the
mean time in system, is called Little’s Law.

We have obtained one equation in three unknowns, the mean number of jobs in system, the mean arrival
rate, and the mean time in system. Our program is to bound each of these quantities, using the best
available information. The more restrictive the information, the better the bounds; conversely, if little
information is available, the bounds are still valid, but may not be as tight as desired.

4.1.1 Dynamic Arrivals Our intent is to relax the assumptions to obtain as general a result as possible.
We first allow arrivals to occur at arbitrary points in time, rather than having all jobs present at time
zero: AK denotes the arrival time or ready time of the Kth job. FK ≡ CK − AK denotes the flow time of
the Kth job, the time that elapses while job K flows through the system, from arrival (AK ) to departure
(CK ). The figure below is an illustrative plot of the number of jobs in the system. Since each job
contributes one unit of height for the duration of time it is in the system, since the area due to each job
is its height (one) multiplied by its flow time, and since the total area is the sum of the areas contributed
by each job, we see:

E (J ) =
CN

N_ ___
N
1_ _

K =1
Σ
N

(FK = CK −AK )

If we identify λ ≡ N ⁄CN and E (F ) as before, then

E (J ) = λ × E (F )

What have we accomplished? We have one equation or relationship, and three parameters. In order to
use this, we need to quantify two of the three parameters. An example is in order.

4.1.2 A Computer Time Sharing System One of the first applications of this type of analysis to
computer systems was for time sharing program development, for MULTICS. In such a system,
program developers spend some time reading and thinking and typing, with mean Tthink , and then submit
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Figure 4.2.Number in System vs Time
Initial Work Present at T=0/Arrivals for T>0

a job (an editor command, a compilation request, and so forth) that requires a mean amount of time
Tsystem to be executed with no other load on the system.

With more than one request being executed, there will be contention, and hence some delay to execute
each job. The mean response time for each job is measured from the time a job is submitted until the
system finishes its response, denoted by R . The mean throughput rate, measured in jobs per unit time,
is denoted by λ. There are a total of N program developers using the system actively at any one time.
How can we use Little’s Law to analyze performance?

The figure below is a hardware block diagram of this system:

Figure 4.3.Hardware Block Diagram of Time Sharing System

The key first step in using Little’s Law is to determine what the system is: is it the terminals, is it the
computer, or does it include both? If we define the total system as including both terminals and the
system, then the total number of jobs is fixed at N , the number of active users, with each job either
being in the think state or the processing state. If we define the system as including only terminals or
only the system, we do not know how many jobs are in either.

For N =1 user, Little’s Law says the mean number of jobs equals the mean throughput rate multiplied by
the mean time in the system. The mean time in the system is the sum of the thinking time plus the
response time with no load:
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N =1 = λ(N =1)[Tthink + R (N =1)]

We have written this to stress the fact that the mean throughput rate and the mean response time depend
upon the number of active terminals. We could simply rewrite this by solving for the mean throughput
rate:

λ(N =1) =
Tthink + R (N =1)

N =1_ _____________

Next, as N →∞, the mean throughput rate will grow no faster than linearly with N , i.e., if we put on two
terminals, the mean throughput rate is at best double that of one terminal:

λ(N ) ≤
Tthink + R (N =1)

N_ _____________ N >1

The mean response will be no better than that for one terminal:

R (N ) ≥ R (N =1) N >1

At some point, the mean throughput rate does not increase any further, but rather saturates at a limiting
value characteristic of the system, denoted by λmax:

λ(N ) ≤ λmax

Combining both these upper bounds on mean throughput rate, we see

λ(N ) ≤ min



λmax ,

Tthink + R (N =1)
N_ _____________





>From Little’s Law, the mean response time is given by

R (N ) =
λ(N )

N_ ____ − Tthink

Since the mean throughput rate eventually saturates at λmax, the mean response time eventually grows
linearly with N :

R (N ) =
λmax

N_ ____ − Tthink N →∞

We can combine all this in the following expression:

R ≥ max



R (N =1),

λmax

N_ ____ − Tthink





There is a clear breakpoint here as N increases:

Nbreakpoint = λmax[Tthink + R (N =1)]

For N <Nbreakpoint the terminals are unable to keep the system busy, and are a bottleneck. For
N >Nbreakpoint the system is completely busy and is a bottleneck.

The worst that the mean response time could be would be to always wait for every other job to be
processed immediately ahead of your execution:

R (N ) ≤ N R (N =1)

This in turn gives a lower bound on mean throughput rate:

λ(N ) ≥
Tthink + NR (N =1)

N_ _______________

Note that as N →∞, the lower bound on mean throughput rate approaches the rate of executing one job
at a time:
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λ(N ) ≥
R (N =1)

1_ _______ N →∞

This suggests defining speedup as the ratio of the mean throughput rate for executing one job at a time
over the actual mean throughput rate:

speedup =
R (N =1)λ(N )

1_ ___________ →
λmaxR (N =1)

1_ __________ N →∞

Figure 4.4 plots the upper and lower bounds on mean throughput rate versus number of active terminals.

Figure 4.4.Mean Throughput Rate Bounds versus Number of Active Users

Figure 4.5 plots the upper and lower bounds on mean response time versus number of active terminals.

Figure 4.5.Mean Response Time Bounds versus Number of Active Users

4.1.3 Additional Reading

[1] R.W.Conway, W.L.Maxwell, L.W.Miller, Theory of Scheduling, Addison-Wesley, Reading,
Massachusetts, 1967; Little’s formula, pp.18-19.
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[2] J.D.C.Little, A Proof of the Queueing Formula L = λ W , Operations Research, 9, 383-387
(1961).

[3] A.L.Scherr, An Analysis of Time-Shared Computer Systems, MIT Press, Cambridge, Mass,
1967.

4.1.4 Little’s Inequality The only valid justification for Little’s Law follows from controlled
experimentation: testing the operation of a system to see how well it fits the hypothesis. Little’s Law
holds exactly when the system initially is empty or idle with no work, and after a period of observing its
operation we stop gathering data when the system is once more entirely idle or empty. In practice, this
may not be true: observations may be gathered over a finite time interval, and the state at the start of
observation and the state at the end of observation may be different from the all empty or all idle state.
Under a variety of technical conditions, which must be checked in practice, Little’s Law holds in some
sense. However, there is a weaker statement that we call Little’s Inequality that holds :

mean number in system ≥ mean arrival rate × mean time in system

To make this precise, consider a system observed in operation from some time T to some later time
T + CN . We choose the interval of observation so that N jobs are observed to both start and finish; CN

is the completion instant of the Nth job. The jobs are denoted by JK ,K =1,...,N with J (.) denoting the
total number of jobs in the system at any point in time, and FK ,K =1,...,N denoting the time in system or
flow time for job K. >From these definitions, and following the earlier development, we see

mean number o f jobs = E (J ) =
CN

1_ ___
T
∫

T + C
N

J (τ)d τ

Note that a job may have entered the system prior to T but not yet left, entered prior to T and left, or
entered during the measurement time but not yet left. This implies that

E (J ) = mean number in system ≥
CN

N_ ___
N
1_ _

K =1
Σ
N

FK

We identify the mean throughput rate with λ

λ ≡
CN

N_ ___

while we identify the mean time in system as

mean time in system =
N
1_ _

K =1
Σ
N

FK

If you don’t believe all this, draw a picture! On the other hand, if these end effects are negligible
(which can only be checked with controlled experimentation), then

_ ________________
E (J ) ∼∼ λ × E (F )_ ________________  

>From this point on, we assume this holds with equality. This has been proven to be prudent and
reasonable on numerous occasions, but must always be tested for your particular problem!

4.1.5 Jobs With Multiple Steps What if a job has more than one step? Consider the following analysis:
Each job has S types of steps, and requires one or more resources at each step for a mean time
TK ,K =1,...,S . The system is observed over an interval with N job completions occurring at time instants
CK ,K =1,...,N . We denote with an S tuple J_ = (J 1,...,JS ) the number of jobs in execution in each step,
i.e., JK ,K =1,...,S denotes the number of jobs in execution in step K. The state space is denoted by Ω
and is the set of feasible S tuples J_. The fraction of time the system is in each state J_ over the
observation interval is denoted by π(J_). From Little’s Law, we can write

E (JK ) =
J_ ∈Ω
Σ JK π(J_) ≥ λT̃K K =1,...,S

where the mean throughput rate is simply the total number of jobs divided by the observation time
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interval,

λ ≡
CN

N_ ___

and T̃K is given by averaging TK over the fraction of time the system is in each state:

T̃K ≡
N
1_ _

K =1
Σ
N

TK π(JK )

EXERCISE: Derive this for N jobs present at time zero and no further arrivals.

EXERCISE: Derive this with the system idle at some initial time, and with N arrivals and departures
occurring at random points in time, so that the system is once again idle.

4.2 Scheduling a Single Processor to Minimize the Mean Flow Time

Suppose that N jobs are present at an initial time, say zero, and a single processor executes these jobs
until no jobs are left. Let CK denote the completion time of the Kth job. Let J (t ) denote the number
of jobs still not completely executed at time t. The area under J (t ) is given by its integral:

0
∫

C
N

J (t )dt =
K =1
Σ
N

CK

The mean time a job spends in the system is given by

E (F ) =
N
1_ _

K =1
Σ
N

CK

Our problem is to find a schedule for a single processor that minimizes the average or mean flow time
of a job. Note that the schedule cannot change CN , the completion time of the last job, because the
processor will always be busy doing some job until it finishes them all, but we can control the
completion times of the jobs. Once we realize this, we see that

E (F ) =
N
1_ _

0
∫

C
N

J (t )dt

Hence we wish to minimize the area under J (t ). Intuitively, we wish to drive J (t ) as close to zero as
quickly as possible, i.e., we want to schedule jobs with the shortest processing time first.

To make this concrete, suppose there are two jobs, one with processing time equal to 10, and one with
processing time equal to 1. One schedule is to run the short job first and then the long job, with mean
time in system given by

E (F ) = 1⁄2(1+11) = 6

while a second schedule is to run the long job first and then the short job, with mean time in system
given by

E (F )average = 1⁄2(10+11) = 10.5

What we are trying to accomplish is to make sure that short jobs are not delayed by long jobs.

4.3 Telephone Traffic Engineering

Voice telephone calls are made between two locations. The only data available is that during a peak
busy hour of the day, on the average λtelephone is the mean rate of calls arriving per minute that are
successfully completed, with a mean holding time per successful call of Ttelephone . A total of C circuits
are installed. How many links L are actually needed, where one link can handle one voice telephone
call?

The mean number of calls in progress during this busy hour is given by Little’s Law:
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Figure 4.6.Telephone System Block Diagram

mean number o f calls in progress = λtelephone Ttelephone

More formally, the number of calls in progress at any instant of time say t is denoted by J (t ). The
state space is the set of admissible nonnegative integer values for J (t ) denoted by Ω. The system is
observed over a time interval of duration T and the fraction of time the system is in a given state is
assumed to have stabilized at π(J ). The maximum available number of circuits is C , and hence

E [min (J ,C )] =
J ∈Ω
Σ π(J )min (J ,C ) = λtelephone Ttelephone

Since each link can handle one call, we see that we need (roughly)

L ∼∼ λtelephone Ttelephone

The units associated with the mean number of calls in progress are called Erlangs in honor of the
Danish teletraffic engineer A.Erlang who pioneered much of the early work to quantify and answer
questions such as these. In practice, we would put in more than L links as given by Little’s Law
because we will have fluctuations about the mean value and some call attempts will be blocked or
rejected because all links are busy. We will return to this topic later.

4.4 Serially Reusable versus Concurrently Shared Resources

In many applications, some resources must be used serially, one task at a time, and others can be shared
simultaneously or in parallel with many tasks. In the illustrative figure below, a job consists of two
steps: the first step requires a shared resource such as reentrant application code, while the second step
requires a serially reusable resource such as operating system code. Multiple simultaneous uses can be
made of the shared resource, but only one job at a time may use the serially reusable resource.

For application programs executing on IBM OS/360, typically 40% of the processor time was found to
be devoted to serially reusable resources, and with a great deal of effort this might be reduced to 20% of
the processor time (Amdahl, 1967). This suggests that identical multiple processor configurations with
one processor devoted to serial tasks and P devoted to the parallel tasks might find little benefit in going
to more than two processors (60%/40% < 2) for a 1967 implementation of OS/360, while going to more
than four processors (80%/20% =4) for an optimistic scenario. Furthermore, since the serial tasks are a
fundamental bottleneck, every effort should be made to make these execute as quickly as possible.
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Figure 4.7.Hardware Block Diagram of Serial and Concurrent Processors

Here is a somewhat more quantitative approach to these intuitive notions. A job consists of two steps.
The first step must be done using a serially reusable resource (e.g., a critical region of the system), and
will execute in time Tserial . The second step can be done concurrently, and requires Tconcurrent units of
time to be executed. We might think of the serial portion being the work associated with classifying a
step, readying it for subsequent execution, while the second portion might involve execution using a
read only storage for example.

The system state is a pair, denoted (Jserial ,Jconcurrent ), describing the number of jobs in execution on the
serially reusable resource Jserial and on the concurrently shared resource Jconcurrent .

The mean number of tasks in execution and requiring the serially reusable resource is given by

λTserial = E (Jserial ) ≤ 1

while the mean number of tasks in execution and requiring the shared resource is given by

λTconcurrent = E (Jconcurrent ) ≤ P

These relations give us the following upper bound on the mean throughput rate:

λ = min


 Tserial

1_ _____,
Tconcurrent

P_ ________




A second type of upper bound arises from a limitation on the total number of jobs, denoted M , in the
system. With one job, M =1, in the system, the mean throughput rate is given by

λ ≤
Tserial + Tconcurrent

1_ _______________ J =1

and hence as more jobs are allowed in the system, M >1, the best that could be done is

λ ≤
Tserial + Tconcurrent

M_ _______________

Combining this with the other upper bound, we see

λ ≤ min


 Tserial + Tconcurrent

M_ _______________,
Tserial

1_ _____,
Tconcurrent

P_ ________




There are three types of bottleneck possible:
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• The number of jobs is a bottleneck

λmax =
Tserial + Tconcurrent

M_ _______________

• The serially reusable resource is a bottleneck

λmax =
Tserial

1_ _____

• The concurrently shared resource is a bottleneck

λmax =
Tconcurrent

P_ ________

Here is a different example to illustrate the importance of this phenomenon in doing tradeoffs. A
processor spends 25% of its time on a representative job doing input/output over various communication
links, and 75% of its time actually executing work. A front end processor is procured to offload the
input/output work, and the front end processor is twice as fast as the original processor. What is the
potential gain in maximum mean throughput rate? If the original system required Ti ⁄o seconds for each
job and Tprocess to execute each job, while the new front end processor requires Tf e seconds for each
job, then the mean throughput rate is upper bounded for the old system by

mean throughput rate ≤
Ti ⁄o + Tprocess

1_ ___________ old system

while the mean throughput rate for the new system is governed by the slower of the two subsystems

mean throughput rate ≤
max [Tf e ,Tprocess ]

1_ ______________ new system

Suppose the front end processor is twice as fast as the original processor, so

Tf e = 1⁄2 Ti ⁄o

Finally, suppose that 25% of the time the original processor is doing input/output, and 75% of the time
it is doing work, so

Tprocess = 3 Ti ⁄o

Combining all this, the mean throughput rate for the old system is upper bounded by

mean throughput rate =
4Ti ⁄o

1_ ____ old system

while the mean throughput rate for the new system is upper bounded by

mean throughput rate =
max [3Ti ⁄o ,1⁄2Ti ⁄o ]

1_ ______________ new system

and hence the maximum gain is (4/3) or thirty three per cent. In fact, as long as the front end processor
is as fast or faster than the original processor, the maximum gain will be thirty three per cent. However,
the delay in getting through from start to finish ignoring delays due to congestion is

Texecution = Ti ⁄o + Tprocess = 4Ti ⁄o old system

Texecution = Ti ⁄o + Tprocess = 31⁄2Ti ⁄o new system

and this time depends directly on the speed of the original processor and the front end processor.

What if a different front end processor can be procured that is one half the speed of the original
processor, but costs one third what the other front end processor cost? Now the time per job for a front
end processor equals

Tf e = 2Ti ⁄o new f ront processor

and hence if only one front end processor is added to the system, the mean throughput rate is upper
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bounded by

mean throughput rate ≤
max [Tf e = 2Ti ⁄o ,Tprocess = 3Ti ⁄o ]

1_ ___________________________

which is just as good as the more expensive front end processor, but the execution time is greater for
one inexpensive but slower front end processor:

Texecute = Tf e + Tprocess = 5Ti ⁄o

This is a typical finding: the mean throughput rate can be increased, at the expense of delay.

4.4.1 Additional Reading

[1] G.M.Amdahl, Validity of the Single Processor Approach to Achieving Large Scale Computing
Capabilities, AFIPS Conference Proceedings, 30, 483-485, AFIPS Press, Montvale, NJ, 1967.

4.5 Packet Computer Communications Network

The block diagram below shows nodes in a packet computer communications network:

Figure 4.8.Packet Network Node Block Diagram

Messages enter or leave the network via one of N ports. There are S nodes or packet switches within
the network. At node K we measure RK packets per second for a mean throughput rate. The mean flow
time of a packet, waiting plus switching time, at node K is given by E (FK ). The mean flow time of a
packet through the network is denoted by E (F ), while the total mean external arrival rate at port J is
denoted by λJ , and we denote by λ the aggregate total network throughput rate:

λ =
J =1
Σ
N

λJ

>From Little’s Law we see
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λE (F ) =
K =1
Σ
S

RK E (FK )

Since packets can be switched through more than one internal node, the packet throughput rate within
the network can exceed the external packet arrival and departure rate:

R ≡
K =1
Σ
S

RK ≥ λ =
J =1
Σ
N

λJ

The mean flow time can be written as

E (F ) =
K =1
Σ
S

λ
RK_ ___E (FK )

If we rewrite this as

E (F ) =
λ
R_ _

K =1
Σ
S

R

RK_ ___E (FK )

then we can identify the mean number of nodes visited per packet V with

V =
λ
R_ _

while we recognize the mean flow time per node is

mean f low time per node =
K =1
Σ
S

R

RK_ ___E (FK )

What have we learned? The mean time a packet spends in the network equals the mean number of nodes
visited per packet multiplied by the mean time per node.

4.6 A Model of a Processor and Disk System

Jobs that require more than one step are quite common. This section analyzes a model of a computer
system consisting of processors and disks, with the first step of any job requiring a processor, the second
a disk, the third a processor again, and so forth, until the job is completely executed.

4.6.1 Model The figure below shows a hardware block diagram of the system, while the next figure
shows a queueing network block diagram.

Figure 4.9.Processor and Disk Hardware Block Diagram

The system consists of P processors and D disks connected by a common switch. The switch is
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Figure 4.10.Queueing Network Block Diagram

assumed to be much faster than any step of job execution involving either a processor or a disk, and is
ignored from this point on. The jobs or transactions are generated from people or operators at terminals.
Each operator spends a mean amount of time reading, thinking, and typing, denoted by Tthink and then
submits a job to the system and waits for a response before repeating this process. The mean response
time is denoted by R and is the sum of four time intervals, due to waiting or being executed on a
processor or disk.

Each job involves execution on a processor, data retrieval from disk, and so on, until the job is
completely executed. Each job requires a total mean amount of time denoted by Tprocessor and Tdisk on a
processor and disk respectively. No job is assumed to be capable of executing in parallel with itself.
The operating system multiplexes available jobs among available processors and disks to achieve some
degree of concurrent use of resources.

4.6.2 Analysis The system state is given by a triple, where (Joperator ,Jprocessor ,Jdisk ) where Joperator

denotes the number of operators reading, thinking and typing, Jprocessor denotes the number of jobs
waiting or executing on a processor, and Jdisk denotes the number of jobs waiting to use a disk or
retrieving data from a disk.

>From Little’s Law, we see that the mean number of tasks executing on processors is equal to the mean
arrival time multiplied by the mean time spent using a processor:

E (Jprocessor ) = λTprocessor ≤ P

Similarly, the mean number of tasks using disks is equal to the mean arrival rate multiplied by the mean
time spent using a disk:

E (Jdisk ) = λTdisk ≤ D

>From the above relations, we see that the mean throughput rate of jobs is upper bounded by

λ ≤ min


 Tprocessor

P_ _______,
Tdisk

D_ ____




A second type of upper bound arises from considering how work flows through the system: if there is
only one job in the system at any time, then the mean throughput rate is simply given by
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λ ≤
Tprocessor + Tdisk

1_ _____________ one job in system

and hence with J jobs in the system the mean throughput rate is upper bounded by J times that for one
job:

λ ≤
Tprocessor + Tdisk

J_ _____________ J jobs in system

Combining this upper bound with the previous upper bound we see

λ ≤ min


 Tprocessor

P_ _______,
Tdisk

D_ ____,
Tprocessor + Tdisk

J_ _____________




Since from Little’s Law or the definition of mean throughput rate the mean response time and mean
throughput rate are related by

λ =
Tthink + R

J_ ________

we obtain the following lower bound on mean response time:

R ≥ max



Tprocessor + Tdisk ,

max [Tprocessor ⁄P ,Tdisk ⁄D ]
J_ ____________________−Tthink





To lower bound the mean throughput rate, we realize that the J jobs could all be waiting to run or be
running on a processor, or waiting to run to be retrieving data from a disk, and hence

Tthink +
P

JTprocessor_ ________ +
D

JTdisk_ _____

J_ ________________________ ≤ λ

This allows us to upper bound the mean response time:

R ≤
P

JTprocessor_ ________ +
D

JTdisk_ _____

These bounds define an admissible or feasible region of operation and are plotted in the figures below
for the case of one processor and one disk.

Figure 4.11.One Processor/One Disk Mean Throughput Bounds
vs Number of Terminals.
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Figure 4.12.One Processor/One Disk Mean Response Time Bounds
vs Number of Terminals.

4.6.3 Speedup Here are two possible scheduling policies:

• single thread scheduling, where one job at a time is allowed in the system and executed until
completion before allowing the next job in

• multiple thread scheduling, where more than one job at a time is allowed in the system and executed
until completion

For the first policy, we see

λsingle thread =
Tprocessor + Tdisk

1_ _____________ J =1

The ratio of the two different upper bounds is an indication of the gain due to scheduling:

λsingle thread

λmultiple thread___________ =

max


 P

Tprocessor_ _______,
D

Tdisk_ ____,
J

Tprocessor + Tdisk_ _____________




Tprocessor + Tdisk_ __________________________________

For one processor and one disk, this gain due to scheduling can be at most two, no matter what Tprocessor

or Tdisk are! Moreover, this will only be achieved when Tprocessor equals Tdisk , but in general these two
mean times will not be equal and hence the gain will not be as great as a factor of two; for example, if
Tdisk were ten times as great as Tprocessor , then the gain would be at most ten per cent, and other factors
may swamp this upper bound. J is called the degree of multiprogramming and the two cases we have
examined are degree of multiprogramming one and two, for single and multiple thread operation,
respectively. If we allow multiplexing of the processor and disk amongst transactions, then J >1 is
allowed, but now one or the other of the two serially reusable resources will become completely utilized
for J sufficiently large.

4.6.4 Bottlenecks Bottlenecks can arise from several sources:

• If the number of jobs or degree of multiprogramming is a bottleneck, then

λmax =
Tprocessor + Tdisk

J_ _____________

• If the number of processors is a bottleneck, then
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λmax =
Tprocessor

P_ _______

• If the number of disks is a bottleneck, then

λmax =
Tdisk

D_ ____

The design problem is to choose where the bottleneck should be; remember, there will always be some
bottleneck!

4.6.5 Asymptotics One type of asymptotic analysis is to let all parameters be fixed except one, and the
final one becomes progressively larger and larger. Here a natural candidate for such a parameter is the
number of operators or jobs circulating in the system J , and we see

P

Tprocessor_ _______ +
D

Tdisk_ ____

1_ _______________ ≤ λ ≤

max


 P

Tprocessor_ _______,
D

Tdisk_ ____




1_ ___________________ J →∞

This yields the following asymptotic behavior for the mean response time:

Tprocessor + Tdisk ≤ R ≤ ∞ J →∞

This is quite instructive by itself: the mean response time can lie between a finite and infinite limit,
showing how great the variation can be, given only mean value information.

A second type of asymptotic analysis is to fix the ratio of two parameters, and allow them both to
become progressively larger, fixing all other parameters. Here, a natural candidate is the ratio of the
number of jobs divided by the mean think time per operator, which we fix at α

α ≡
Tthink

J_ ____ J →∞ Tthink →∞

which is a measure of the total offered rate of submitting jobs, and we allow the number of jobs or
terminals to become large as well as the mean intersubmission time of jobs from each terminal, thus
weakening the contribution to the total offered rate of each terminal. If we do so, we see

1 + α


 P

Tprocessor_ _______ +
D

Tdisk_ ____




α_ ______________________ ≤ λ ≤

max


 P

Tprocessor_ _______,
D

Tdisk_ ____




1_ ___________________

R ≥











Tprocessor + Tdisk α<

max


 P

Tprocessor_ _______,
D

Tdisk_ ____




1_ ___________________

∞ α>

max


 P

Tprocessor_ _______,
D

Tdisk_ ____




1_ ___________________

where in the above summary, we have fixed α, but allowed both J →∞ and Tthink →∞.

Additional (distributional) information must be available to allow us to handle the case where

α =

max


 P

Tprocessor_ _______,
D

Tdisk_ ____




1_ ___________________

Intuitively we see that the if the total mean arrival rate is less than the upper bound on the mean
throughput rate, then the system is capable of having a finite lower bound on mean response time; when
the total mean arrival rate is greater than the upper bound on the mean throughput rate, then the mean
response time lower bound is infinite. The remaining case, an upper bound on the mean response time,
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is trivial

R ≤ ∞ α f ixed ,J →∞ Tthink →∞

As in the first case, the mean response time can lie between a finite and infinite value, given only mean
value information, i.e., the mean response time is not well bounded given only means but no information
about fluctuations. Mean delay depends not only on the mean processing times but also second
moments of the processing time distribution: mean value information does not specify the mean delay
in such systems by itself.

4.7 Mean Throughput and Mean Delay Bounds in Multiple Step Single Job Networks

In this section we present the analysis that leads to upper as well as lower bounds on mean throughput
and mean delay for a particular type of computer communication system that handles only one type of
job. The utility is that the bounds are in fact achievable, and hence sharp, or the best possible bounds,
given only the mean duration of each step.

4.7.1 Model Each job consists of one or more steps. At each step, a given amount of a serially
reusable resource is required for a given mean time interval. Here the first step of each job involves
entering the job into the system via an operator at a terminal, the second step of each job involves
placing the job in a staging queue where it will wait if there are more than a given maximum number of
jobs already in the system and otherwise will enter the system immediately, and one or more additional
steps inside the system where the job holds a single serially reusable resource for each step of execution
and then moves on, until the job is completely executed and control returns to the operator at the
terminal. For each step of each job, we are given the amount of each resource and the mean time
required to hold that set of resources. We denote by TK the total mean time spent by a job holding
resource type K, which we stress is the sum total execution time of all visits to that stage by a job.

The mathematical model consists of

• N+2 stages of stations: station 0 is associated with operators at terminals, station 1 is the staging
station, and stations 2,...,N+1 (N total) are associated with a single serially reusable resource

• Stage K =0,2,...,N +1 has PK identical parallel servers or processors

• A maximum of M jobs can be held at all stages K =2,...,N +1

• Each job moves from station to station, and requires TK total mean amount of service time at stage
K =0,2,...,N +2

The figure below is a queueing network block diagram of this system.

We denote by λ the total mean throughput rate of completing jobs; R denotes the total mean response
time (queueing or waiting time plus execution time) per job. The system state space is denoted by Ω.
Elements in the state space are denoted by J_ =(J 0, . . . , JN +1). JK ,K =0,2,...,N +1 denotes the number of
jobs either waiting or in execution at stage K. Feasible elements in the state space obey the following
constraints:

[1] The total number of tasks in the system is fixed at P 0

P 0 =  J_   =
K =0
Σ

N +1

JK

[2] There can be at most a maximum of M jobs inside the system:

K =2
Σ

N +1

JK = min[M ,P 0−J 0]

Combining all these, we see that elements J_ in Ω are nonnegative integer valued tuples where Ω is
given by the set of all N+2 tuples V_ _ = (V 0, . . . , VN +1) such that
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Figure 4.13.Block Diagram of Memory Constrained Queueing Network

VK ≥0 K =0,...,N +1;
K =0
Σ

N +1

VK =P 0;
K =2
Σ

N +1

VK =min [M ,P 0−V 0]}

The number of jobs in execution at stage K =0,2,...,N +1 is given by min[JK ,PK ] at any given instant of
time. From the previous section, Little’s Law allows us to write:

mean number in execution at stage K ≡ E [min(JK ,PK )] = λTK K =0,2,...,N +1

where E (.) denotes the time average of the argument. Our goal is to find upper and lower bounds on λ
subject to the state space constraints on JK ,K =0,...,N +1. Since mean throughput rate and mean response
time or delay are related via

λ =
T 0 + R

P 0_ ______

we will also obtain associated lower and upper bounds on mean delay.

4.7.2 Lower Bound on Mean Throughput Rate We first divide both sides of the following equation

E [min (J 0,P 0)] = λT 0

by P 0. In like manner, we divide both sides of the following equations

λTK = E [min (JK ,PK )] K =2,...,N +1

by min [M ,P 0,PK ]. Now we add up these N +1 equations:

P 0

E [min (J 0,P 0)]_ ____________ +
K =2
Σ

N +1

min [M ,P 0,PK )]

E [min (JK ,PK )]_ _____________ = λ


 P 0

T 0_ __ +
K =2
Σ

N +1

min [M ,P 0,PK ]

TK_ ____________




Now we interchange the mean value with the summation on the left hand side:

E


 P 0

min [(J 0,P 0)]___________ +
K =2
Σ

N +1

min [M ,P 0,PK ]

min [JK ,PK ]_ ____________




= λ


 P 0

T 0_ __ +
K =2
Σ

N +1

min [M ,P 0,PK ]

TK_ ____________




Our goal is to lower bound the left hand side by one, which will yield a lower bound on λ.
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Two cases can arise. First, there can exist one I =2,...,N +1 such that PI ≤JI . Since all the terms on the
left hand side are nonnegative, we can lower bound the left hand side by ignoring all of these terms
except term I =2,...,N +1:

P 0

min [J 0,P 0]_ _________ +
K =2
Σ

N +1

min [M ,P 0,PK ]

min [JK ,PK ]_ ____________ ≥
min [M ,P 0,PI ]

min [JI ,PI ]_ ____________ ≥
min [M ,P 0,PI ]

PI_ ____________ ≥ 1

Second, for all K =0,2,...,N +1, PK >JK and hence

min [JK ,PK ] = JK K =2,...,N +1

Two subcases arise: if P 0−J 0≤M then there is no waiting by any job in the staging queue, and

P 0

J 0_ __ +
K =2
Σ

N +1

min [M ,P 0,PK ]

JK_ ____________ ≥
P 0

J 0_ __ +
P 0

P 0 − J 0_______ = 1

The other subcase is if P 0−J 0>M and then there is waiting in the staging queue, so

P 0

min [J 0,P 0]_ _________ +
K =2
Σ

N +1

min [M ,P 0,PK ]

JK_ ____________ ≥
K =2
Σ

N +1

min [M ,P 0,PK ]

JK_ ____________ =
M
M_ __ = 1

Hence, we see that

λ


 P 0

T 0_ __ +
K =2
Σ

N +1

min [M ,P 0,PK ]

TK_ ____________




≥ 1

and we obtain the desired lower bound:

λlower =
T 0 +

K =2
Σ

N +1

min [M ,P 0,PK ]

P 0_ ____________TK

P 0_ _______________________

The total mean time to execute a job at each stage in the system has been stretched from
TK ,K =2,...,N +1 to T̃K ,K =2,...,N +1 where

T̃K =
min [M ,P 0,PK ]

P 0_ ____________ TK ≥ TK K =2,...,N +1

λlower =
T 0 +

K =2
Σ

N +1

T̃K

P 0_ __________

which is one way of quantifying the slowdown at each node due to congestion.

4.7.3 Upper Bound on Mean Throughput Rate >From the definition of λ we see

λ =
TK

E [min(JK ,PK )]_ _____________ ≤
TK

min [PK ,P 0,M ]_ ____________ K =0,2,...,N +1

>From this same identity, we obtain a second upper bound:

λTK ≤ E [JK ] K =0,2,...,N +1 →

λ[T 0 +
K =2
Σ

N +1

TK ] ≤ E [J 0 +
K =2
Σ

N +1

JK ] = P 0

The constraint on the maximum number of jobs inside the system can be written as

K =2
Σ

N +1

JK ≤ min [P 0,M ]

If we use Little’s Law, we see
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λ
K =2
Σ

N +1

TK =
K =2
Σ

N +1

E [JK ] ≤ min [M ,P 0]

In summary, we have shown

λ ≤ min







K =0,2,...,N +1
min



 TK

min [P 0,PK ,M ]_ ____________



,
T 0 +

K =2
Σ

N +1

TK

P 0_ __________,

K =2
Σ

N +1

TK

min [M ,P 0]_ _________






4.7.4 Interpretation One intuitive explanation for these bounds is the following. To achieve the upper
bound on mean throughput rate, each step of job execution has little fluctuation relative to its mean
value, and jobs interleave with one another. The mean throughput rate can be upper bounded via the
following mechanisms:

• The total number of jobs circulating in the system is limiting the mean throughput rate; in this
regime, as we increase the number of jobs, the mean throughput rate increases in roughly the same
proportion

• One stage is executing jobs at its maximum rate, limiting the mean throughput rate; in this regime,
as we increase either the speed of each processor at that stage, or the number of processors with the
same speed, the mean throughput rate increases in roughly the same proportion

• The constraint on the maximum number of jobs in the system is limiting the mean throughput rate;
in this regime, as we increase the allowable maximum number of jobs in the system, the mean
throughput rate increases accordingly

To achieve the lower bound on mean throughput rate, each step of job execution has large fluctuations
relative to its mean value, so that all jobs in the system are congested at one node. A different way of
gaining insight into this lower bound is to replace the service or processing time distribution at each
node with a bimodal distribution with the same mean as the old distribution, where (1−εK ) denotes the
fraction of jobs at stage K that are executed in zero time and εK are the fraction of jobs at stage K that
are executed in time 1⁄µK such that TK = εK ⁄µK . Here in normal operation two things can occur: the
mean time for a job to cycle through the network will be roughly zero, since most stages will take zero
time, and hence the number of jobs in circulation will limit the mean throughput rate, or one stage of
execution will take a time that is much longer relative to all the other times, and hence all but one or
two jobs will be congested at one node, thus limiting the mean throughput rate.

4.7.5 Additional Reading

[1] R.W.Conway, W.L.Maxwell, L.W.Miller, Theory of Scheduling, Addison-Wesley, Reading,
Massachusetts, 1967; Little’s formula, pp.18-19.

[2] P.J.Denning, J.P.Buzen, The Operational Analysis of Queueing Network Models, Computing
Surveys, 10 (3), 225-261 (1978).

[3] J.D.C.Little, A Proof of the Queueing Formula L = λ W , Operations Research, 9, 383-387
(1961).

[4] W.L.Smith, Renewal Theory and Its Ramifications, J.Royal Statistical Society (Series B), 20(2),
243-302(1958).

4.8 A Mean Throughput Rate Upper Bound for Multiple Class Single Resource Models

Now we sketch how to extend the analysis in the previous section that led to an upper bound on mean
throughput rate to a system that processes multiple types of jobs, not just one.

4.8.1 Model A computer communication system must execute C classes of jobs. Each job consists of
one or more steps, and each step requires a single resource for a mean amount of time. TIK ≥0 denotes
the total mean amount of time, summed over all steps, that class K job requires resource I =1,...,N .
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The system configuration is PI ,I =1,...,N servers or processors for resource I , where PI =1,2,3... Each
resource is fed by a single queue of jobs, i.e., any processor can execute any job.

At any given instant of time, say t, the number of jobs either waiting to be executed or in execution at
resource I from class K is denoted by JIK (t ). We denote by J_(t )∈Ω the vector

J_(t ) = [JIK (t ),I =1,...,N ;K =1,...,C ]

where the set of feasible states for J_(t ) is denoted by Ω.

Work is scheduled for each resource such that if a server or processor is idle, it will search the list of
jobs ready to be run and execute one if at all possible. This means that at any instant of time the
number of busy servers or processors at resource I =1,...,N is given by

number o f busy servers at node I = min [PI ,
K =1
Σ
C

JIK (t )] I =1,...,N

We assume that each job type requires a constant amount of storage or memory, denoted by MK for
class K =1,...,C . This introduces a constraint on the allowable set of states Ω, because only a given
number of each type of job can be stored in the system at any one time. For example, if there is a pool
of memory of M blocks, then this constraint takes the form

I =1
Σ
N

K =1
Σ
C

MK JIK ≤ M

while if we dedicate say MK units of memory to each type of job, then this constraint takes the form

I =1
Σ
N

MK JIK ≤MK K =1,...,C

4.8.2 Analysis The previous discussion implies that the set of feasible mean throughput rates for each
type of job, λK ,K =1,...,C forms a convex set. In fact, this convex set is a simplex, with the extreme
points yielding the maximum possible mean throughput rate vectors. One way to explore the geometry
of this model is to fix the mix of job types, say FK ,K =1,...,C is the fraction of jobs of type K , and
hence the mean throughput rate for job type K is

λK = λtotal FK K =1,...,C

where λtotal is a scalar denoting the total mean throughput rate of jobs through the system. In order to
find the largest such permissible λtotal , we would start at zero and increase λtotal until we would violate
one of the state space or mean value constraints; the point at which this occurs would be the largest
possible λtotal .

4.9 A Mean Throughput Rate Upper Bound for Multiple Class Single Resource Models

Now we sketch how to extend the analysis in the previous section that led to an upper bound on mean
throughput rate to a system that processes multiple types of jobs, not just one.

4.9.1 Model A computer communication system must execute C classes of jobs. Each job consists of
one or more steps, and each step requires a single resource for a mean amount of time. TIK ≥0 denotes
the total mean amount of time, summed over all steps, that class K job requires resource I =1,...,N .

The system configuration is PI ,I =1,...,N servers or processors for resource I , where PI =1,2,3... Each
resource is fed by a single queue of jobs, i.e., any processor can execute any job.

At any given instant of time, say t, the number of jobs either waiting to be executed or in execution at
resource I from class K is denoted by JIK (t ). We denote by J_(t )∈Ω the vector

J_(t ) = [JIK (t ),I =1,...,N ;K =1,...,C ]

where the set of feasible states for J_(t ) is denoted by Ω.

Work is scheduled for each resource such that if a server or processor is idle, it will search the list of
jobs ready to be run and execute one if at all possible. This means that at any instant of time the
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number of busy servers or processors at resource I =1,...,N is given by

number o f busy servers at node I = min [PI ,
K =1
Σ
C

JIK (t )] I =1,...,N

We assume that each job type requires a constant amount of storage or memory, denoted by MK for
class K =1,...,C . This introduces a constraint on the allowable set of states Ω, because only a given
number of each type of job can be stored in the system at any one time. For example, if there is a pool
of memory of M blocks, then this constraint takes the form

I =1
Σ
N

K =1
Σ
C

MK JIK ≤ M

while if we dedicate say MK units of memory to each type of job, then this constraint takes the form

I =1
Σ
N

MK JIK ≤MK K =1,...,C

4.9.2 Analysis The previous discussion implies that the set of feasible mean throughput rates for each
type of job, λK ,K =1,...,C forms a convex set. In fact, this convex set is a simplex, with the extreme
points yielding the maximum possible mean throughput rate vectors. One way to explore the geometry
of this model is to fix the mix of job types, say FK ,K =1,...,C is the fraction of jobs of type K , and
hence the mean throughput rate for job type K is

λK = λtotal FK K =1,...,C

where λtotal is a scalar denoting the total mean throughput rate of jobs through the system. In order to
find the largest such permissible λtotal , we would start at zero and increase λtotal until we would violate
one of the state space or mean value constraints; the point at which this occurs would be the largest
possible λtotal .

4.10 Voice Message Mail and Electronic Mail Storage System

A digital system is designed to store two different types of messages

Figure 4.14.Integrated Communication Storage Subsystem Block Diagram

• Voice messages originate at a rate of λV messages per unit time, are stored for an average of TV

time units before being removed, and require BV bytes of storage

• Electronic mail messages originate at a rate of λE messages per unit time, are stored for an average
of TE time units, and require BE bytes of storage
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The storage subsystem has a capacity of M bytes. What evidence is there that the storage is adequate?

We denote by m (t ) the number of bytes of storage filled with either a voice or electronic mail message
at time t . If we ask what the mean amount of occupied storage is, we see

mean storage =
T →∞
lim

T
1_ _

0
∫
T

m (t )dt

Over an interval of duration T we will find N messages total of either type in the storage subsystem.
We denote by B (K ) the amount of storage (in bytes) of the Kth message, and T (K ) denotes the storage
time of the Kth message. Given the above, we see

T
1_ _

0
∫
T

m (t )dt =
T
1_ _

K =1
Σ
N

B (K )T (K ) =
T
N_ _

N
1_ _

K =1
Σ
N

B (K )T (K )

We identify the total mean throughput rate of messages over the observation interval with N ⁄T and we
identify the other term with the mean number of byte-seconds per message:

λ =
T
N_ _ mean byte −seconds per message =

N
1_ _

K =1
Σ
N

B (K )T (K )

However, we know that the total mean throughput rate equals the sum of the two types of messages:

λ = λV + λE

Next, we realize the mean byte-seconds per message is given by the fraction of arrivals of each type
weighted by the mean byte-seconds per each message type:

mean byte seconds per message = FV BV TV + FE BE TE

The fraction of messages of each is simply the fraction of arrivals of each type:

FV =
λV + λE

λV_ _______ FE =
λE + λE

λE_ _______

Combining all this, we see

M ≥
T
1_ _

0
∫
T

m (t )dt = λV BV TV + λE BE TE

Notice we have generalized Little’s Law here: the jumps up and down in m (t ) are no longer all of size
one, but equal the amount of storage associated with each arrival or departure. As in the previous case,
we might wish to choose M larger than this mean value due to fluctuations about the mean.

EXERCISE: Plot upper and lower bounds on mean throughput rate and mean delay for this system as
a function of total mean arrival rate for a given mix of voice and data arrivals.

4.11 Multiple Processor/Multiple Memory Systems

A hardware block diagram of a multiple resource system is shown in the figure below.

Records are retrieved from auxiliary storage, processed, and stored. The system consists of one
processor, and main storage capable of holding R records simultaneously. Main storage is connected to
P peripheral processors. Each peripheral processor is connected to a switching fabric, as are all the
auxiliary storage devices. Each peripheral processor can be connected to any of A auxiliary storage
devices via the switching fabric, but only one peripheral processor can access one auxiliary storage
device at a time. Each access to an auxiliary storage device retrieves one block of data; each record
comprises an integral number of blocks. For simplicity, we assume that all records are one block in size
from this point on.

The steps involved in processing a transaction with the associated resources are summarized in the table
below:
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Figure 4.15.Hardware Block Diagram of Record Processing System

Table 4.1.Step Resource Table_ _____________________________________________________________ ____________________________________________________________
Step Processor Buffer Peripheral Aux Storage Time_ _____________________________________________________________ ____________________________________________________________
Input 0 1 1 1 Tinput

Processing 1 1 0 0 Tproc

Output 0 1 1 1 Toutput

The time required for input or output is the time required to access or transfer the data from auxiliary
storage, transfer it to or from a buffer, with the associated time required for controlling these actions via
the peripheral processor; this total mean time is denoted by Tinput and Toutput , for input and output
respectively. The mean time involved in record processing on the processor is Tproc .

Since a job can be in one of three steps, we denote by J_ the three tuple whose elements denote the
number of jobs in execution in each step:

J_ = (Jinput ,Jproc ,Joutput )

How do the finite resources limit the admissible state space? Since we have only one processor, we see

Jproc ≤ 1

Since we have P peripheral processors with A auxiliary storage devices, the lesser of these two will
limit the total number of transactions involved in input or output:

Jinput + Joutput ≤ min(P ,A )

Finally, we have a total of R records, and hence

Jinput + Jproc + Joutput ≤ R

The state space Ω is the admissible set of integer valued components of J_ that satisfy these constraints.
The convex hull of the state space Ω, denoted C (Ω), is the set of real valued three tuples that satisfy
these constraints. If we substitute into these constraints, if the processor is the bottleneck, then an upper
bound on mean throughput rate λ is given by
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λTproc ≤ 1

On the other hand, if the peripheral processor or auxiliary storage is the bottleneck, then an upper bound
on mean throughput rate λ is given by

λ(Tinput + Toutput ) ≤ min (P ,A )

λ(Tinput + Tproc + Toutput ) ≤ R bu f f er bottleneck

Summarizing all this, we see

λ ≤ min


 Tproc

1_ ____,
Tinput + Toutput

min (P ,A )_ ____________,
Tinput + Tproc + Toutput

R_ __________________




Four configurations are under investigation

• Main memory capacity of one record, with one peripheral processor and one auxiliary storage unit
resulting in no concurrency between the processing and input/output

• Main memory capacity of two records, with one peripheral processor and one auxiliary storage unit
with the potential for processor/input or processor/output concurrency

• Main memory capacity of two records, with two peripheral processors and two auxiliary storage
units, with the potential for processor/input, processor/output, or processor/input-output concurrency

• Main memory capacity of three records, with two peripheral processors and two auxiliary storage
units, and the potential for input/output, processor/input, processor/output concurrency

For each configuration, our goal is to calculate an upper bound on mean throughput rate of completing
transactions, and to describe the set of parameter values that achieves this upper bound on mean
throughput rate.

For the first configuration, we see

λ ≤
Tinput +Toutput +Tproc

1_ ________________

For the second configuration, we see

λ ≤
max [Tproc ,Tinput +Toutput ]

1_ ____________________

For the third configuration, we see

λ ≤
1⁄2[Tproc + max (Tproc ,Tinput +Toutput )]

1_ _____________________________

For the fourth configuration, we see

λ ≤
max [Tproc ,1⁄2(Tinput +Toutput )]

1_ _______________________

EXERCISE: Show that the third configuration is least sensitive to the workload assumptions.

4.12 Transaction Processing System

In a transaction processing, clerks spend a given mean amount of time reading, thinking and typing a
transaction via a terminal and then wait for the system to respond before repeating this process.
Transaction processing involves:

• Input data validation and logical consistency checking

• Data base management access to modify records appropriately

4.12.1 System Configuration The system hardware configuration consists of C clerks at terminals, one
terminal per clerk, plus a single processor and a single disk.
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4.12.2 Steps Required Per Transaction The steps and resources required for each step of transaction
processing are summarized below:

Table 4.2.Resources Required Per Step of Transaction Processing__________________________________________________________________________________________________________________
Step Clerk Processor Disk Mean Time__________________________________________________________________________________________________________________

1 Yes No No Tthink

2 No Yes No Tinput

3 No Yes No Tproc ,dbm

4 No No Yes Tdisk ,dbm

All the steps involved in transaction processing that require the data base manager have been aggregated
into two steps, with one step involving only the processor, and the other step involving only the disk.

4.12.3 System State Space The state at a given instant of time, say t , is given by a tuple denoted by
J_(t ) where

• Jclerk (t ) denotes the number of clerks busy with reading, thinking and typing transactions

• Jinput (t ) denotes the number of jobs either waiting for the processor or running on the processor

• Jproc ,dbm (t ) denotes the number of jobs requiring data base management activity either waiting or
running on the processor

• Jdisk ,dbm (t ) denotes the number of jobs requiring data base management activity either waiting or
running on the disk

The system state space is given by Ω which is the set of all admissible J_(t ) tuples:

Ω = {J_(t ) Jclerk (t ),Jinput (t ),Jproc ,dbm (t ),Jdisk ,dbm (t )=0,1,2...}

We wish to assess the impact of two different modes of operation, involving different structuring of
application software:

• In the first mode, a clerk waits for the transaction submitted to be completely executed before
entering the next transaction. This results in a constraint on the admissible values of J_(t ), because
the total number of transactions anywhere in the system at any given instant of time is given by the
total number of clerks:

Ω {J_(t ) Jclerk (t ) + Jinput (t ) + Jproc ,dbm (t ) + Jdisk ,dbm (t ) = C }

• In the second mode, a clerk waits for the transaction data validation stage to be completed, before
entering the next transaction; a clerk can have a maximum number of transactions, say S
transactions, in the data validation phase of system operation at any one time. If this threshold is
exceeded, then that clerk is blocked from submitting a new transaction until less than S transactions
are in the input validation stage. In practice, S would be chosen to be no impediment on a clerk
under normal operations, while under heavy loading, when the system performance becomes
unacceptable, S would be a throttle or limit on the maximum amount of work that could ever be in
the system, a type of overload control. The design problem is to find an appropriate value of S .
This results in a different type of state space constraint:

Ω = {J_(t ) Jclerk (t ) + Jinput (t )≤S }

4.12.4 Mean Resource Utilization Transactions are executed by the system at a total mean rate of λ
transactions per unit time. On the average, we will find the mean number of clerks busy reading,
thinking and typing given by

E [min (Jclerk (t ),C )] = λTthink

The fraction of time the processor is busy is given by

E [min (Jinput (t ) + Jproc ,dbm (t ),1)] = λ(Tinput + Tproc ,dbm )

The fraction of time the disk is busy is given by
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E [min (Jdisk ,dbm (t ),1)] = λTdisk ,dbm

4.12.5 Upper Bounds on Mean Throughput Rate To calculate an upper bound on mean throughput, we
examine each resource:

• If the clerks are completely busy, then an upper bound on mean throughput rate is

C ≥ E [min (Jclerk (t ),C )] = λTthink → λ ≤
Tthink

C_ ____

• If the processor is completely busy, then an upper bound on mean throughput rate is

1 ≥ E [min (Jinput (t )+Jproc ,dbm (t ),1)] = λ(Tinput + Tproc ,dbm ) → λ ≤
Tinput + Tproc ,dbm

1_ ______________

• If the disk is completely busy, then an upper bound on mean throughput rate is

1 ≥ E [min (Jdisk ,dbm (t ),1)] = λTdisk ,dbm → λ ≤
Tproc ,dbm

1_ _______

• If the policy of demanding that a clerk wait until a transaction is completely executed until entering
a new transaction is the bottleneck, then

C = λ(Tthink + Tinput + Tproc ,dbm + Tdisk ,dbm )

The mean throughput rate is upper bounded by

λ ≤
Tthink + Tinput + Tproc ,dbm + Tdisk ,dbm

C_ ______________________________

• If the policy of allowing a clerk to enter a maximum of S transactions into the system, with only the
data input validation being completed before control is under, is the bottleneck, then

SC ≥ E [Jclerk (t ) + Jinput (t )] = λ(Tthink + Tinput ) → λ ≤
Tthink + Tinput

SC_ ___________

4.12.6 Interpretation Let’s substitute some numbers to gain insight into what all this means:

Table 4.3.Illustrative Numerical Values_ ___________________________________ __________________________________
Tthink 15 sec
Tinput 0.1 sec

Tproc ,dbm 0.5 sec
Tdisk ,dbm 0.75 sec
C Clerks 10

S Job Limit 5

The upper bounds on mean throughput rate are as follows:

• If clerks are the bottleneck then

λ ≤
15 sec

10_ _____ = 0.6667 jobs ⁄sec

• If the processor is a bottleneck then

λ ≤
0.1 sec + 0.6 sec

1_ ______________ = 1.4286 jobs ⁄sec

• If the disk is a bottleneck then

λ ≤
0.75 sec

1_ _______ = 1.3333 jobs ⁄sec

• If the policy of demanding a clerk wait for a transaction to be completely executed before entering a
new transaction is the bottleneck then
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λ ≤
15 sec + 0.1 sec + 0.6 sec + 0.75 sec

10_ _______________________________ = 0.6079 jobs ⁄sec

• If the policy of allowing a clerk to enter a maximum of five (S=5) transactions into the system, with
control being returned after data input, is the bottleneck then

λ ≤
15 sec + 0.1 sec

10 × 5_ _____________ = 3.3112 jobs ⁄sec

Demanding that a clerk wait for a transaction to be completely processed before entering a new
transaction results in the mean throughput rate being upper bounded by

λ ≤ 0.6079 jobs ⁄sec

Here, the bottleneck is the work scheduling policy.

Allowing a clerk to immediately enter a transaction after the data input and validation phase is
completed, up to a maximum of five, results in the mean throughput rate being upper bounded by

λ ≤ 0.6667 jobs ⁄sec

We have changed the bottleneck from the policy of work scheduling to the clerks as the limit on
maximum mean throughput rate.

If we put twenty clerks on the system (C =20) rather than ten clerks (C =10), then after substituting into
the above formulae we find the policy of demanding a clerk wait for a transaction to be completely
executed before allowing a new transaction to enter the system results in a maximum mean throughput
rate of

λ ≤ 1.2160 jobs ⁄sec

while if we allow each clerk to enter a maximum of five (S =5) transactions into the system, with control
being returned after the data input phase, then the bottleneck is now the clerk’s:

λ ≤ 1.3333 jobs ⁄sec

Finally, if we put thirty clerks on the system (C =30) then we find that the disk is the bottleneck, not the
scheduling policy or number of clerks.

4.13 A Distributed Data Communications System

A communications system receives messages from two sources labeled A and B, and transmits them to a
common source, labeled C. The system configuration consists of four subsystems, each with its own
processor and communications facilities, labeled 1,2,3,4 respectively. A block diagram is shown below.

Figure 4.16.Distributed Data Communications System Block Diagram
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Conceptually each processor receives messages from a source, and copies them into output buffers. A
queueing network block diagram of the system is shown below:

Figure 4.17.Queueing Network Block Diagram

The operation of the system is as follows:

• Processor 1 receives messages from external source A and buffers them into an internal buffer; it
then copies the messages into a set of buffers shared with processor 2. In order that no records be
lost in copying because a buffer is not available, critical region code governed by two semaphores P
and V is used.

The pseudo code executed by processor 1 is shown below:

initialize records(1)=buffer(1),space(1)=0 /*B 1,max =buffer(1)*/

process 1
loop

P(records(1)) /*test if records(1)>0;
yes->decrement by one; no->wait*/

P(space(2)) /*test if space(2)>0;
yes->decrement by one; no->wait*/
copy(space(1),space(2)) /*copy contents of space(1)
into space(2)*/

V(records(2)) /*increment records(2) by one*/
end loop

• Processor 2 receives messages from processor 1 and copies them into a set of buffers shared with
processor 3 and processor 4. The pseudo code executed by processor 2 is shown below:

initialize records(2)=buffer(2), space(2)=0 /*B 2,max =buffer(2)*/

process 2
loop

P(records(2)) /*test if records(2)>0;
yes->decrement by one; no->wait*/
P(space(3)) /*test if space(3)>0;
yes->decrement by one; no -> wait*/

copy(space(2),space(3)) /*copy contents of space(2)
into space(3)*/

V(records(3)) /*increment records(3) by one*/
end loop

• Processor 4 receives messages from external source B and copies them into a set of buffers shared
with processor 3 and with processor 2. The pseudo code executed by processor 4 is shown below:
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initialize records(4)=buffer(4), space(4)=0 /*B 4,max =buffer(4)*/

process 4
loop

P(records(4)) /*test if records(4)>0;
yes->decrement by one;no->wait*/
P(space(3)) /*test if space(3)>0;
yes->decrement by one;no->wait*/
copy(space(4),space(3)) /*copy contents of space(4)
into space(3)*/

V(records(3)) /*increment records(3) by one*/
end loop

• Processor 3 receives messages from processors 2 and 4 and copies them into an external buffer
shared with external sink C. The pseudo code executed by processor 3 is shown below:

initialize records(3)=buffer(3),space(3)=0 /*B 3,max =buffer(3)*/

process 3
loop

P(records(3)) /*test if records(3)>0;
yes->decrement by one;no->wait*/
P(space(5)) /*test if space(5)>0;
yes->decrement by one;no->wait*/
copy(space(3),space(5)) /*copy contents of space(3)
into space(5)*/

V(records(5)) /*increment records(5) by one*/
end loop

The steps and resources required at each step are summarized in the table below:

Table 4.4.Resources Required for Each Step of A->C Transmission_ ___________________________________________________________ __________________________________________________________
Step Processor Buffer Time

Number 1 2 3 1 2 C Interval_ ___________________________________________________________ __________________________________________________________
1 Yes No No Yes No No T 1

2 No Yes No Yes Yes No T 2

3 No No Yes No Yes Yes T 3




















Table 4.5.Resources Required for Each Step of B->C Transmission_ ___________________________________________________________ __________________________________________________________
Step Processor Buffer Time

Number 3 4 2 C Interval_ ___________________________________________________________ __________________________________________________________
1 No Yes Yes No T 4

2 Yes No Yes No T 3

















4.13.1 System State Space What is the state of this system at any given time instant, say t? We denote
by MK (t ),K =1,2,3,4,C the number of messages either waiting to be transmitted or being transmitted at
station K at time t, while we let BK (t ),K =1,2,3,4,C denote the number of buffers filled with a message
at node K . The stage space Ω is given by

Ω = {MK (t )=0,1,2,...;BK (t )=0,1,...,Bmax ,K ;K =1,2,3,4,C }

4.13.2 Long Term Time Averaged Utilization of Resources The fraction of time we will find processor
K busy, averaged over a suitably long time interval (we will denote the average by E()) is simply the
mean arrival rate of messages to processor K , denoted by λK , multiplied by the mean time spent
copying a message, denoted by TK :
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E [min (MK (t ),1)] = λK TK K =1,2,3,4,5

The mean number of buffers we will find filled with a message at node K , averaged over a suitably long
time interval, is the mean arrival rate of messages to the buffer pool, denoted by λ̃K , multiplied by the
mean time spent copying a message into the buffer and out of the buffer, denoted by T̃K :

E [min (BK (t ),BK ,max )] = λ̃K T̃K K =1,2,3,4,C

4.13.3 Upper Bounds on Mean Throughput Rate Two types of bottlenecks can arise, one due to the
processors becoming completely busy copying messages, the other due to the buffers becoming
completely filled. How can we quantify these ideas?

First we focus on processor bottlenecks:

• Processor 1 can be completely utilized:

1 ≥ E [min (J 1(t ),1)] = P λT 1 λ ≤
PT 1

1_ ___

• Processor 2 can be completely utilized:

1 ≥ E [min (J 2(t ),1)] = P λT 2 λ ≤
PT 2

1_ ___

• Processor 4 can be completely utilized:

1 ≥ E [min (J 4(t ),1)] = (1−P )λT 4 λ ≤
(1−P )T 4

1_ _______

• Processor 3 can be completely utilized:

1 ≥ E [min (J 3(t ),1)] = λT 3 λ ≤
T 3

1_ __

Next, we concentrate on potential buffer bottlenecks:

• The buffer pool connecting processor 1 to processor 2 can become completely filled:

B 1,max ≥ E [min (B 1(t ),B 1,max )] = P λ(T 1+T 2) λ ≤
P (T 1+T 2)

B 1,max_ ________

• The buffer pool connecting processors 2 and 4 to processor 3 can become completely filled:

B 2,max ≥ E [min (B 2(t ),B 2,max )] = P λ(T 2+T 3)+(1−P )λ(T 3+T 4)

λ ≤
P (T 2+T 3) + (1−P )(T 3+T 4)

B 2,max_ ______________________

• The buffer pool connecting processor 3 to output sink C can become completely filled:

B 3,max ≥ E [min (B 3(t ),B 3,max )] = λ(T 3+TC ) λ ≤
T 3+TC

B 3,max_ ______

The mean throughput rate is upper bounded by finding the minimum of the upper bound on the
processor bounds and the minimum of the upper bound on the buffer bounds:

λ ≤ min[λprocessor ,max , λbu f f er ,max ]

λprocessor ,max = min


 PT 1

1_ ___,
PT 2

1_ ___,
(1−P )T 4

1_ _______,
T 3

1_ __




λbu f f er ,max = min


 P (T 1+T 2)

B 1,max_ ________,
P (T 2+T 3)+(1−P )(T 3+T 4)

B 2,max_ _____________________,
T 3+TC

B 3,max_ ______
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4.13.4 Special Cases Two cases are of interest:

• Single buffering messages so BK ,max =1 which is a test of the logically correct operation of the
system. Can you see that the buffers will always be the bottleneck, and never the processors?

• Double buffering messages to allow for concurrent operation of a transmitter and receiver pair, so
that BK ,max =2. Depending upon the time spent in copying messages into and out of shared buffers,
either a processor or a buffer pool may be the bottleneck

4.14 Different Data Structures for Multiple Processors and Multiple Memories

In this section we examine the performance of a computer system with multiple processors and multiple
memories interconnected via a high speed bus, that must execute one application program that can have
two different data structures. >From this point on, we will assume the time the bus is used to transfer
bits to and from the processors and memories is negligible compared to the processing time required.

The two different types of data structures are labeled 1 and 2. To be concrete, we will fix the hardware
configuration at seven units of memory and three processors. For data structure 1, four units of memory
and (1/19) seconds of execution time are required on one processor, on the average. For data structure
2, two units of memory and (1/10) seconds of execution time are required on one processor. Put
differently, data structure 1 uses more memory than data structure 2, but takes less time to execute. The
table below summarizes this information:

Table 4.6.Resources Required For Each Data Structure_ _________________________________________________ ________________________________________________
Type Processor Memory Mean Time_ _________________________________________________ ________________________________________________

1 1 4 1/19
2 1 2 1/10

The state of the system is given by an ordered pair (J 1,J 2), where JK ,K =1,2 is the total number of jobs
in execution at a given instant of time using data structure K . Due to the hardware configuration
constraints, we see

4J 1 + 2J 2 ≤ 7 memory constraint

J 1 + J 2 ≤ 3 processor constraint

JK = 0,1,2,...;K =1,2 nonnegative integers constraint

The state space, Ω, is given by

Ω = {(J 1,J 2) (0,0),(1,0),(0,1),(1,1),(0,2),(0,3)}

The mean number of jobs in execution, averaged over a suitably long time interval, is denoted by
E (JK ),K =1,2. The total mean throughput rate of executing jobs is

mean throughput rate = λ = 19E (J 1) + 10E (J 2)

Suppose we wish to maximize the mean throughput rate of completing jobs: which data structure do we
choose?

The fraction of time the system is in state (J 1,J 2), averaged over a suitably long time interval, is denoted
by π(J 1,J 2). We have six possible states, and we would attempt to maximize the mean throughput rate
subject to the constraint

(J
1
,J

2
)∈Ω

Σ π(J 1,J 2) = 1 π(J 1,J 2)≥0 (J 1,J 2)∈Ω

If we do so, by direct substitution we find

λ ≤ 30 when J 1 ≡ 0,J 2 ≡ 3

At this point, all three processors are completely busy, while we only have six out of seven memory
units busy; based on this evidence, one might naively expect that the processors are a bottleneck, i.e., the
processors are completely utilized but not memory.
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As an aside, it is interesting to note that the point (J 1=1,J 2=1) results in a local optimum for the mean
throughput rate as we explore all of its nearest neighbors, but this is not the global optimum for the
mean throughput rate. To see this, we evaluate the mean throughput rate of completing jobs at state
(J 1=1,J 2=1), and compare this mean throughput rate with that for all its nearest neighbors.
Unfortunately, the state (J 1=0,J 2=3) is not a nearest neighbor, and this state results in a higher mean
throughput rate. This suggests that we might be forced to exhaustively enumerate all system states in
much more complicated (realistic) systems, and evaluate the mean throughput rate in order to determine
an upper bound on mean throughput rate. The time required to carry out this type of analysis, even with
a high speed digital computer, can easily become excessive relative to our willingness to pay for this
type of analysis.

On the other hand, what if we allow the values for JK ,K =1,2 to be continuous, not simply integer
valued? This would allow us to apply linear programming techniques, where once we find a local
maximum we are done, because this is also a global maximum. If we do so, we find the maximum
mean throughput rate is higher (we have dropped the constraint that the pairs (J 1,J 2) be integers, so
fewer constraints presumably increase the maximum mean throughput rate), and in fact is

maximum mean throughput rate = 37 3⁄4 = max λ ≥ λ

E (J 1) = 7⁄4 E (J 2) = 0

At this maximum, memory is completely utilized, and we have (5/4) processors idle on the average.
This suggests that memory is the bottleneck, not the processors. This is completely different from what
we just saw.

Notice that we can get diametrically opposite answers depending upon our assumptions: using the
assumption that the mean number of jobs must be continuous leads to using only data structure 1, not
data structure 2, while assuming that the mean number of jobs must be discrete leads to employing data
structure 2, not data structure 1.

What happens if we increase memory from seven to eight units? For this case, keeping three processors,
we find that the maximum mean throughput rate is the same whether we assume JK ,K =1,2 is continuous
or discrete, with

maximum mean throughput rate = 38 =max λ ≥ λ

which occurs at J 1=2,J 2=0.

Since the maximum mean throughput rate increases as we add memory, we would say naively that
memory was a bottleneck. On the other hand, we can remove one processor now: we cannot use it!
For the seven unit memory configuration, we saw that either processors or memory could be a
bottleneck, but adding one unit of memory (to relieve the bottleneck) led to only two thirds processor
utilization (i.e., we can get rid of a processor).

4.15 Two Types of Jobs

A single processor computer system must execute two different types of jobs, submitted by two different
people. The first person spends a mean amount of time reading, and thinking, and typing, with a mean
duration of Tthink ,1, and then waits for a response before repeating this process. The second person
spends a different amount of time reading, and thinking, and typing, with a mean duration of Tthink ,2, and
then waits for a response before repeating this process. The mean processing times for a job submitted
by person K =1,2 are denoted by Tproc ,K . Our goal is to determine the mean rate of executing jobs
submitted by each person.

4.15.1 Analysis The system at any instant of time can be in the following states:

[1] Both operators actively thinking, reading and typing, with no work being processed

[2] Operator one is waiting for a response while operator two is still reading and thinking and typing
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[3] Operator two is waiting for a response while operator one is still reading and thinking and typing

[4] Both operators are waiting for a response; the job submitted by operator one is being executed,
while the job submitted by operator two is being queued until the processor becomes available

[5] Both operators are waiting for a response; the job submitted by operator two is being executed,
while the job submitted by operator one is being queued until the processor becomes available

We will index the states by J =1,2,3,4,5. The system spends a total amount of time TJ in state J during
a measurement interval of duration T . The fraction of time the system spends in state J is denoted by
π(J ) where

π(J ) =
T

TJ_ __ ≥ 0
J =1
Σ
5

π(J ) = 1

The mean throughput rate of executing jobs for person K =1,2 is denoted λK . Little’s Law allows us to
relate the mean throughput rate to the fraction of time spent in each state.

First, the fraction of time clerk one is reading and thinking and typing is

λ1Tthink ,1 = π(1) + π(3)

Next, the fraction of time clerk two is reading and thinking and typing is

λ2Tthink ,2 = π(1) + π(2)

Next, the fraction of time the processor is busy executing jobs submitted by operator one is given by

λ1Tproc ,1 = π(2) + π(4)

Finally, the fraction of time the processor is busy executing jobs submitted by operator two is given by

λ2Tproc ,2 = π(3) + π(5)

If we add the first and third equations, we see

λ1(Tthink ,1 + Tproc ,1) = π(1) + π(2) + π(3) + π(4) ≤ 1

while if we add the second and fourth equations we see

λ2(Tthink ,2 + Tproc ,2) = π(1) + π(2) + π(3) + π(5) ≤ 1

On the other hand, if we add the last two equations, we see

λ1Tproc ,1 + λ2Tproc ,2 = π(1) + π(2) + π(3) + π(4) + π(5) ≤ 1

This defines a convex set, with boundaries determined by the upper bounds on λ1,λ2.

On the other hand, if we add the first two equations plus twice the third plus twice the fourth equation,
we find

λ1(Tthink ,1 + 2Tproc ,1) + λ2(Tthink ,2 + Tproc ,2) = 2 + π(2) + π(3) ≥ 2

This gives us a lower bound on the admissible mean throughput rate. All of this is summarized in the
figure below.

4.15.2 An Alternate Approach An alternative approach to this is to attempt to maximize the total mean
throughput rate λ subject to the constraints implied by Little’s Law.

4.16 Multiple Class Multiple Resource Mean Value Analysis

We close with an analysis of an upper bound on mean throughput rate for a system processing multiple
types of jobs, with each job requiring multiple resources for a mean duration for each step.

4.16.1 Model There are C types of jobs to be executed. A job consists of S (J ),J =1,...,C steps. Each
step is defined as requiring a fixed set of resources for a certain average or mean amount of time.
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Figure 4.18.Admissible Mean Throughput Rates

The system resources available are given by a vector R_ _ which has M components, one for each type of
resource, with each component denoting the number of resources of each type available:

R_ _ = (R 1,...,RM ) RK = amount o f resource K ,K =1,...,M

For a given job step of a class J =1,...,C job, say step I ,1≤I ≤S , a set of resources is demanded, denoted
by DIJ (K ), where K =1,...,M denotes the amount of resource K . The mean duration of step I for jobs in
class J is denoted by TIJ .

In what follows we let NIJ (t ) denote the number of jobs in class J in the system at time t in step
I =1,...,S (J ).

The system state space is denoted by Ω with elements denoted by N_ _ with each element denoting the
number of type J =1,...,C jobs in step I =1,...,S (J ). Not all states are feasible; states must be
nonnegative integers, subject to the constraint that the amount of resources of each used at every instant
of time must be less than the total available amount of that resource:

Ω = {NI ,J  NI ,J =0,1,...;1≤J ≤C ;1≤I ≤S (J );

J =1
Σ
C

I =1
Σ

S (J )

NIJ DIJ (K ) ≤ RK ,K =1,...,M }

4.16.2 Analysis Little’s Law allows us to write that the mean number of jobs in execution equals the
mean throughput rate of each job type multiplied by the mean execution time:

E [NIJ ] = λIJ TIJ 1≤J ≤C ;1≤I ≤S (J )

Rather than deal with the individual mean arrival rates of each type of job, we will denote by FIJ the
fraction of jobs of type I ,J while λ denotes the total mean throughput rate of jobs:

λFIJ = λIJ 1≤J ≤C ;1≤I ≤S (J )

The system will spend a given fraction of time π(N_ _) in each state N_ _ ∈Ω .

Which states will maximize the total mean throughput rate for a fixed set of resources over all possible
job mixes FIJ ? Substituting into the above, it follows that

λ
1_ _ =

N_ _ ∈Ω
Σ π(N_ _)NIJ

FIJ TIJ_ __________ 1≤J ≤C ;1≤I ≤S (J )

must be maximized over all FIJ :
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FIJ ≥0
J
ΣFIJ = 1

and subject to the state space constraint on N_ _.

If resource K is a bottleneck, then

λ ≤
K

max
DIJ FIJ TIJ

RK_ ________

Let UK (t ),K =1,...,M denote the total amount of type K resources allocated at time t so that it follows
that

E [UK (0,T )] =
T
1_ _

0
∫
T

UK (t )dt = time averaged value o f UK (t ) in (0,T ) K =1,...,M

Over the time interval of duration T a total of NJ jobs of type J =1,..,C are executed, so that

E [UK (0,T )] =
L =1
Σ
N

J

FKJ DKJ TKJ =
T

NJ_ __
NJ

1_ __
L =1
Σ
N

J

FKJ DKJ TKJ

= λJ E [DKJ TKJ ] K =1,...,M ;J =1,...,C

Put differently, an upper bound on the mean throughput rate is given by

λJ =
E [DKJ TKJ ]

E [UK (0,T )]_ __________

The numerator is the utilization of resource K , while the denominator is the cross product or cross
correlation of the demand for resource K by job type J with the holding time of resource K by job type
J. To maximize the mean throughput rate for job type J, the utilization must be increased, while the
cross correlation must be decreased.
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Problems

1) A computer system consists of N clerks at terminals. Each clerk spends a constant amount of time
Tthink reading and typing and thinking to submit a job. The system executes one job at a time, and each
job requires Tsystem time units to be completely executed.

A. Assume all clerks begin to read and think and type at time zero. For N =1,2,3 draw time lines of
the activity of each clerk through three job submission cycles.

B. What is the mean throughput rate for executing jobs beyond the first job submission cycle? What
is the mean response time each clerk experiences beyond the first job submission cycle?

C. If Tthink =15 sec and Tsystem =1 sec, what is the breakpoint number of clerks? What is the mean
response time for N =10 and for N =20? What is the mean throughput rate for N =10 and N =20?

2) An interactive transaction processing system handles one type of transaction. A clerk submits
transactions and waits for the system to respond before submitting the next transaction. There is a
single processor that must execute each transaction. The following data were reported during a four
hour time interval of operation:

• Six clerks were signed on during the measurement interval

• The mean think time for a clerk was twenty (20) seconds

• F (K ) denotes the fraction of time that K clerks are simultaneously waiting for a transaction to
complete, and is summarized below

Table 4.7.Number of Clerks vs F(K)_ __________________________________________________ _________________________________________________
K 0 1 2 3 4 5 6_ __________________________________________________ _________________________________________________

F(K) 0.40 0.25 0.15 0.10 0.05 0.03 0.02

Estimate the mean transaction processing throughput rate and the mean response time for a transaction.

3) A widget retailer wishes to purchase an online point of sale computer communications system which
will

• Check the credit at the point of sale of each potential customer

• Update and control inventory at the point of sale

The retailer wishes to purchase a system capable of handling one transaction per minute per terminal,
with a total of two hundred (200) terminals attached to the system. The hardware configuration that the
retailer can afford consists of one processor and one disk controller for a single spindle. Each
transaction goes through the following steps:

[1] At the start of each transaction, a log file is updated to show that a transaction has entered the
system; this is useful for recovery and accounting

[2] A credit check is made by first retrieving a regional customer index and then an accounts
receivable index to find the location of the customer accounts receivable file

[3] An application program processes the credit check information and sends an approval or
disapproval signal to the point of sale terminal originating the transaction; from this point on we
assume the fraction of transactions that are not approved is negligible.

[4] An application inventory control program first accesses a model index and then a color index to
determine if the widget is in stock. >From this point on we assume all but a negligible fraction
of items are in stock.
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[5] An application program generates an order for the appropriate item and has it spooled for
subsequent printing at the appropriate warehouse.

[6] An application program updates an inventory file.

[7] An audit trail file is written.

[8] A log file is written showing the final status of the transaction. This is useful for recovery and
accounting.

The total mean time per disk access is fifty milliseconds. The total mean time the processor is busy per
transaction is two hundred fifty milliseconds.

Is this design feasible? Will the system meet its’ performance goals? You might wish to structure your
answer as follows:

A. Make a table showing the resources consumed at each step of execution. What is the total mean
amount of each type of resource consumed per transaction?

B. What are the bottlenecks in the system? What is the maximum mean throughput rate of each
bottleneck?

C. Two operating systems are under investigation. One operates in a mode of executing one
transaction at a time from start to finish, while the second allows concurrent processor and disk
activity. What is the maximum number of terminals the system can support for either operating
system?

D. What if the system is configured with two disk spindles, not just one?

4) An interactive transaction processing system handles one type of transaction. A clerk submits
transactions and waits for the system to respond before submitting the next transaction. The clerical
reading and thinking and typing time interval has a mean of thirty (30) seconds. There is a single
processor and a single input/output controller for one or more disks. A transaction involves some
processing followed by some input/output followed by some processing and so forth until completion.
For each configuration below we assume the software (application code and operating system) is
unchanged, and we wish to investigate the performance of various hardware configurations on total
system traffic handling characteristics. We assume each transaction requires twenty (20) accesses to
secondary disk storage. For simplicity, assume the disk controller requires zero time to transfer data to
and from disks.

• For each configuration below, clearly state what hardware resource reaches complete utilization first
(this is called the bottleneck resource) as the number of clerks is increased toward infinity.

• For each configuration below, plot upper and lower bounds associated with the mean throughput rate
of completing transactions and the mean response time versus the number of clerks on the system;
clearly label each plot.

Here are the different configurations under consideration:

A. The hardware consists of a slow processor with a single slow speed disk. The total mean
processor time per transaction is 2.0 seconds. The slow speed disk requires seventy (70)
milliseconds to execute one disk access to one block of data.

B. The hardware consists of a slow processor with a special purpose cache memory attached, and a
single slow speed disk. The total mean processor time per transaction is reduced to 1.25 seconds
due to the attached cache.

C. The hardware consists of a slow speed processor with a cache memory, and a single medium
speed disk. The medium speed disk requires fifty (50) milliseconds to execute one disk access to
one block of data.



-- --

CHAPTER 4 MEAN VALUE ANALYSIS 39

D. The hardware consists of a high speed processor with a single medium speed disk. The total
mean processor time per transaction is 0.60 seconds.

E. The hardware consists of a high speed processor with either two medium speed disks or a single
high speed disk. The high speed disk requires thirty (30) milliseconds to execute one disk access
to one block of data.

5) An online transaction processing consists of hardware, a set of application programs, and an operating
system that manages resources. The hardware configuration consists of a single processor, a disk
controller that controls half duplex communication between the processor and disks, and three disk
spindles. The steps involved in transaction processing are

[1] Wait for the disk arm on the requisite spindle to become available

[2] Initiate a head seek to the proper disk cylinder

[3] Wait for the channel to become available

[4] Wait for the proper block to rotate under the head

[5] Read from one file on one disk spindle and release the channel

[6] Process the transaction in the processor

[7] Complete the transaction by following one of the following two branches

A. Update the file and unlock the disk spindle

B. Do not update the file and unlock the disk spindle

The following information is available

• Six (6) milliseconds is required for every read or write transfer over the half duplex communication
network arbitrated by the disk controller.

• Twenty five per cent (25%) of the file accesses are to the first disk spindle, forty per cent (40%) of
the file accesses are to the second disk spindle, and thirty five per cent (35%) of the file accesses are
to the third disk spindle.

• Each disk access involves time to move the head to the correct cylinder, called seek time, followed
by time for the correct file to rotate around to the head, called rotational latency time. The seek
time is uniformly distributed from forty (40) to one hundred twenty (120) milliseconds. The rotation
time is uniformly distributed from zero (0) to thirty four (34) milliseconds.

• The processing time of a transaction in the single processor is uniformly distributed from four (4) to
fourteen (14) milliseconds.

• Seventy five per cent (75%) of the transactions require a file update.

Answer the following questions:

A. What is the step resource table for transaction execution?

B. What are upper bounds on the mean throughput rate of executing transactions for each resource?
What are the bottlenecks?

C. The degree of multiprogramming is defined as the mean number of jobs in execution at any one
instant in time. What is the maximum degree of multiprogramming for this system?

D. What if the disk accesses are equally balanced among all the spindles? What if all the disk
accesses are intended for one spindle?
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6) Here is a model of a link level flow control protocol for exchanging information from a transmitter to
a receiver. A data link consists of a transmitter, a receiver, a full duplex noiseless channel (consisting of
two one way channels, one from the transmitter to the receiver, and one from the receiver to the
transmitter) and a limited amount of memory for buffering messages at the receiver. After initialization
procedures, the transmitter can send at most B unacknowledged messages. Every time the transmitter
sends a message, it decrements a counter which is initialized at B by one, and if this counter is at zero
the transmitter can send no messages. Every time the transmitter receives an acknowledgement, it
increments this same counter by one, up to a maximum value of B . The maximum value B associated
with this counter is sometimes called a window because it portrays the maximum number of
unacknowledged messages streaming through the channel at any given instant of time, i.e., it is a
window on the message stream. Here are the steps involved in message transmission:

[1] The transmitter decrements its buffer counter by one, hence reserving a buffer at the receiver, and
transmits the message; this step requires a mean TT . If all available buffers are reserved, i.e., if
the counter is at zero, the transmitter waits until one becomes available.

[2] The message is transmitted over the link from the transmitter to the receiver; this step requires a
mean time TT −R and only involves the time for a message to propagate from the transmitter to
the receiver.

[3] The receiver processes the message, empties the buffer and sends an acknowledgement back; this
step requires a mean time TR .

[4] The message is transmitted over the link from the receiver to the transmitter; this step requires a
mean time TR −T and only involves the time for a message to propagate from the receiver to the
transmitter.

[5] The transmitter processes the acknowledgement; this step requires a mean time TA and the
transmitter marks the appropriate message buffer available or free for new messages, i.e., the
counter is incremented by one.

A. Make a table showing the resources required at each step of message transmission and the mean
time to hold these resources.

B. Find an upper and lower bound on the mean throughput rate of successfully transmitting messages
over this system, as a function of the number of buffers B at the receiver, and other model
parameters. Plot these upper and lower bounds vs B assuming TT =TR and TT −R =TR −T for three
cases: TT =TT −R ⁄10, TT =TT −R , and TT =10TT −R .

C. Suppose that TT −R =TR −T =0. What is the change in the upper and lower bounds on mean
throughput rate in going from B =1 to B =2 to B =∞ for TT =TR ? Repeat the above but now
assume TR =10TT .

7) A transaction processing system retrieves a record from one disk spindle, processes it, and stores it
back on a second disk spindle. The hardware configuration consists of a central processor connected via
a switch to multiple direct memory access disk controllers, with one spindle or moving head disk per
controller. The processor has a limited amount of main memory (so called buffers) for storing records.
S denotes the number of system buffers. Each buffer can hold one record. The total mean time to
retrieve a record is Tinput , the total mean time to process a record is Tproc , and the total mean time to
store a record is Toutput .

A. Make a table showing the resources used at each step of transaction processing and for what mean
amount of time.

B. What is the state space for this sytem?

C. If Tproc =1, Tinput =Toutput =2, what is the maximum mean throughput rate for S =1 versus S =2
versus S =3?
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D. Repeat the above for Tproc =5, Tinput =Toutput =1, and S =1 versus S =2 versus S =3?

E. Repeat the above for Tproc =Tinput =Toutput =1 for S =1 versus S =2 versus S =3?

F. The mean time to execute a record is Tinput +Tproc +Toutput . With no concurrency, the mean
throughput rate is the reciprocal of this:

mean throughput rateno concurrency =
Tinput +Tproc +Toutput

1_ ________________

Compute the reciprocal of the maximum mean throughput rate for each of the above parts,
normalized by the mean throughput rate with no concurrency (this displays the gain due to
concurrency).

G. Compute the degree of multiprogramming for each of the above configurations, where this is
defined as the mean number of tasks simultaneously in execution, assuming the system is
executing work at its maximum mean throughput rate.

8) A transaction processing system retrieves a record from storage on one disk spindle, processes it, and
stores it on a second disk spindle. The hardware configuration consists of a single central processor
connected via a switch to two direct memory access disk controllers, with one spindle for each
controller; the direct memory access capability allows the central processor to execute work while the
disk controller is busy accessing a record. All of the text required to process records is resident in main
memory. The processor can buffer at most S blocks of data at a time. Each disk accesses retrieves or
stores one block at a time. N denotes the number of records per block. Each record consists of B
bytes. Taccess denotes the mean time to move the disk head from an arbitrary point to the start of a
block. Ttrans f er denotes the mean time to transfer one byte of data from an input/output device to a disk
controller. Tproc denotes the mean processor time per record.

A. What are the steps and resources held and time to execute each step of each job?

B. Find an expression in terms of model parameters and plot it for the maximum mean throughput
rate (records per unit time) versus the number of records per block.

C. Find the ratio of the reciprocal of the maximum mean throughput rate divided by the mean time to
process a record from start to finish (this is the reciprocal of the mean throughput rate with no
concurrency).

D. What are the bottlenecks in this system?

E. Suppose that the following numbers specify the model parameters:

Table 4.8.Model Parameters_ ____________________________________________ ___________________________________________
Disk Access Time Taccess 50 msec
Disk Transfer Time Ttrans f er 1 microsecond
Buffer Size B 4096 bytes
Processor Time/Record Tproc 30 msec
Processor Buffers S 8

For N =1,2,4,8 what is the numerical value of the maximum mean throughput rate in records per
unit time?

9) Two types of jobs arrive at random instants to be executed by a computer system. The first type of
job requires one processor and one memory partition, and will hold these two resources for a mean time
of Tsmall to complete its execution with no interruptions. The second type of job requires one processor
and two memory partitions, and will hold these resources for a mean time of Tbig to complete its
execution, again with no interruptions. The system consists of P processors and M memory partitions
connected by a switching system. The time involved with data transfers through the switching system is
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assumed to be negligible compared to the time associated with holding a processor and one or more
memory partitions.

A. At any given instant of time, there are Jsmall (t ) small jobs and Jbig (t ) big jobs in execution in the
system. Find the set of feasible pairs (Jsmall (t ),Jbig (t )) for this system, which defines the state
space of operations.

B. We denote by λsmall and λbig the mean throughput rate of each type of job. Find the set of
feasible mean throughput rates (λsmall ,λbig ). Clearly label all set boundaries in terms of model
parameters.

C. List all the potential bottlenecks. For each bottleneck in the system, what is an upper bound on its
mean throughput rate?

D. We now fix the mix or fraction of jobs executed of each type, denoted by Fsmall ,Fbig respectively,
where

0≤Fsmall ≤1 0≤Fbig ≤1 Fsmall + Fbig = 1

The mean or average time to process a job is denoted by Taverage and is given by

Taverage = Fsmall Tsmall + Fbig Tbig

The mean arrival rate for each type of job is given by

λsmall = λFsmall λbig = λFbig

where λ is the total mean throughput rate of executing jobs. Find upper and lower bounds on the
total mean throughput rate λ as a function of model parameters for the following cases

[1] Two processors P =2 and two memory partitions M =2

[2] Two processors P =2 and three memory partitions M =3

[3] Three processors P =3 and three memory partitions M =3

For each case, compare your calculation with the maximum mean throughput rate for a system
that has a processor bottleneck, i.e., where each processor can execute one job every Taverage

seconds on the average, and memory is not a bottleneck. What interactions arise between the
processor and memory?

10) We consider an abstraction of a communications system consisting of a transmitter (or producer) and
receiver (or consumer). The transmitter generates a record, stores it in an internal transmitter buffer,
and tests to see if a buffer from a pool of buffers shared by the transmitter and receiver is available. If
a buffer is not available, it waits until a buffer is available, and stores the record in a buffer. The
transmitter increments the number of records outstanding, waiting to be handled by the receiver, by one,
and repeats the entire process. The receiver tests to see if a record is waiting to be read; if not, the
receiver waits until a record is available, and removes it from its buffer in the shared buffer pool into an
internal receiver buffer. The receiver then decrements the number of records outstanding, and processes
it, and repeats the entire process. There are two processes each in their own physical processor, one for
the producer and one for the consumer, plus a pool of buffers of size B records, i.e., one record can fit
into one buffer. In order to insure that no records are lost due to a speed mismatch between the
producer and consumer, there is a semaphore with P and V primitives. The P() primitive involves
testing its argument to see if it is positive; if it is, access to the associated field is locked, and if it is
not, wait until it becomes nonzero. The V() primitive involves testing its argument to see if it is
nonzero; if it is, the argument is decremented by one, and access is allowed to the associated array; if it
is not, wait. The pseudo code (with comments) shown below gives a succinct description of system
operation:

initialize space=B, records=0 /*initialize empty buffers=B,ready records=0*/
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process producer
loop
generate record
P(space) /*test to see if space>0; if so, decrement space by 1; if not wait*/
deposit record /*deposit record in available space*/
V(records) /*increment number of records by one*/

end loop{ producer}

process consumer
loop
P(records) /*test to see if records>0; if so, decrement records by 1; if not wait*/
read record
V(space) /*increment amount of space by one*/
process record

end loop{ consumer}

The mean time to execute each of these actions without contention on the respective processors is as
follows:

• Tgenerate --mean time to generate a record

• Tdeposit --mean time to deposit a record in a buffer

• Tread --mean time to read a record

• Tprocess --mean time to process a record

We assume that the P and V primitives require zero processor time to be executed.

A. Make a table showing the resources required at each step.

B. The pair Jproducer (t ),Jconsumer (t ) denote the number of messages at the producer and consumer
respectively at an arbitrary time t. Find the set of admissible values for these pairs, which is
called the state space of this system.

C. What are potential bottlenecks limiting the maximum mean throughput rate?

D. What is the maximum mean throughput rate as a function of model parameters?

11) An online transaction processing consists of hardware, a set of application programs, and an
operating system that manages resources. The hardware can be configured in two ways

[1] High performance configuration--One high speed processor, disk controller, and high speed disk
at a total system cost of two hundred thousand dollars

[2] Low performance configuration--One low speed processor, disk controller, and low speed disk at
a total system cost of one hundred thousand dollars

Clerks enter transactions into the system and wait for the system to respond before entering the next
transaction. Each clerk is paid a total salary of twenty five thousand dollars per year, fully burdened to
reflect salary, benefits, and general and administrative overhead.

The steps involved in a transaction are as follows

[1] A clerk reads an order form, and types this into the system from a terminal; this step has a mean
time of thirty seconds

[2] A front end screen manager checks the data and formats it for the next step of processing; this
step has a mean time of Tf e
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[3] A scheduler logs the transaction and passes it onto the next step; this step has a mean time of
Tsched

[4] A data base manager accepts the transaction and the data base is modified accordingly; this step
has a mean time of Tdb

[5] The scheduler logs the transaction and passes it onto the next step; the mean duration of this step
is Tsched

[6] A back end transmits a message to another system; the mean time for this step is Tbe

[7] The scheduler logs the transaction and closes it out; the mean duration of this step is Tsched

A prototype system was constructed and benchmarked on the high performance hardware configuration,
with the results tabulated below:

Table 4.9.Benchmark Summary_ _________________________________________________ ________________________________________________
Transaction Processor Time Disk

Step Application System Accesses_ _________________________________________________ ________________________________________________
Front End 0.75 sec 0.25 sec 5
Scheduler 0.05 sec 0.05 sec 0

Data Base Manager 2.10 sec 0.40 sec 25
Scheduler 0.05 sec 0.05 sec 0
Back End 0.50 sec 0.50 sec 10
Scheduler 0.05 sec 0.05 sec 0

The difference in performance between the two hardware configurations is summarized below:

Table 4.10.Hardware Performance Summary_ _________________________________________________ ________________________________________________
Type Processor Speed Time/Disk Access_ _________________________________________________ ________________________________________________

High Performance 0.7 MIPS 30 msec
Low Performance 0.5 MIPS 50 msec

MIPS refers to millions of assembly language instructions executed per second by a single processor.

The following configurations are under investigation:

[1] One high performance configuration

[2] One low performance configuration

[3] Two low performance configurations running identical application programs and operating system
code

[4] Two low performance configurations, one running operating system code and one running
application programs

[5] Two low performance configurations running the same operating system code, with one running
all application programs except data base management, the other running data base management

For each configuration

A. Plot upper and lower bounds on mean throughput rate and mean delay or response time versus
number of clerks. Clearly label the breakpoint number of clerks for the upper bound on mean
throughput rate and lower bound on mean delay.

B. Assuming the breakpoint number of clerks, calculate the mean throughput rate for executing jobs
per hour.

C. Calculate the total cost to operate each configuration for five years, and the ratio of the cost
divided by throughput. Use a straight line five year depreciation for the hardware, assume a fifty
per cent tax rate with no tax shelters, and assume the software is developed at a cost of two
hundred and fifty thousand dollars with a support cost of one and a half per cent per month of the
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development cost over the five year period.

12) A virtual memory system consists of a processor with attached memory plus a much larger external
memory. We assume that there is a nonempty queue of jobs waiting for access to this system, so that
whenever one job completes execution and departs, another job immediately takes its place. There is
only one type of job, and each job requires a certain number of pages of memory for execution on the
processor. If a program is in execution in the processor and finds that all the required pages are not
present in the attached memory of the processor, a page fault is said to occur, and a request is made to
the external memory to load the missing page. The mean time to load one page is Texternal storage and
equals ten (10) milliseconds. We measure the behavior of an individual program in this system by
gathering measurements for the mean time between page faults with the main processor memory
configured for a given number of pages, and we then repeat this process for a different number of pages.
The total number of jobs in execution in the system we call the degree of multiprogramming of this
system. Our goal is to determine the mean throughput rate of completing jobs for a given total number
of memory pages and degree of multiprogramming and other parameters.

We let K denote the degree of multiprogramming and M denote the total number of memory pages.
Hence, each job has an average of M ⁄K pages available to it at any time. The mean time between page
faults for an individual program can be approximated by AK 2, where A =9 µsec.

Answer the following questions:

A. What is the state space for this system?

B. Find an upper bound on the mean time the processor is busy as a function of the degree of
multiprogramming K . For M =100, plot this versus K . Interpret your results.

13) Twenty five operators at terminals carry out interactive work with a computer system. The
computer system also executes batch work. The hardware configuration for the computer system is one
processor and one disk. Each operator at a terminal undergoes the same basic cycle: some time is spent
reading and thinking and typing, followed by some time waiting for the system to respond. The
thinking time has a mean of thirty seconds, denoted by Tthink . The response time has a mean of R .
Each interactive job undergoes some processing and some disk access activity over and over until each
job is completely executed. The mean processor time per visit to the processor for each interactive job
is ten milliseconds, and each interactive job visits the processor ten times on the average. The mean
disk access time for each interactive job is ninety milliseconds, and each interactive job requires ten disk
accesses on the average. Each batch job on the other hand requires one disk access followed by one
second of processing time, on the average.

The following measurements are carried out on the system in operation:

• The processor is found to be completely busy or saturated throughout the measurement interval

• The mean response time for interactive jobs is four seconds

Answer the following questions:

A. Make a table showing the resources held by each step of each job and the mean time for each step

B. What is the bottleneck?

C. What is the mean throughput rate of executing batch jobs?

D. What is the disk utilization due to interactive and to batch work?

E. Suppose a new processor replaces the old processor, and is found to be five times as fast as the
old processor. Answer the following questions:
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• What is the bottleneck now?

• What is the disk utilization due to interactive and to batch work?

• What is a lower bound on the mean response time for interactive work?

• What is an upper bound on mean throughput rate for interactive work?

14) A computer system consists of a CPU, a drum with a direct memory access (DMA) controller, and
eight pages of memory. A sequence of jobs is executed on this system. The mean throughput rate of
executing jobs is denoted by λ, measured in jobs per millisecond. Each job consists of a sequence of
steps, with each step of each job indexed by K=1,2,3,4. A job need not execute every step; however,
the average number of type K steps per job, denoted by VK , is given in the table below:

Table 4.11.Mean Number of Steps/Job_ __________________________________ _________________________________
Symbol Steps/Job_ __________________________________ _________________________________

V 1 4/3
V 2 8/15
V 3 2
V 4 1

The resource requirement table for the four steps are shown in the table below:

Table 4.12.Resources/Step and Mean Holding Time/Step_ _________________________________________________ ________________________________________________
Step CPU Drum Pages Time_ _________________________________________________ ________________________________________________

1 1 0 4 10 msec
2 0 1 4 20 msec
3 1 0 2 30 msec
4 0 1 2 20 msec

Answer the following questions:

A. Define the state space of this system for running jobs. How many states are in the state space?

B. Use Little’s Law to write the conservation equations relating the mean throughput rate λ to state
space averages.

C. Find an upper bound λmax on the mean throughput rate λ. What resource is the bottleneck if
λ=λmax?

D. Assuming that λ=λmax, what is the

• Percentage of time the CPU is busy

• Percentage of time the drum is busy

• Average memory utilization

for running jobs?

15) A transaction processing system retrieves a record from storage on one disk spindle, processes it,
and stores it on a second disk spindle. The hardware configuration consists of a single central processor
connected via a switch to two direct memory access disk controllers, with one spindle for each
controller; the direct memory access capability allows the central processor to execute work while the
disk controller is busy accessing a record. All of the text required to process records is resident in main
memory. The processor can buffer at most S blocks of data at a time. Each disk access retrieves one
block at a time. N denotes the number of records per block. Each record consists of B bytes. Taccess

denotes the mean time to move the disk head from an arbitrary point to the start of a block. Ttrans f er

denotes the mean time to transfer one byte of data from an input/output device to a disk controller.
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Tproc denotes the mean processor time per record.

A. Find an expression in terms of model parameters and plot it for the maximum mean throughput
rate (records per unit time) versus the number of records per block.

B. Find the ratio of the reciprocal of the maximum mean throughput rate divided by the mean time to
process a record from start to finish (this is the reciprocal of the mean throughput rate with no
concurrency).

C. What are the bottlenecks in this system?

D. Suppose that the following numbers specify the model parameters:

Table 4.13.Model Parameters_ _________________________________________ ________________________________________
Attribute Symbol Time_ _________________________________________ ________________________________________

Disk Access Time Taccess 50 msec
Disk Transfer Time Ttrans f er 1 µsec
Buffer Size B 4096 bytes
Processor Time/Record Tproc 30 msec

For N =1,2,4,8 what is the numerical value of the maximum mean throughput rate in records per
unit time?

16) A computer systems consists of a central processing unit (CPU), processor memory, and two disks
(labeled I and II). Each disk is connected to the CPU by its own channel (DMA controller). A
hardware monitor is available for measuring the system performance, which has as output three signals,
XCPU (t ) for the processor, XI (t ) and XII (t ) for disks I and II respectively, where

XCPU (t ) =


 0 otherwise

1 if CPU busy at time t

XK (t ) =


 0 otherwise

1 if channel K busy at time t
K =I ,II

The following measurement data is available concerning the execution of workload over a time interval
beginning at time t =0 and ending at time t =T :

XCPU (t ) + XI (t ) + XII (t )>0 0<t <T (i)

0
∫
T

XCPU (t )dt = 100 seconds (ii)

0
∫
T

XI (t )dt = 100 seconds (iii)

0
∫
T

XII (t )dt = 125 seconds (iv)

0
∫
T

XCPU (t )XI (t )dt = 50 seconds (v)

0
∫
T

XCPU (t )XII (t )dt = 25 seconds (vi)

0
∫
T

XI (t )XII (t )dt = 75 seconds (vii)
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0
∫
T

XCPU (t )XI (t )XII (t )dt = 25 seconds (viii)

Answer the following questions:

A. What is the fraction of time the CPU is busy during (0,T)?

B. Evaluate

T
1_ _

0
∫
T

[XCPU (t ) + XI (t ) + XII (t )]dt

C. What fraction of the potential speedup was in fact realized?

17) Terminals are connected over data links to a front end processor to a computer system. Each
terminal has its own dedicated three hundred bit per second line. Each operator at a terminal does the
same job over and over again: each operator spends a certain amount of time reading and thinking and
typing, denoted Tthink , and then strikes a send key. At that point the screen data is transmitted over the
link to the front end processor; on the average four hundred bits of data are input. The front end
processor is connected to the computer system by a very high speed data link. Each job enters a staging
queue where it waits until it can enter the main computer system for processing. The computer system
can hold at most five jobs at any one time: if there are less than five jobs in the system, a job in the
staging queue will enter the system immediately, otherwise jobs are queued for entry in order of arrival.
The system consists of a single processor and a single disk, and each job requires an average of Tproc =2
seconds of processor time and Ndisk =30 disk accesses, with each disk access requiring a fifty millisecond
access time. Once the job completes execution, it is transmitted back over the high speed link to the
front end processor, and the terminal displays the output. On the average each screen has 4800 bits of
information for output. Assume that the time for signals to propagate from the terminal to the front end
processor and back are negligible compared to any other time interval. Assume that the time for signals
to propagate to and from the system and the front end processor are negligible compared to any other
time interval.

A. Make up a table showing each step of processing a job and the resources required for that step and
the mean time duration of that step.

B. What is the bottleneck resource in this system for N =1 terminals? What is the bottleneck resource
in this system as N →∞?

C. Plot an upper bound on the mean throughput rate versus the number of active terminals. Clearly
label all regions and breakpoints in terms of model parameters.

D. Mean response time is defined as the time interval from when the operator initiates transmission of
a screen of data until the start of output on the screen. Plot a lower bound on mean response time
versus the number of active terminals. Clearly label all regions and breakpoints in terms of model
parameters.

E. Repeat all the above assuming that the system can now hold twenty jobs at once, not just five.

F. Suppose that the terminals’ links are replaced with 56,000 bits per second links connected to a
front end that is now connected to a space satellite earth station. The propagation time of signals
between the terminals and front end is negligible compared to all other time intervals. The one
way propagation time of signals from the front end to the computer system is one fourth second.
Repeat all the above.

18) A packet switching system consists of N =10 identical nodes connected in a ring, with index
K =0,...,N −1=9. Each node transmits to only one other node, and each node receives from only one
other node; all nodes are connected by identical one way transmission links with transmission rate
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C =106 bits per second. All packets are routed counterclockwise around the ring. Packets can arrive at
any node and are transmitted to any of the other remaining N −1 nodes, and thence depart from the
system. All packets are fixed in size at B =1000 bits. The fraction of the total network packet load
entering at node I =0,...,N −1 and departing at a node that is J nodes away (counterclockwise) is denoted
by FI ,I +J with the sum I +J being modulo N. We assume that

[1] All stations are statistically identical or symmetric, i.e., FI ,I +J is independent of I .

[2] No station sends packets to itself (i.e., FII =0,I =0,...,N −1).

[3] All packets are sent to some node:

I =0
Σ

N −1

J =1
Σ

N −1

FI ,I +J = 1

The total mean packet arrival rate to the system, i.e., summed over all nodes, is denoted by λ.

A. If FI ,I +J = 1⁄N (N −1) find an upper bound on the maximum mean packet switching rate for this
system.

B. What choice of FI ,I +J ,0≤I ,J ≤N −1 permits the largest mean packet switching rate?

C. What choice of FI ,I +J permits the smallest mean packet switching rate?
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CHAPTER 5: OFFICE COMMUNICATIONS

Offices provide a concrete example of the principles needed to understand the performance of computer
communication systems. In offices, there is a great interest in measuring and improving productivity,
coupled with trends of rising personnel costs and falling solid state electronic circuitry costs, just as
there is in computer communication systems.

5.1 Why Offices?

An office is an example of a distributed information processing system where a variety of tasks are
executed asynchronously and concurrently. These activities are typical of any data communication
systems, and comprise data gathering, data manipulation, data communication, data analysis and display,
and decision or policy making. Office systems are fundamentally complex, making it quite important to
be systematic in order not to overlook anything. This requires controlled experimentation and
measurement, coupled with the formation of hypotheses or models to explain behavior, as well as
analysis.

Perhaps the fundamental idea in office automation is to move ideas or information to people and not
vice versa. This means the office workers, secretaries and managers, do not physically move (walk,
drive, fly, take a train) as much with automation, but rather communicate their ideas to one another with
a variety of telecommunications systems (involving data, voice, facsimile, graphics and video output,
delivered when desired).

5.1.1 Additional Reading

[1] Montgomery Phister, Jr. Data Processing: Technology and Economics, Second Edition, Digital
Press, Bedford, Massachusetts, 1979.

5.2 Telephone Tag

You telephone a colleague, the colleague is not at the telephone, and a secretary takes your message
asking your colleague to return your call. Later, your colleague gets your message and telephones, but
now you are not in, and a secretary takes the message that your call has been returned. You call back,
and the process repeats itself, until eventually you both talk to one another via telephone. This is called
telephone tag because you and your colleague are tagging one another with telephone messages. Figure
5.1 summarizes the work flow.

5.2.1 Workload What are the resources here? We have two managers, you and your colleague, labeled
one and two from this point on. Each of the managers has a secretary, labeled one and two for the
respective manager. The resources required at each step are

[1] Manager two and secretary one talk for a mean time of Tsec ,1 in order to leave a message for
manager one

[2] Manager one at some point receives the message and picks up the telephone to return the call,
with all this taking a mean time of Tmess ,1

[3] Manager one makes the telephone call to manager two: this requires looking up the telephone
number, getting to a telephone and so forth, with a total mean time of Ttel ,1

[4] Manager one and manager two talk with one another via the telephone for a mean time of Tans ,1

[5] Manager one and secretary two talk for a mean time of Tsec ,2 in order to leave a message for
manager two

[6] Manager two at some point receives the message and picks up the telephone to return the call,
with a total mean time of Tmess ,2 passing
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Figure 5.1.Telephone Tag Work Flow

[7] Manager two makes the telephone call to manager one, with a mean time of Ttel ,2 elapsing

[8] Manager two and manager one talk with one another via the telephone for a mean time of Tans ,2

The table below summarizes the resources required for each step, and the mean time interval the
resources are held:

Table 5.1.Telephone Tag Step/Resource Summary_ _____________________________________________________________ ____________________________________________________________
Step Manager 1 Secretary 1 Manager 2 Secretary 2 Time_ _____________________________________________________________ ____________________________________________________________
1 0 1 1 0 Tsec ,1

2 1 0 0 0 Tmess ,1

3 1 0 0 0 Ttel ,1

4 1 0 1 0 Tans ,1

5 1 0 0 1 Tsec ,2

6 0 0 1 0 Tmess ,2

7 0 0 1 0 Ttel ,2

8 1 0 1 0 Tans ,2

Where did the tag go? We can have multiple visits to the branches for leaving messages, but only one
visit to the branch to return the call. To account for this, we denote the mean number of visits to the
secretary answering branch for the second manager by Vtag ,1 while the mean number of visits to the
secretary branch for the first manager is denoted by Vtag ,2

5.2.2 State Space What might be one appropriate state space to describe the operation of this system?
At any instant of time, we could choose a five tuple J_ where

J_ = {Jsec ,1,Jman ,1,Jsec ,2,Jman ,2,I }

where Jsec ,1 is either zero or one to show that secretary one is not or is busy with telephone call activity,
and so forth, and I denotes the step. Not all combinations are feasible: we denote by F the set of
feasible states, where

F = {(1,0,0,1,1),(0,1,0,0,2),(0,1,0,0,3),(0,1,0,1,4)

(0,1,1,0,5),(0,0,0,1,6),(0,0,0,1,7),(0,1,1,0,8)}

5.2.3 Analysis We monitor the system for a time interval of duration T minutes. Over that time
interval, the system is in state I for a total time of TI minutes. For each feasible J_ we denote by π(J_)
the fraction of observation time that the system was in state J_. We see
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T

TI_ __ = π(J_) ≥ 0 J_ ∈ F
J_ ∈ F
Σ π(J_) = 1

from these definitions. If the observation interval becomes sufficiently large (days, weeks, months) so
that the number of calls in progress at the start and end of the observation interval is negligible
compared to the total number of calls that start and finish during the observation interval, we will use
Little’s Law to show that the mean number of calls in each step (eight here) equals the mean throughput
rate for each step multiplied by the average duration of each step:

average number o f calls in process in state I =  J_  I

= (average throughput rate in step I )×(average duration o f step I ) I ,1,2,...,8

Formally, we can write this as

J_ ∈ F
Σ JI π(J_) = λTI I =1,2,...,8

Our measure of productivity is the mean rate of completing useful telephone calls. Substituting into the
relationships, we see

π(1,0,0,1,1) = λVtag ,1Tsec ,1 π(0,1,1,0,5) = λVtag ,2Tsec ,2

π(0,1,0,0,2) = λVtag ,1Tmess ,1 π(0,0,0,1,6) = λVtag ,2Tmess ,2

π(0,1,0,0,3) = λVtag ,1Ttel ,1 π(0,0,0,1,7) = λVtag ,2Ttel ,2

π(0,1,0,1,4) = λTans ,1 π(0,1,0,1,8) = λTans ,2

If we add up all of these, we see

J_ ∈ F
Σ π(J_) = λTloop ≤ 1 → λ ≤

Tloop

1_ ____

Tloop = Vtag ,1[Tsec ,1 + Tmess ,1 + Ttel ,1] + Tans ,1+Vtag ,2[Tsec ,2 + Tmess ,2 + Ttel ,2] + Tans ,2

Let’s substitute some illustrative numbers to see what the impact of tag might be. We assume that the
time spent leaving the message with the secretary has a mean of two minutes, the time until the message
is picked up and read has a mean of thirty minutes, the time to telephone is fifteen seconds, and the time
to actually talk is ten minutes:

Table 5.2.Illustrative Telephone Tag
Step/Time Numerical Example_ ________________________________ _______________________________

Time Amount_ ________________________________ _______________________________
Tsec ,1=Tsec ,2 2 Minutes

Tmess ,1=Tmess ,2 30 Minutes
Ttel ,1=Ttel ,2 1/4 Minutes

Tans ,1=Tans ,2 10 Minutes

If we assume the mean number of tags is two, so that it takes two calls on the average for you and your
colleague to talk, then

Vtag ,1 = Vtag ,2 = 2

then we see that the maximum mean throughput rate is

λ ≤
139 minutes

1_ __________

or roughly one telephone conversation lasting ten minutes every two and a half hours! If the mean
number of tags increases to three, then the maximum mean throughput rate drops to one call lasting ten
minutes every 203.5 minutes!

This is very frustrating for anyone. What can we do to shorten this time to complete one telephone
call?
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5.2.4 An Alternative: Voice Storage What if we replaced this mode of operation with a voice storage
system, where the caller leaves a voice message in a storage system to be retrieved by the callee at
convenience, as shown in the figure below

Figure 5.2.Voice Storage Work Flow

The resources required at each step are summarized below

Table 5.3.Voice Storage System Resources/Step_ ___________________________________________________ __________________________________________________
Step Manager 1 Manager 2 Voice Storage Time_ ___________________________________________________ __________________________________________________
1 0 1 1 Tmess ,1

2 1 0 0 Tdelay ,1

3 1 0 0 Ttel ,1

4 1 1 0 Tans ,1

5 1 0 1 Tmess ,1

6 0 1 0 Tdelay ,1

7 0 1 0 Ttel ,2

8 1 1 0 Tans ,2

Proceeding as before, and using the same illustrative numbers, but with Vtag ,1=Vtag ,2=1, we see that the
maximum mean throughput rate is given by

λ ≤
741⁄2 minutes

1___________

or roughly one telephone conversation of ten minutes every hour and a quarter, halving the total
handling time per call. The gain here is obvious: halving the number of messages for the harried
secretary helps enormously! By being systematic, we have quantified the gain for both the secretary and
manager. To see if you understand this, ask yourself what happens when the number of tags is greater
than two, or if multiple calls are circulating (not just one like here).

5.2.5 Additional Reading

[1] L.H.Mertes, Doing your Office Over--Electronically, Harvard Business Review, 59 (2), 127-135
(1981).

5.3 Copying and Reproduction

How many copiers or reproduction machines does an office need for making copies of letters and
correspondence, articles of all sorts, bills, contracts, and on and on? More to the point, what are the
minimum set of numbers needed to say anything whatsoever that is pertinent to this question?
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The figure below is a block diagram of an office with only two entities: secretaries and copiers. The
secretaries spend a certain amount of time preparing a paper for reproduction, and then they go to the
copying machine and make the copies, collate and staple them, leave, and the process starts all over.

Figure 5.3.Office Copying System Block Diagram

The next figure below is a queueing network block diagram of this system, assuming we have S
secretaries and C copiers:

Figure 5.4.Queueing Network of Office Copying System

To complete our description, we need to measure or estimate or guess the mean time a secretary requires
for preparation of a document for reproduction, denoted by Tsecretary , and the mean time a secretary
spends copying a document with all the related steps of collating and stapling, denoted by Tcopy .

We now have a wealth of information: what do we do next? Let’s assume there is only one copier for
all S secretaries, before looking at the more general case of C >1 copiers.

With only one copier and one secretary, we see a cycle takes place: the secretary generates the
document and then reproduces it, again and again and again. The mean throughput rate of copying
documents with one secretary is simply
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mean document copying rate =
Tsecretary + Tcopy

1_ _____________ one secretary ,S =1

As we add more and more secretaries, the best we can do is to have the mean copying rate grow linearly
with the number of secretaries: going from one to two secretaries doubles the document copying rate,
and so on:

mean document copying rate ≤
Tsecretary + Tcopy

S_ _____________

At some point, the copier will be completely busy reproducing documents, which also upper bounds the
mean throughput rate:

mean document copying rate ≤
Tcopy

1_ ____

Combining these upper bounds, we see

mean document copying rate ≤ min


 Tsecretary + Tcopy

S_ _____________,
Tcopy

1_ ____




On the other hand, we might find that every time a secretary goes to make a copy, all the other
secretaries are lined up in front of the copying machine (maybe it is a social gathering, maybe every so
often there is a very very big job that all the little jobs have to wait for, and on and on). Now we see
that the cycle is for a secretary to generate a document, and then to wait for S documents to be
reproduced (S-1 for the other secretaries plus your document):

mean document copying rate ≥
Tsecretary + STcopy

S_ ______________

Two regimes are evident:

• if the secretaries are the bottleneck (not enough documents are ready to be reproduced) then

mean document copying rate ∼∼
Tsecretary + Tcopy

S_ _____________

• If the copying machine is the bottleneck, running all the time, then

mean document copying rate ∼∼
Tcopy

1_ ____

The breakpoint number of secretaries between these two regimes is given by

Sbreakpoint =
Tcopy

Tsecretary + Tcopy_ _____________

For example, if each secretary spends one hour in document preparation (Tsecretary =1 hour ) and five
minutes in walking to the copier, making the copies, addressing envelopes, and so forth
(Tcopy = 5 minutes ) then the breakpoint number of secretaries is simply

Sbreakpoint =
5

60 + 5_ ______ = 13 secretaries

If we assign ten or fewer secretaries to a copier, the copying machine will rarely be congested; if we
assign twenty or more secretaries to a copier, the copying machine will be rarely idle.

What if we add a second copying machine? With two machines completely busy, the upper bound on
mean throughput rate is twice that for one machine. However, this will not affect the mean time to
make a copy of a document, only the mean delay to get to a copying machine. The upper bound on
mean throughput rate is now given by
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mean document copying rate ≤ min


 Tsecretary + Tcopy

S_ _____________,
Tcopy

2_ ____




while the lower bound on mean throughput rate becomes

mean document copying rate ≥
Tsecretary +

2
S_ _ Tcopy

S_ ________________

We summarize all these bounds graphically in the figure below:

Figure 5.5.Mean Document Copying Rate

Finally, what is the gain in going from one to two copiers? Using the earlier numbers, we see

Sbreakpoint =
1⁄2Tcopy

Tsecretary + Tcopy_ _____________ =
5⁄2

60+5_ ____ = 26 secretaries

We have doubled the breakpoint, so that twenty or fewer secretaries could be accommodated by two
copiers, with the copiers rarely being a point of congestion, while with thirty or more secretaries the
copiers will be congested most of the time.

5.4 Document Preparation

The process of document preparation is undergoing a great change at the present time, again due to
computer technology. More and more text is being handled by a digital computer system consisting of
terminals that replace typewriters, a storage system (today with moving header magnetic disks, tomorrow
with optical laser disks), a printer for generating the physical documents, and a processor for controlling
all of these steps. There might be access to a network of other such systems elsewhere. All of this is
shown in the figure below:

Three steps are involved in document preparation

[1] Entering the document into the system

[2] Editing the document one or more times

[3] Reproducing or printing requisite number of copies of the document
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Figure 5.6.Document Preparation System Hardware Block Diagram

The figure below shows a queueing network block diagram of this system:

Figure 5.7.Document Preparation Queueing Network Block Diagram

How many secretaries can be active before the congestion inside the document preparation system
becomes unacceptable? What numbers do we need to measure or estimate in order to answer this
question?

The mean time required for each of the three steps of document preparation is a natural starting point for
quantifying performance, along with the resources required at each step of the way; we do so in a
hierarchical manner, starting first simply with secretaries using the system, and then breaking down the
actions inside the system:
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Table 5.4.Document Preparation Step/Resource Table_ _______________________________________________ ______________________________________________
Step Secretary Time System Time_ _______________________________________________ ______________________________________________

Entry 1 Tsec ,entry 1 Tsys ,entry

Edit 1 Tsec ,edit 1 Tsys ,edit

Print 1 Tsec ,print 1 Tsys ,print



































Table 5.5.Document Step/Resource Processor Summary_ _________________________________________________ ________________________________________________
Step Resource and Time
Type Processor Time_ _________________________________________________ ________________________________________________

Entry 1 Tproc ,entry

Edit 1 Tproc ,edit

Print 1 Tproc ,print






Table 5.6.Document Resource/Step Disk Summary_ ____________________________________________ ___________________________________________
Step Resource and Time
Type Disk Time_ ____________________________________________ ___________________________________________

Entry 1 Tdisk ,entry

Edit 1 Tdisk ,edit

Print 1 Tdisk ,print






Table 5.7.Document Resource/Step Printer Summary_ _______________________________________________ ______________________________________________
Step Resource and Time
Type Printer Time_ _______________________________________________ ______________________________________________

Entry 0 --
Edit 0 --
Print 1 Tprinter ,print







We have done this in two steps to carry out two different levels of analysis, one a coarse aggregate
rough sizing, the other a more refined analysis (which needs more information).

In the first level of analysis, simply with secretaries and a system, the rough sizing would be to put one
secretary on the system and see how long on the average one document can be generated:

Tdoc = Tsec ,entry + Tsys ,entry + Tsec ,edit + Tsys ,edit + Tsec ,print + Tsys ,print

When we examine a system, we see that it is reasonable to assume that the processor or disk time
consumed to do document entry and editing is negligible compared with the time required for the
processor, disk, and printer to reproduce the requisite hard copy manuscript. On the other hand, the time
required for the secretary to do the entry and editing is typically much much greater than the time
required to handle work associated with document printing. This is summarized by the following
approximations:

Tsec ,entry > >Tsys ,entry Tsec ,edit > >Tsys ,edit Tsys ,print > >Tsec ,print

The mean throughput rate is upper bounded by

mean throughput rate ≤ min


 Tdoc

S_ ____,
Tsys ,print

1_ _______




where we have S secretaries total and using arguments in the earlier sections, and is lower bounded by
observing that every time one secretary goes to print a document the other (S −1) secretaries are waiting
in line to do exactly the same thing:

mean throughput rate ≥
Tdoc + (S −1)Tsys ,print

S_ _________________

A more detailed look is in order concerning the system performance limits, using the additional
information we have so laboriously gathered. The resources here are the secretaries, a processor, a disk,
and a printer. The state of the system is given by a tuple whose components denote whether each
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resource is idle or active. The total document preparation system is monitored for a time interval of
duration T minutes which is assumed to be sufficiently long that the number of documents that are in
preparation at the start and finish of the observation interval is assumed negligible compared to the total
number of documents that start and finish during the observation interval. We denote by TI the total
time the system spent in step I during the observation interval T . For each feasible state J_ in the set of
feasible states F we denote by π(J_) the fraction of observed time that the system spent in that state. We
can now apply Little’s Law:

average number o f documents in state I = E [ J_  I ] = =λI TI I =1,2,3

λI = mean throughput for step I I =1,2,3

TI = mean duration o f step I I =1,2,3

J_ ∈ F
Σ  J_  I π(J_) = λTI I =1,2,3

We wish to maximize λ subject to this constraint, plus meet the following constraints:

T

TI_ __ = π(J_)I I =1,2,3

J_ ∈ F
Σ π(J_) = 1 π(J_)≥0

>From our earlier studies, we see that the following regimes can limit the maximum mean throughput
rate:

[1] Secretaries cannot generate enough documents and bottleneck the system

λmax =
Tsec ,entry + Tsec ,edit + Tsec ,print

S_ ________________________

[2] The processor is completely busy and is the bottleneck

λmax =
Tproc ,entry + Tproc ,edit + Tproc ,print

1_ __________________________

[3] The disk is completely busy and is the bottleneck

λmax =
Tdisk ,entry + Tdisk ,edit + Tdisk ,print

1_ __________________________

[4] The printer is completely busy and is the bottleneck

λmax =
Tprinter ,print

1_ _________

This is basically what we argued earlier, but hopefully makes clearer and less ambiguous the number of
assumptions and approximations.

To finish, let’s substitute in some typical numbers to get a feel for whether any of this is reasonable.
First, a secretary can type fifty words per minute, with each word being five letters. A document
consists of two pages typically, with two hundred and fifty words per page, so the initial document
typing time is simply ten minutes. We will allow a five minute set up time to be included in this initial
document typing time. Next, we get out our stop watch and clip board and measure how long on the
average it takes to edit and correct a document: we find this takes five minutes on the average (without a
document preparation system whole pages would have to be retyped or rewritten, taking fifteen minutes
or more on the average just for the editing). Finally, we need to print the document; two printers are
available, one handling twenty five characters per second and the other handling one hundred characters
per second. We will need two copies of every document. The slow printer can handle one page every
two hundred and fifty seconds, and hence will generate four pages (two pages per document, two copies)
in one thousand seconds or sixteen and two thirds minutes. The fast printer can handle this in one
fourth the time. The only data we can gather from the computer system suggests that the processor is
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busy on the average for ten seconds total for each document, while the disk is busy for thirty seconds
total for each document. The limits on maximum mean document generation are

[1] Secretaries are the bottleneck

λmax =
15 minutes

S_ _________ documents ⁄minute

[2] The processor is the bottleneck

λmax =
1⁄6 minute

1_ _________ = 6 documents ⁄minute

[3] The disk is the bottleneck

λmax =
1⁄2 minute

1_ _________ = 2 documents ⁄minute

[4] Printers are the bottleneck

λmax =
16 2⁄3 minutes

1_ ____________ documents ⁄minute slow printer

λmax =
16 2⁄3 minutes

4_ ____________ documents ⁄minutes f ast printer

Thus, we see that one secretary can keep the slow printer busy, but when we put two secretaries on the
system, the printer becomes a bottleneck, and hence we should get a fast printer which can handle up to
four secretaries.

5.4.1 Additional Reading

[1] A.F.Shackil, Design Case History: Wang’s Word Processor, IEEE Spectrum, 18 (8), 29-33
(1981).

5.5 Local Area Networks

Several years ago a minicomputer was installed in a particular small business for doing billing, accounts
receivable and payable, payroll, general ledger activities, quarterly tax reports, and similar types of
activities and services. The system consists of several terminals connected to a terminal controller with
one processor and one disk.

The trade press is currently full of articles about local area networks which suggest that the terminal
controller can be replaced with a single local area network, hooking all the terminals and the computer
directly together. The two configurations are shown in the figures below:

Figure 5.8.Existing Old System Hardware Block Diagram
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Figure 5.9.Proposed New System Hardware Block Diagram

How much will the local area network affect performance: what numbers do we need to gather or
measure or estimate in order to quantify the benefits of the two approaches, the current and proposed?

Let’s assume that there is only one type of transaction or job handled by the system, that has the
following steps

[1] Data entry and data validation

[2] Data base management

[3] Data retrieval

[4] Data modification and removal

[5] Report generation

The resources common to the two systems are the terminals, processor, disk and printer; the old system
uses a terminal controller, while the new system uses a local area network to switch messages. The
table below summarizes the resources required at each step of job execution

Table 5.8.Transaction Processing Step/Resource Summary_ ________________________________________________________ _______________________________________________________
Step Resource
Type Terminal Processor Disk Switch Printer_ ________________________________________________________ _______________________________________________________

Entry 1 1 1 1 0
Execution 0 1 1 1 0
Retrieval 1 1 1 1 1
Modification 1 1 1 1 1
Report 0 1 1 1 1









The mean time required for each resource for each step is denoted by Tresource ,step , where a resource is a
terminal, processor or disk or printer, and the step is either data entry or execution or modification or
report generation.

The bottlenecks in the system are

[1] Clerks cannot generate enough load to keep the system busy

λmax =

I
ΣTclerk ,I

C_ _______

[2] Terminals are completely busy
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λmax =

I
ΣTterm ,I

C_ _______

[3] The processor is completely busy

λmax =

I
ΣTproc ,I

1_ _______

[4] The disk is completely busy

λmax =

I
ΣTdisk ,I

1_ _______

[5] The terminal controller or local area network is completely busy

λmax =

I
ΣTswitch ,I

1_ ________

[6] The printer becomes completely busy

λmax =
Tprinter ,report

1_ __________

The reason for replacing the terminal controller with a local area network is that the terminal controller
is congested or completely busy, which leads to unacceptable delays, and that presumably the clerks at
the terminals will become the bottleneck with a local area network in place.

Let’s substitute some typical numbers to see if this is reasonable:

Table 5.9.Time/Resource per Step______________________________________________________________________________________________________________________________
Resource Entry Execution Retrieve Modify Report______________________________________________________________________________________________________________________________

Terminal 1.0 sec 0.0 sec 0.5 sec 0.5 sec 0.5 sec
Processor 5.0 sec 7.5 sec 2.0 sec 10.0 sec 2.5 sec
Disk 0.5 sec 10.0 sec 8.0 sec 12.0 sec 5.0 sec
Printer 0.0 sec 0.0 sec 0.0 sec 0.0 sec 100.0 sec
Controller 3.0 sec 0.0 sec 2.0 sec 2.0 sec 0.0 sec
Local Network 0.01 sec 0.0 sec 0.02 sec 0.02 sec 0.02 sec









Finally, we gather statistics on how frequently every hour each transaction type is executed, and
summarize them in the table below:

Table 5.10.Frequency of Execution_ _______________________________ ______________________________
Entry 10 times/hour
Execute 10 time/hour
Retrieve 100 times/hour
Modify 20 times/hour
Report 2 times/hour

The bottleneck here is the disk! Adding a local area network will not significantly improve
performance, because the terminal controller is not the point to reach complete utilization first. The best
choice from a performance point of view is not the local area network addition, but rather adding more
disks.

5.5.1 Additional Reading

[1] J.M.Kryskow, C.K.Miller, Local Area Networks Overview--Part I: Definitions and Attributes,
Computer Design, 22-35 (February, 1981), Local Area Networks Overview--Part II: Standards
Activities, Computer Design, 12-20 (March, 1981).
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[2] B.W.Stuck, Calculating the Maximum Mean Throughput Rate in Local Area Networks: IEEE
Computer Society Project 802 Local Area Network Standards, Computer, 16, (5),72-76(1983).

[3] B.W.Stuck, Which Local Net Bus Access is Most Sensitive to Traffic Congestion?, Data
Communications, 12 (1), 107-120 (1983).

5.6 Professional Work Station Productivity Gains

In one particular office, professionals do four things

[1] Work individually on different assignments

[2] Attend meetings to communicate their findings and learn of others’ work

[3] Telephone others on work related matters

[4] Document their findings and activities

The office staff manager proposes to provide each professional with a so called work station which
would have access to all of the documentation via an on line data management system, and which would
allow everyone using the system to communicate via either electronic mail (making document
distribution much less time consuming for the office staff) and via voice mail (storing telephone calls
and filing them when a professional is not available). The work flow of the old system and new system
is shown in the figures below:

Figure 5.10.Old System Professional Work Flow

What would be the impact on productivity for the professional staff? What numbers need to be gathered
to quantify these issues? What do we need to measure or estimate or guess?

The resources common to either system are

[1] The number of professionals P

[2] The total number of work assignments W

[3] The total number of simultaneous meetings M

[4] The total number of documents in preparation D

The resources unique to the old system are

[1] The total number of telephone calls (including messages) in progress T

The resources unique to the new system are

[1] The total number of voice storage messages V
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Figure 5.11.New System Professional Work Flow

[2] The total number of electronic mail messages E

The mean time required for each action is summarized in the table below

Table 5.11.Time/Job Summary_ ___________________________ __________________________
Job Mean Time_ ___________________________ __________________________

Work Twork

Meeting Tmeeting

Telephone Ttelephone

Document Tdocument

Voice Mail Tvoice mail

Electronic Mail Telectronic mail

The bottlenecks or resources that can reach complete utilization are

[1] Professionals are completely busy

λmax =
Twork + Tmeeting + Ttelephone + Tdocument

P_ _______________________________ old system

λmax =
Twork + Tmeeting + Tvoice mail + Telectronic mail + Tdocument

P_ _____________________________________________ new system

[2] Work assignments are the bottleneck

λmax =
Twork

W_ ____

[3] Meetings are the bottleneck

λmax =
Tmeeting

M_ ______

[4] Document preparation is the bottleneck

λmax =
Tdocument

D_ _______

[5] Messages are the bottleneck

λmax =
Ttelephone

T_ _______ old system
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λmax = min


 Ttelephone

T_ _______,
Tvoice mail

V_ ________,
Telectronic mail

E_ __________




new system

The work station would help improve office productivity if

[1] The number of meetings was a bottleneck and could be reduced via voice and electronic mail

[2] The number of telephone calls was a bottleneck and could be reduced via voice and electronic
mail

[3] Documentation was a bottleneck (filing and gaining access to reports and so on) and could be
reduced via electronic and voice mail

Let’s illustrate all this with some numbers. The office we’ll focus upon has five professionals. In the
current system, each professional is working on four different projects simultaneously, and each has ten
documents in preparation at any time. There is one conference room. In the current system the total
number of telephone calls (including messages) in progress is roughly six per professional. The
proposed system can handle roughly one hundred voice storage messages per professional and fifty
electronic mail messages per professional. The savings in time are dramatic: the time spent by each
professional per assignment will be cut from twenty hours to ten hours, with meeting time cut from five
hours per assignment to two hours, telephone time cut from five hours to two hours, and document
preparation time cut from twenty hours to five hours. Time spent on voice mail will be roughly fifteen
minutes per assignment, while electronic mail will demand forty five minutes per assignment:

Table 5.12.Illustrative Time/Resource Summary_ __________________________________________________________ _________________________________________________________
Job Maximum Jobs Mean Time

Type Old New Symbol Old New_ __________________________________________________________ _________________________________________________________
Work 20 40 Twork 20 hrs 10 hrs
Meeting 1 1 Tmeeting 5 hrs 2 hr
Telephone 30 60 Ttelephone 5 hrs 2 hr
Document 50 200 Tdocument 20 hrs 5 hrs
Voice Mail -- 500 Tvoice mail -- 1/4 hr
Electronic Mail -- 250 Telectronic mail -- 3/4 hr

For the two systems, the possible bottlenecks are

[1] Professionals are completely busy

λmax =
20 + 5 + 5 + 20

5_ _____________ = 0.1 jobs ⁄hr old system

λmax =
10 + 5 + 2 + 2 + 1 + 5

5_ ___________________ = 0.2 jobs ⁄hr new system

[2] Work assignments are the bottleneck

λmax =
40
20_ __ = 0.5 jobs ⁄hr old system

λmax =
20
40_ __ = 2.0 job ⁄hr new system

[3] Meetings are the bottleneck

λmax =
5
1_ _ = 0.2 jobs ⁄hr old system

λmax =
2
1_ _ = 0.5 jobs ⁄hr new system

[4] Document preparation is the bottleneck
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λmax =
20
50_ __ = 2.5 jobs ⁄hr old system

λmax =
5

200_ ___ = 40 jobs ⁄hr new system

[5] Messages are the bottleneck

λmax =
2
30_ __ = 15 jobs ⁄hr old system

λmax = min


 1⁄4

500_ ___,
3⁄4
250_ ___,

2
60_ __





= 30 jobs ⁄hr new system

The bottleneck in either case is the professional staff working all the time; however, by investing in
office automation equipment, the staff can handle over twice the workload that the old system could
handle. This must be weighed against the capital cost, and a number of other factors before jumping to
conclusions, but they are illustrative of the productivity gains possible with such innovations. Substitute
in your own numbers to see what the impact is for your office!

5.6.1 Additional Reading

[1] Clarence A. Ellis, Gary J. Nutt, Office Information Systems and Computer Science, Computing
Surveys 12 (1), 27-60 (1980).

[2] R.P.Uhlig, D.J.Farber, J.H.Bair, The Office of the Future: Communication and Computers,
North-Holland, Amsterdam, 1979.

5.7 Interactions of Secretaries and Managers

The example office system model we will examine has three types of entities, N managers, N
secretaries, and N word processing stations.

Figure 5.12.Office Block Diagram

The sole function of the office is document preparation. There are three steps involved in document
preparation:

[1] A manager dictates a draft to a secretary. This step has a mean duration of T 1 minutes

[2] The secretary enters the draft into a file using a word processor station. This step has a mean
duration of T 2 minutes
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[3] The manager originating the document edits and proofs the document at a word processor station
until the final corrected version is satisfactory. This step has a mean duration of T 3 minutes

These are shown in the figure below:

Figure 5.13.Document Preparation Work Flow

Our problem is to determine an upper bound for λ, the mean throughput rate (measured in documents
per minute) of document preparation, from start to finish. The first step in the analysis is to construct a
state model for the office system behavior. If we imagine observing the office in operation at a given
instant of time, say t , we would note at most three kinds of activities, one for each of the three steps.
Let the three tuple J_ =(j 1,j 2,j 3) denote the state of the office system, whose components are nonnegative
integers. The statement that the office is in state J_ at time t then means that at the time of observation,
there were concurrently in progress j 1 step one, j 2 step two, and j 3 step three activities. We alert the
reader that not all values for J_ are possible. We denote by F the set of J_ vectors which are feasible.
As an aid to constructing this set F , we form a step resource requirement table.

Table 5.13.Step Resource Requirements_ ______________________________________________________ _____________________________________________________
Step Resource Time

Number Manager Secretary Word Processor Required_ ______________________________________________________ _____________________________________________________
1 1 1 0 T 1

2 0 1 1 T 2

3 1 0 1 T 3













Each column shows the type and quantity of resources required by each step. Since we have a
maximum of N units of each resource type, managers and secretaries and word processors, F 1 is the set
of three tuples J_ such that

jk ∈{ nonnegative integers } k =1,2,3

j 1 + j 2 ≤ N manager constraint

j 2 + j 3 ≤ N secretary constraint

j 1 + j 3 ≤ N word processor constraint

Now imagine that we monitor the office system for a time interval of T minutes. For each feasible J_
we denote by π(J_) the fraction of the observation time that the office was in state J_. We then have
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π(J_)≥0 J_ ∈ F
J_ ∈ F
Σ π(J_) = 1

by definition. Let us denote by λT the number of document preparation completions observed in the
time interval (0,T ). If T is sufficiently large (so that truncation effects due to partially executed jobs at
the ends of the observation interval are negligible), we may apply Little’s Law: the mean number of
jobs in a system equals the mean rate of jobs flowing through the system multiplied by the mean time
per job in the system. Here we have three systems, one for each step of execution:

average number o f jobs in execution in step I

=(average throughput rate for step I )×(average duration o f step I ) I =1,2,3

More formally, we can write this as

J_ ∈ F
Σ jI π(J_) = λTI I =1,2,3

Before proceeding with the general analysis, let us consider a special case to gain insight, where N =1.
For this case, it is clear that F consists of just four vectors:

F = {(0,0,0),(1,0,0),(0,1,0),(0,0,1)}

Our earlier expression now becomes

π(1,0,0) = λT 1 π(0,1,0) = λT 2 π(0,0,1) = λT 3

If we add the left and right hand sides, respectively, of the earlier expression, we find

1≥π(1,0,0) + π(0,1,0) + π(0,0,1) = λ(T 1 + T 2 + T 3)

This yields the desired upper bound on λ:

λ ≤
T 1 + T 2 + T 3

1_ ___________

This is obvious on intuitive grounds: when N=1 only one step may be in progress at any one time, there
is no concurrency or parallel execution of tasks, and the total number of minutes required for document
preparation is T 1 + T 2 + T 3 minutes.

We now examine the general case of an arbitrary positive integer valued N. Our problem is to
maximize the mean throughput rate λ over the feasible π(J_),J_ ∈ F :

λmax =
π(J_);J_ ∈ F

maximum λ

This maximization is subject to the following constraints:

J_ ∈ F
Σ jI π(J_) = λTI I =1,2,3

J_ ∈ F
Σ π(J_) = 1 π(J_)≥0

A general approach to solving this optimization problem is to rewrite it as a linear programming
problem (Omahen, 1977; Dantzig, 1963), and then use one of a variety of standard numerical packages
for approximating the solution to such problems. Here, since our problem is simple, we shall proceed
analytically rather than numerically, in order to gain insight into the nature and characteristics of the
solution. We do so in an appendix to this section, and merely cite the final result before discussing how
to interpret this result.

The final result is this upper bound on the maximum mean throughput rate of completed jobs:
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λ≤min





 T 1 + T 2

N_ _______,
T 2 + T 3

N_ _______,
T 1 + T 3

N_ _______,
T 1 + T 2 + T 3



 2

3N_ __


_ ___________







As a check, we see that this agrees with the above with N=1.

As an example of how to apply this result, let us assume that N =2 and T 1 = T 2 = T 3 = 15 minutes. We
wish to compare the following two configurations:

[1] Each manager has his own private secretary and word processor work station, so there are two
independent office systems with N=1

[2] The secretaries and word processor work stations are shared, forming a single pooled office
system with N=2

In the first case, the upper bound on λ will be twice that of a single office:

λmax ,case one =
45
2_ __ documents per minute =

3
8_ _ documents per hour

For the second case, using the above relations with N=2 we see

λmax ,case two =
45
3_ __ documents per minute = 4 documents per hour

Going to N=2 doubles total system resources. The second case results in three times the maximum
mean throughput rate of the N=1 case, while the first case is twice the maximum mean throughput rate
of the N=1 case. The fifty per cent gain in maximum mean throughput rate of document preparation is
entirely due to the policy of pooling (versus dedicating) resources. The intuitive idea for the gain is that
more work can be done concurrently; put differently, in the first case the interaction between the
available resources was limiting the maximum mean throughput rate, while in the second case these
constraints were relatively less severe.

5.7.1 Appendix >From known results (Cairns, p.66, 1966) we observe that a value of λ is possible if
and only if the point (λT 1,λT 2,λT 3) belongs to the smallest convex set in Euclidean three space
containing F , i.e., the convex hull, denoted by C (F ), of F . Since F is a finite set, C (F ) will be a
convex polyhedron or simplex. Next, we show that C (F ) is defined by the set of points X_ _ = (x 1,x 2,x 3)
where xK ,K =1,2,3 that are positive real numbers, with

xK ≥0 K =1,2,3

x 1 + x 2≤N manager constraint

x 2 + x 3≤N secretary constraint

x 1 + x 3≤N word processor constraint

x 1 + x 2 + x 3≤


 2

3N_ __




where y denotes the largest integer less than or equal to y , the so called floor function. If we
substitute (λT 1,λT 2,λT 3) for (x 1,x 2,x 3) in the above we immediately get the desired result.

5.7.2 Additional Reading

[1] S.S.Cairns, Introductory Topology, Ronald Press, New York, New York (Revised Printing),
1968.

[2] G.B.Dantzig, Linear Programming and Extensions, Princeton University Press, Princeton, New
Jersey, 1963.

[3] K.Omahen, Capacity Bounds for Multiresource Queues, J.A.C.M., 24, 646-663 (1977).



-- --

CHAPTER 5 OFFICE COMMUNICATIONS 21

5.8 An Office System Model

We close with a more sophisticated model of an office than what we considered earlier. Although it is
more complex, the same techniques discussed in the earlier example still apply. Consider an office with
M managers, S secretaries, with each manager having a telephone, each secretary having a typewriter
and telephone, and C copiers for the entire staff. There are two types of jobs performed, document
preparation (type 1) and telephone call answering (type 2). Document preparation consists of seven
steps shown below:

[1] Step(1,1)--A manager generates a hand written draft of a document. The mean time duration for
generating a draft is T 1,1 minutes.

[2] Step(1,2)--A secretary produces a typewritten version of the draft and returns it to the originator.
The mean duration of this step is T 1,2 minutes.

[3] Step (1,3)--The manager corrects the typewritten document. This step has a mean duration of
T 1,3 minutes and is executed an average of V 1,3 times per document

[4] Step (1,4)--If after step (1,3) changes are required, a secretary makes the changes and returns the
document to the originator. This step has a mean duration of T 1,4 minutes

[5] Step (1,5)--If no changes are required after step (1,3), a secretary walks to a copier. The mean
time required is T 1,5 minutes

[6] Step (1,6)--A secretary reproduces the requisite number of copies. The mean duration of time is
T 1,6.

[7] A secretary returns the document with copies to the originator. This requires a mean time
interval of T 1,7 minutes

At any given instant of time there are a maximum of D documents in the sum total of all these stages.

The telephone call answering job consists of four steps:

[1] Step (2,1)--A secretary answers a telephone for a manager, talks, and passes the message along to
the appropriate manager; this has a mean time of T 2,1

[2] Step (2,2)--A secretary answers a telephone for a manager and then passes the caller on to the
manager; this has a mean time of T 2,2

[3] Step (2,3)--A manager answers a telephone with a mean time of T 2,3

[4] Step (2,4)--A manager receives a call that is first handled by a secretary and talks for a mean
time T 2,4

The fraction of calls handled by a secretary alone is V 2,1, while the fraction handled by a manager alone
is V 2,3 and the fraction handled by a secretary first and then a manager is V 2,2:

V 2,1 + V 2,2 + V 2,3 =
K =1
Σ
3

V 2,K = 1 V 2,4 = 1

We next construct the step requirements table for this office:



-- --

22 PERFORMANCE ANALYSIS PRIMER CHAPTER 5

Figure 5.14.Document Preparation Steps

Table 5.14.Document Step Resource Requirements_ ____________________________________________________________________ ___________________________________________________________________
Step Resource Time

Number Manager Secretary Typewriter Telephone Copier Document Interval_ ____________________________________________________________________ ___________________________________________________________________
1 1 0 0 0 0 1 T 1,1

2 0 1 1 0 0 1 T 1,2

3 1 0 0 0 0 1 T 1,3

4 0 1 1 0 0 1 T 1,4

5 0 1 0 0 0 1 T 1,5

6 0 1 0 0 1 1 T 1,6

7 0 1 0 0 0 1 T 1,7
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Figure 5.15.Telephone Message Handling Block Diagram

Table 5.15.Telephone Answering Step Resource Table_ _______________________________________________ ______________________________________________
Step Resource Time

Number Manager Secretary Interval_ _______________________________________________ ______________________________________________
1 0 1 T 2,1

2 0 1 T 2,2

3 1 0 T 2,3

4 1 0 T 2,4















The documents circulate through the office system, with each document either waiting for one or more
resources to become available, or being executed in steps (1,1) through (1,7). It is therefore convenient
to append an additional step, (1,8), to our model: step (1,8) is the waiting state of a document, and
Twait ≡T 1,8 denotes the mean time a document spends waiting for resources. If we denote the mean
throughput rate for document preparation, job type 1, by λ1 jobs per minute, and the mean telephone call
answering rate for type 2 jobs by λ2 jobs per minute, then our goal is to determine upper bounds on
λ1,λ2 and lower bounds on Twait . The state of the system at any instant of time is represented by a
twelve tuple or vector denoted by J_, whose components are nonnegative integers:

J_ = (j 1,1,j 1,2,...,j 1,8,j 2,1,j 2,2,j 2,3,j 2,4) jI ,K ∈{ non negative integers } ,I =1,2;K =1,...,8

>From the step requirements table and the discussion we can write that the feasible set of J_ is denoted
by F , while the above implies the components of J_ ∈ F are nonnegative integers such that

j 1,6 ≤ C

j 1,2 + j 1,4 + j 1,5 + j 1,6 + j 1,7 + j 2,1 + j 2,2 ≤S

j 1,1 + j 1,2 + j 1,3 + j 1,4 + j 1,5 + j 1,6 + j 1,7 + j 2,3 + j 2,4=M
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j 1,1 + j 1,2 + j 1,3 + j 1,4 + j 1,5 + j 1,6 + j 1,7 + j 1,8 = D

The convex hull of F , denoted C (F ), is given by the set of twelve tuples with real valued nonnegative
entries X_ _ = (x 1,1,...,x 1,8,x 2,1,...,x 2,4) that satisfy the following constraints:

x 1,1,x 1,2, . . . , x 1,8,x 2,1,...,x 2,4 ≥ 0

x 1,6≤C

x 1,2 + x 1,4 + x 1,5 + x 1,6 + x 1,7 + x 2,1 + x 2,2≤S

x 1,1 + x 1,2 + x 1,3 + x 1,4 + x 1,5 + x 1,6 + x 1,7 + x 1,8 + x 2,3 + x 2,4 ≤ M

x 1,1 + x 1,2 + x 1,3 + x 1,4 + x 1,5 + x 1,6 + x 1,7 + x 1,8 = D

Using Little’s Law, we can write that the mean number of managers active in each step of document
preparation equals the document arrival rate multiplied by mean document time per step:

J_ ∈ F
Σ j 1,K π(J_) = λ1T 1,K K =1,2,5,6,7,8

The mean number of secretaries busy at each step of document preparation must equal the mean
document arrival rate times the mean document time per step:

J_ ∈ F
Σ j 1,3π(J_) = λ1VT 1,3

J_ ∈ F
Σ j 1,4π(J_) = λ1(V −1)T 1,4

Finally, the mean number of telephone calls in each of four steps must equal the telephone call arrival
rate multiplied by the mean time per call step:

J_ ∈ F
Σ j 2,K π(J_) = λ2V 2,K T 2,K K =1,2,3,4

The relations for steps (1,3) and (1,4) reflect the fact that there are a mean number of V 1,3≥1 steps of
type (1,3) per job 1 and (V 1,3−1) steps of type (1,4) per job 1. The relations for steps (2,1) through (2,4)
reflect the fact that there are a mean number of visits 0 ≤ V 2,K ≤ 1,K =1,..,4 to each step.

The values λ1,λ2,Twait are possible if and only if the point

(λ1T 1,1,λ1T 1,2,λ1VT 1,3,λ1(V −1)T 1,4,λ1T 1,5,λ1T 1,6,

λ1T 1,7,λ1T 1,8,λ2V 2,1T 2,1,λ2V 2,2T 2,2,λ2V 2,3T 2,3,λ2V 2,4T 2,4)

is a member of the convex hull of the feasible set F . Substituting into the above we have

λ1Tcopy ≤ C λ1Tdoc ,sec + λ2Ttel ,sec ≤ S

λ1Tdoc ,man + λ2Ttel ,man ≤ M λ1(Tdoc ,man + Tdoc ,sec + Twait ) = D

where

Tdoc ,sec = T 1,2 + (V −1)T 1,4 + T 1,5 + T 1,6 + T 1,7 Ttel ,sec = V 2,1T 2,1 + V 2,2T 2,2

Tdoc ,man = T 1,1 + VT 1,3 Ttel ,man = V 2,3T 2,3 + V 2,4T 2,4

Tcopy = T 1,6

The physical meaning of each of these terms is

• Tdoc ,sec --The mean time a secretary spends on a document

• Ttel ,sec --The mean time a secretary spends answering a telephone call

• Tdoc ,man --The mean time a manager spends preparing and revising documents

• Ttel ,man --The mean time a manager spends answering a telephone call
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• Tcopy --The mean time to make copies of a document

Note that there are really only five time intervals that we really need: the mean time to make a
telephone call for a manager and a secretary, the mean time to handle a document for a manager and a
secretary, and the mean time to make sufficient copies of a document. We also need four numbers: the
total number of managers, secretaries, documents, and copiers. This is the minimum information needed
to say anything concerning productivity in any quantitative sense. This can be summarized as follows:

λ1 ≤ min


 Tdoc ,man

M −λ2Ttel ,man_ ___________,
Tdoc ,man

D_ _______,
Tdoc ,man

S −λ2Ttel ,sec_ __________,
Tcopy

C_ ____




λ2 ≤ min


 Ttel ,man

M −λ1Tdoc ,man_ ___________,
Tdoc ,sec

S −λ1Tdoc ,sec_ __________




Twait =
λ1

D_ __ − Tdoc ,man − Tdoc ,sec

We remark that the set of feasible points (λ1,λ2) form a convex polygon.

Figure 5.16.Feasible Set of Mean Throughput Rates

For a fixed value of λ2 ( λ2<S ⁄Ttel ,sec ), we can use the above to determine the potential bottlenecks:

[1] Managers handling documents are the bottleneck

λ1,max =
Tdoc ,man

M −λ2Tdoc ,man_ ___________
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[2] Secretaries handling documents are the bottleneck

λ1,max =
Tdoc ,sec

S −λ2Ttel ,sec_ __________

[3] Copiers are the bottleneck

λ1,max =
Tcopy

C_ ____

[4] Documents are the bottleneck

λ1,max =
Tdocument

D_ _______

[5] Managers handling telephone calls are the bottleneck

λ2,max =
Ttel ,man

M −λ1Tdoc ,man_ ___________

[6] Secretaries handling telephone calls are the bottleneck

λ2,max =
Ttel ,sec

S −λ1Tdoc ,sec_ __________

Where do we want the bottleneck: perhaps managers handling documents? What do you think?

First we illustrate the upper bound on mean throughput rate as a function of the number of secretaries S,

S >max(λ2Ttel ,sec ,C )

in the figure below. The feasible operating regions are also shown.

Figure 5.17.Mean Document Completion Rate vs Number of Secretaries

The breakpoint is clearly evident: fewer secretaries than the breakpoint, and the secretaries are the
bottleneck, while greater than the breakpoint number and the copies, the number of documents, or the
managers are the bottleneck.

This can be completed with the mean document waiting time feasible operating region, shown in Figure
5.18.
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Figure 5.18.Mean Document Waiting Time vs Number of Secretaries

The reader hopefully will see the importance of being systematic in approaching such an operation,
enumerating all possible states, because nothing will be overlooked.

The table below summarizes some illustrative mean times required to do the different aggregate steps:

Table 5.16.Illustrative Mean Times_ _______________________________ ______________________________
Job Step Time(Hr)_ _______________________________ ______________________________
Tdoc ,sec 1/2
Ttel ,sec 1/30

Tdoc ,man 2
Ttel ,man 1/6
Tcopy 1/3

Suppose we have one copier and one secretary for five managers, with one document per manager in
preparation. Where is the bottleneck resource? Let’s check one resource at a time:

[1] Managers handling documents can do a maximum of

λ1,max =
2
5_ _ = 2.5 documents ⁄hr

[2] Secretaries handling documents can do a maximum of

λ1,max =
1⁄2
1_ __ = 2 documents ⁄hr

[3] The copier can handle

λ1,max =
1⁄3
1_ __ = 3 documents ⁄hr

[4] The documents in circulation limit us to

λ1,max =
2 + 1⁄3 + 1⁄2

5_ __________ = 1 13⁄17 documents ⁄hr

[5] Managers handling telephone calls
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λ2,max =
1⁄6
5_ __ = 30 calls ⁄hr

[6] Secretaries handling telephone calls

λ2,max =
1⁄30

1_ ___ = 30 calls ⁄hr

The limiting bottleneck here is the number of documents in circulation: managers have to have more
than one document going at a time. Suppose we double this, so each manager has two documents in the
mill at once? What is the new bottleneck? Now it is the secretaries working flat out to keep up with
the document load. If we add another secretary to cure this, then the new bottleneck is the managers
working full time at document generation.

5.8.1 Additional Reading

[1] G.H.Engel, J.Groppuso, R.A.Lowenstein, W.G.Traub, An Office Communications System, IBM
Systems Journal, 18 (4), 402-431, 1979.

[2] P.C.Gardner, A System for the Automated Office Environment, IBM Systems Journal, 20 (3),
321-345 (1981).
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Problems

1) Measurements are gathered on clerical work activity during a normal business day both before and
after the installation of an online transaction processing computer communications system:

Table 5.17.Clerk Normal Business Day_ __________________________________ _________________________________
Work Fraction of Time

Activity Before After_ __________________________________ _________________________________
Telephone 10% 20%
Enter Data 20% 10%
File Data 30% 10%
Retrieve Data 30% 20%
Misc 10% 40%

Answer the following questions:

A. What is the state space for the activities for each clerk?

B. What is the potential gain in productivity, measured in amount of work done per unit time?

C. What is the net percentage change in the number of clerks required to carry out the required
work?

2) A secretary does different activities during a normal business day. The table below summarizes the
fraction of time spent per activity before and after installation of an office communication system:

Table 5.18.Secretary’s Normal Business Day_ _______________________________________ ______________________________________
Work Fraction of Time

Activity Before After_ _______________________________________ ______________________________________
Face to Face Meetings 10% 20%
Telephone Calls 10% 20%
Typing 35% 40%
Reading/Writing 15% 20%
Mail Handling 10% 5%
Copy Documents 10% 5%
Filing 10% 5%

Answer the following questions:

A. What is the state space for activities for each secretary?

B. What is the gain in productivity, defined as the amount of work done per unit time?

C. What is the percentage change in number of secretaries?

3) A series of measurements are carried out on the activities of professionals in an office environment,
both before and after the installation of an office communications system. During a normal business
day, the table below summarizes the fraction of time spent in each work activity:
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Table 5.19.Professional Normal Business Day_ ________________________________________ _______________________________________
Work Fraction of Time

Activity Before After_ ________________________________________ _______________________________________
Face to Face Meetings 50% 25%
Telephone 10% 20%
Read/Write 20% 25%
Misc 20% 30%

Answer the following questions:

A. What is the state space for activities for each professional?

B. What is the gain in productivity, defined as amount of work done per unit time?

C. What is the percentage change in number of professionals?

4) Measurements are carried out on the activities of professionals in an office environment, both before
and after the installation of an office communication system. The data are aggregated by the fraction of
time spent in a given activity during a normal business day:

Table 5.20.Professionals’ Normal Business Day_ _________________________________________ ________________________________________
Work Fraction of Time

Activity Before After_ _________________________________________ ________________________________________
Search for Data 15% 10%
Input Data 15% 5%
Validate Data 25% 5%
Process Data 15% 5%
Distribute Data 5% 5%
Think 20% 65%
Administration 5% 5%

Answer the following questions:

A. What is the state space for activities for a professional?

B. What is the gain in productivity, defined as amount of work done per unit time?

C. What is the percentage change in number of professionals?

5) A office currently has one secretary for every five professionals. If the professionals are not
available, the secretary will answer their telephones and write down any messages. Two different
systems are currently being evaluated for reducing the message answering work load on the secretary:
one involves electronic mail, where each professional has a special terminal that allows messages to be
entered from a key board, displayed, edited, transmitted, filed, archived, retrieved, and deleted as need
be. The second involves voice mail, where each professional uses a voice telephone to carry out the
same functions. The resources required for each step are summarized in the table below:

Table 5.21.Step/Resource Summary_ ____________________________________________________________ ___________________________________________________________
Job Resource Time
Step Terminal Port Processor Disk Printer Interval_ ____________________________________________________________ ___________________________________________________________

Enter 1 1 1 1 0 Tenter

Edit 1 1 1 1 1 Tedit
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Send 1 1 1 1 1 Tsend

File 0 1 1 1 1 Tf ile

Retrieve 1 1 1 1 1 Tretrieve

Delete 1 1 1 1 1 Tdelete

The mean time intervals for each system are summarized below:

Table 5.22.Mean Time Interval/Step_ ______________________________________________ _____________________________________________
Symbol Current Voice Mail Electronic Mail_ ______________________________________________ _____________________________________________
Enter 1 Minute 2 Minute 5 Minute
Edit 0 Minute 0 Minute 1 Minute
Send 30 Minute 30 Minute 30 Minute
File 1 Minute 0 Minute 0 Minute
Retrieve 5 Minute 0 Minute 0 Minute
Delete 0 Minute 0 Minute 0 Minute

For the current system, Vmessage =3 is the mean number of calls made to actually have one professional
talk to another. For either proposed system, Vmessage =1 is the mean number of calls required to handle
any given matter.

Answer the following questions:

A. What is the state space for each system?

B. Which resource will reach complete utilization first for each system?

C. Plot the mean throughput rate versus number of professionals per one secretary. How many
professionals are needed per secretary for each system?

6) A copying machine can be purchased with or without an automatic feeder. When an operator makes
one copy of one page, three steps are involved

[1] Set up time denoted by Tsetup which is the time to set the document properly aligned onto the
copier

[2] Copying time denoted by Tcopy which is the time to make one copy of one page

[3] Clean up time denoted by Tcleanup which is the time to remove the document from the copier

For the two configurations, the time intervals are summarized below

Table 5.23.Mean Time/Step_ _________________________________ ________________________________
Step No Feeder With Feeder_ _________________________________ ________________________________

Set Up 5 sec 1 sec
Copy 2 sec 2 sec
Clean Up 5 sec 1 sec

Answer the following questions:

A. What is the state space for this model?

B. What is an upper bound on mean throughput rate for each system?

C. Suppose twenty per cent of the documents are five pages long, while eighty per cent of the
documents are one page long: find an upper bound on the mean throughput rate for each system?

7) Two different systems for preparing documents are under consideration. In the first system, one
secretary is assigned to ten professionals, and handles all document preparation needs. In the second
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system, a central text processing center is set up that handles all document preparation needs of all
professionals. The main differences in the two approaches are

• Each secretary is given one printer capable of printing thirty characters per second maximum while
the central text processing center can afford one high speed printer capable of printing two pages of
text (two hundred and fifty words per page, five characters per word) per second maximum

• The central text processing center requires every document be logged in and logged out, while the
local system involves much less time consuming procedures for control of documents

We assume each professional generates a two page document every day, and each clerk can type at
thirty words per minute. Two minutes are required to log in every document at the central text
processing center; fifteen seconds is required for the local secretary to do this.

Answer the following questions:

A. What is the state space for each system?

B. Find an upper bound on the mean number of documents per unit time either system can handle?

C. How many professionals and secretaries are required for either system assuming the upper bound
on mean number of documents per unit time is being handled?

8) Two different office communication systems are under consideration. In the current system, people
walk to and from offices, copying machines, and typewriters. In the proposed system, a high speed
local area network is installed that reduces the need to walk to and from offices, copying machines and
typewriters, and secondly reduces the time to transmit information from one place to another. The table
below summarizes illustrative time intervals for each job

Table 5.24.Illustrative Time/Step Summary_ ______________________________________________ _____________________________________________
Job Time Interval
Step Symbol Current Proposed_ ______________________________________________ _____________________________________________

Office to office To f f ice 5 minutes 2 minutes
Office to copier Tcopier 5 minutes 1 minute
Office to printer Tprint 10 minutes 2 minutes







Table 5.25.Illustrative Visits/Step Summary_ ___________________________________________ __________________________________________
Job Mean Number of Visits
Step Symbol Current Proposed_ ___________________________________________ __________________________________________

Office to office Vo f f ice 5 2
Office to copier Vcopier 5 2
Office to printer Vprinter 2 1







Answer the following questions:

A. What is the state space for each system?

B. Find an upper bound on the mean rate of doing office communication jobs for each system.

C. What is the potential gain, if a job typically requires one hour of other work in addition to
communication? What changes if a job requires fifty hours of other work in addition to
communication?

9) A charity has an executive office staffed by a director and S secretaries. The current mode of
operation involves a great deal of manual work, filing activities with paper index cards, and typing. We
wish to compare this mode of operation with a proposed mode of operation, involving conversion to an
automated system consisting of work stations, one for each secretary, plus a local network between work
stations. The difference in the two modes of operation is the equipment available to the secretaries.
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Each secretary can do two types of jobs, donor registration (type 1) and telephone call answering (type
2). Donor registration consists of seven steps:

[1] Step (1,1)--The donor file is searched to see if the member is already there or not. The mean
duration for this step is T 1,1 minutes.

[2] Step (1,2)--The address of the donor is checked against that in the file and appropriate
modifications are entered. The mean duration of this step is T 1,2 minutes.

[3] Step(1,3)--A donor number is assigned from a list of available numbers. This requires T 1,3

minutes on the average.

[4] Step(1,4)--A donor card is typed. This requires T 1,4 minutes.

[5] Step(1,5)--An envelope is addressed and stuffed with the requisite donor card and other written
material. This requires T 1,5 minutes.

[6] Step(1,6)--The mailing list is updated using a card punch. This requires T 1,6 minutes.

[7] Step(1,7)--The new name is entered onto the newsletter mailing list. This requires T 1,7 minutes.

The telephone call answering job consists of two steps:

[1] Step(2,1)--A secretary answers a telephone, talks, and determines the purpose of the call. The
mean duration of this job is T 2,1 minutes.

[2] Step(2,2)--If the secretary can handle the call, this requires T 2,2 minutes. Otherwise the director
handles the call.

The total time to handle each type of job is given by adding up the time to do each step:

Tdonor = T 1,1 + T 1,2 + T 1,3 + T 1,4 + T 1,5 + T 1,6 + T 1,7

Ttelephone = T 2,1 + T 2,2

Answer the following questions:

A. What is the state space for this model?

B. The total arrival rate of transactions (both donor gifts and telephone calls) is λ transactions per
minute. The fraction of arrivals due to each type is Fdonor ,Ftelephone , and hence the arrival rate of
each type of transaction is λFdonor and λFtelephone , respectively. Determine an analytic expression
for an upper bound on the total mean number of transactions per minute as a function of the
number of secretaries, and plot this versus S, the number of secretaries.

C. Table 5.26 summarizes the average or mean time to handle each step of donor processing:

Table 5.26.Donor Processing_ _________________________________________________ ________________________________________________
Step Current Proposed_ _________________________________________________ ________________________________________________

Look Up in File 1 Minute 1/4 Minute
Check/Change Address 1 Minute 1/4 Minute
Assign Donor Number 1/4 Minute 0 Minutes
Prepare Donor Card 1 Minute 1/4 Minute
Address/Stuff Envelope 2 Minutes 1/2 Minute
Update Zipcode List 1 Minute 0 Minutes
Update Newsletter List 1/2 Minute 0 Minutes_ _________________________________________________ ________________________________________________
Total 6 3/4 Minutes 1 1/4 Minutes

The table below summarizes the mean amount of time required to handle telephone call work:
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Table 5.27.Telephone Call Work_ ___________________________________________ __________________________________________
Step Current Proposed_ ___________________________________________ __________________________________________

Answer Telephone 1/4 Minute 1/4 Minute
Answer Query 2 Minutes 1/2 Minute_ ___________________________________________ __________________________________________
Total 2 1/4 Minutes 3/4 Minutes

Each secretary works 270 days per year, spending roughly four hours per day handling donor
records and telephone calls. For each mode of operation, how many secretaries are needed to
handle 100,000 transactions per year, assuming Fdonor =0.80? assuming Fdonor =0.20?

10) Consider an office with M managers, S secretaries, with each manager having a telephone, each
secretary having a typewriter and telephone, and C copiers for the entire staff. There are two types of
jobs performed, document preparation (type 1) and telephone call answering (type 2). Document
preparation consists of seven step:

[1] Step(1,1)--A manager generates a hand written draft of a document. The mean time duration for
generating a draft is T 1,1 minutes.

[2] Step(1,2)--A secretary produces a typewritten version of the draft and returns it to the originator.
The mean duration of this step is T 1,2 minutes.

[3] Step (1,3)--The manager corrects the typewritten document. This step has a mean duration of
T 1,3 minutes and is executed an average of V 1,3 times per document

[4] Step (1,4)--If after step (1,3) changes are required, a secretary makes the changes and returns the
document to the originator. This step has a mean duration of T 1,4 minutes

[5] Step (1,5)--If no changes are required after step (1,3), a secretary walks to a copier. The mean
time required is T 1,5 minutes

[6] Step (1,6)--A secretary reproduces the requisite number of copies. The mean duration of time is
T 1,6.

[7] A secretary returns the document with copies to the originator. This requires a mean time
interval of T 1,7 minutes

At any given instant of time there are a maximum of D documents in the sum total of all these stages.

The telephone call answering job consists of at most four tasks:

[1] Step (2,1)--A secretary answers a telephone for a manager, talks, and passes the message along to
the appropriate manager; this has a mean time of T 2,1

[2] Step (2,2)--A secretary answers a telephone for a manager and then passes the caller on to the
manager; this has a mean time of T 2,2

[3] Step (2,3)--A manager answers a telephone with a mean time of T 2,3

[4] Step (2,4)--A manager receives a call that is first handled by a secretary and talks for a mean
time T 2,4

The fraction of calls handled by a secretary alone is V 2,1, while the fraction handled by a manager alone
is V 2,3 and the fraction handled by a secretary first and then a manager is V 2,2:

V 2,1 + V 2,2 + V 2,3 =
K =1
Σ
3

V 2,K = 1 V 2,4 = 1

We next construct the step requirements table for this office:
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Table 5.28.Document Step Resource Requirements_ ____________________________________________________________________ ___________________________________________________________________
Step Resource Time

Number Manager Secretary Typewriter Telephone Copier Document Interval_ ____________________________________________________________________ ___________________________________________________________________
1 1 0 0 0 0 1 T 1,1

2 0 1 1 0 0 1 T 1,2

3 1 0 0 0 0 1 T 1,3

4 0 1 1 0 0 1 T 1,4

5 0 1 0 0 0 1 T 1,5

6 0 1 0 0 1 1 T 1,6

7 0 1 0 0 0 1 T 1,7























Table 5.29.Telephone Answering Step Resource Table_ _______________________________________________ ______________________________________________
Step Resource Time

Number Manager Secretary Interval_ _______________________________________________ ______________________________________________
1 0 1 T 2,1

2 0 1 T 2,2

3 1 0 T 2,3

4 1 0 T 2,4















The documents circulate through the office system, with each document either waiting for one or more
resources to become available, or being executed in steps (1,1) through (1,7). It is therefore convenient
to append an additional step, (1,8), to our model: step (1,8) is the waiting state of a document, and
Twait ≡T 1,8 denotes the mean time a document spends waiting for resources. We denote for the mean
throughput rate for document preparation, job type 1, by λ1 jobs per minute, and for the mean telephone
call answering rate for type 2 jobs by λ2 jobs per minute.

Answer the following questions:

A. What is the state space for this system?

B. What are the bottlenecks in this system?

C. What is the maximum mean throughput rate for document generation?

D. What is the maximum mean throughput rate for telephone call answering?

E. Plot the mean waiting time for document generation versus number of secretaries.

F. The table below summarizes some mean time intervals to handle different steps:

Table 5.30.Illustrative Mean Times/Step_ ___________________________________ __________________________________
Job Step Time(Hr)_ ___________________________________ __________________________________
Tdoc ,sec 1/2
Ttel ,sec 1/30

Tdoc ,man 2
Ttel ,man 1/6
Tcopy 1/3

Suppose we have one copier and one secretary for ten managers, with three documents per
manager in preparation. Where is the bottleneck resource?
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Our goal in this section is to extend the previous performance analysis (based only on mean execution
times) to include both fluctuations about mean values as well as ordering constraints or correlations
between different steps and different jobs. This demands additional assumptions concerning the job
arrival and execution time statistics, as well as the scheduling policy. We focus on a class of Markovian
mathematical models where knowing only the present or current state of the system, not the entire
history of the system operations, its future statistical behavior is determined. These are called Jackson
queueing networks in honor of the pioneer researcher who first studied their behavior.

If all possible system states and the associated state transition rates are exhaustively enumerated,
oftentimes the number of states in such models explodes (into tens of trillions for straightforward
applications such as a single terminal word processor system, and into far far greater numbers for more
sophisticated applications such as airline reservation systems with hundreds of terminals, tens of
communication lines, and upwards of one hundred disk spindles) to far exceed the storage and
processing capabilities of the most powerful supercomputers (both available and envisioned!): it can be
virtually impossible to extract any analytically tractable formulae or numerical approximations of
different measures of performance. The only credible avenues for quantifying system performance for
many people for years appeared to be simulation studies or building a prototype (which is another form
of simulation, using the actual system but simulating the load).

In a series of seminal papers, Jackson made the fundamental observation that for a wide class of
Markovian models, the distribution of the number of jobs in each step queued or in service at each node
in a network could be written as the product of functions, with each function depending only on the
workload for that node. This arises in many other areas of mathematics, where the solution to a
multivariate set of equations is assumed to be the product of functions depending only on one variable, a
so called separation of variables decomposition. It is also in the spirit of Fourier analysis, where an
arbitrary function is approximated as the sum of a number of elementary functions. Because of this
property, the long term time averaged distribution for the number of jobs queued or in execution in these
Jackson models are often said to obey a product form distribution. Just (or more) important than this
analysis is the ready availability of efficient and easy to use software packages that numerically
approximate a variety of performance measures for these classes of models, and handle both input and
output in a flexible manner, allowing different design choices and sensitivity analyses to be quickly
carried out*. There is currently a great deal of research activity into both extending this class of models
and extending the range of numerical approximations.

6.1 Overview

First we describe the ingredients in a Jackson queueing network model and then we develop the outline
of the exposition.

6.1.1 Ingredients The inputs for this type of analysis are a description of the total mean arrival rate for
each job, the total mean time each job uses each resource with only one resource used at a time, and a
description of how contention for each resource is resolved. The output of this type of analysis is the
fraction of time a given number of jobs are queued or in execution at each resource. This in turn can be
manipulated to determine the utilization of each resource, and the mean throughput rate and mean

__________________

* Efficiency: in one study conducted by the authors for an online transaction processing system with five hundred terminals, ten
processors each with two disk spindles, and thirty data links, the entire model (including a graphics library), occupied less than
ninety thousand bytes of static main memory, and could produce graphic output for seven hundred and twenty different
parameter choices using less than ten seconds of processor time (for both numerical calculations and graphical output) running
in a GCOS environment on a H6000.
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queueing time (both waiting and execution time) for each job using the techniques developed in the
earlier sections. The scheduling policies analyzed here demand that a processor must execute a job if a
job is ready for execution: these are called work conserving policies because the total backlog of work
is independent of the precise details of the scheduling policy at any instant of time. Two examples of
work conserving policies are (i)servicing jobs in order of arrival, or (ii)multiplexing a single processor at
a high speed among J jobs so that each job receives 1⁄Jth the total available processor cycles. The
mean value analysis inputs are a subset of these inputs, so we expect the Jackson network outputs to
refine the mean value analysis outputs. An example of a policy that does not conserve work is found in
a system that executes two types of jobs, one with one second execution times and the other with one
hour execution times; if it frequently occurs that ten seconds after we begin execution of a one hour job,
a short one second job may arrive, then we might wait for eleven seconds after a long job arrives before
starting execution, holding the processor idle, to allow short jobs not to be delayed at the expense of
long jobs.

6.1.2 Program First we analyze a single parallel group of processors fed from a single queue, for a
wide variety of parameter choices. Second we examine an arbitrary network of serially reusable
resources where each job migrates from node to node, entering and leaving at different nodes. As a
special case, we examine a pipeline of nodes or stages, each with a single processor. All of this is done
for one type of job, and then extended to multiple types of jobs. These basic cases will form the
foundations for a series of case studies and examples in this and subsequent chapters.

Ideas appear here that have not been encountered before. All of these new ideas are expounded for the
simplest case, a single parallel group of processors: jobs can be either delayed (stored in a buffer) until
a processor is available, or rejected if no storage space is available. Queueing or buffering jobs might
be chosen if it were highly likely that a processor would become available an acceptable time after a job
arrival; jobs would be blocked on arrival if this were not the case. A different way of thinking about
this is that jobs are blocked or delayed for a finite time from being serviced; in the limit where jobs are
blocked or delayed forever, the jobs are lost, i.e., never serviced. In practice, systems are designed so
that in normal operation blocking or delay or defection is rare. Many communication systems adopt
combinations of loss and delay mechanisms. We choose to first analyze delay alone and then loss alone
before attempting to analyze systems combining both these mechanisms.

Finally, special asymptotic limiting cases give us analytic insight into system performance. One such
case involves allowing the number of active terminals attached to a computer system to become larger
and larger, while the total workload stays constant. As the total number of terminals grows, each
terminal contributes less and less to the workload, but the total workload is constant. Another such case
involves allowing the number of terminals and processors to become larger and larger, while the ratio of
terminals and processors stays fixed. Each terminal contributes the same workload, so as the total
number of terminals and processors grows, the total workload grows.

6.1.3 Additional Reading

[1] J.R.Jackson, Networks of Waiting Lines, Operations Research, 5, 518-521 (1957).

[2] J.R.Jackson, Jobshop-Like Queueing Systems, Management Science, 10 (1),131-142(1963).

[3] F.P.Kelly, Networks of Queues, Advances in Applied Probability, 8, 416-432 (1976).

[4] F.P.Kelly, Reversibility and Stochastic Networks, Wiley, Chichester, 1979.

6.2 A Single Node with P Parallel Processors

Clerks at terminals submit one type of job to a computer system that consists of P processors, then wait
for a response before submitting the next job. The processors are fed jobs from a single queue. Jobs
are stored in a buffer of capacity M jobs if no processor is available. If a job is submitted with all
buffers filled, the job is rejected, and the clerk begins the entire process over again. The mean time
spent by a clerk reading and thinking and typing is denoted by Tthink . The mean processor execution
time per job is denoted by Tproc . Our goal is to calculate the mean throughput rate λ and the mean
delay (waiting plus execution time) that a clerk experiences which we will call the queueing time or flow
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Figure 6.1.System Block Diagram

time of a job, denoted by E (TQ ).

6.2.1 Functional Operation In order to describe the operation of the system, we need to describe the
workload generated by each clerk and the policy for arbitrating contention for shared resources.

The workload is handled first. There are C clerks. There are at least as many clerks as buffer space,
C ≥M . Each clerk spends a mean amount of time Tthink reading, thinking, and typing and then submits a
job for execution. The sequence of times each clerk spends reading and thinking and typing are
assumed to be independent identically distributed random variables. Once a job is submitted to the
system, if storage space is available, the job is accepted for service; otherwise the job is rejected and
returns to the clerk who starts the entire cycle over again. The system is capable of storing a maximum
of M jobs. If a job is accepted and there is an idle processor available, that job begins execution
immediately. The processor execution times are independent identically distributed random variables
with mean Tproc .

Next, the arbitration or scheduling policy is described. There are two queues here, one for the clerks
and one for the processors. Once a processor finishes executing a job, an idle clerk will enter into the
thinking state; since there is one clerk per job, there will never be any jobs waiting in the clerk queue
for an idle clerk. The rate at which clerks submit jobs to the system depends upon the number of clerks
reading and thinking and typing. Let Φclerk (Jclerk ) denote the number of seconds of work done in one
second of time. For example, if Φclerk (Jclerk )=Jclerk , then if Jclerk =0 then no work is done, while if
Jclerk =1 then one second of work is done in one second, and if Jclerk =2 then two seconds of work are
done in one second, given there are Jclerk clerks in the thinking state. More generally, we assume that
this function is positive and monotonically increasing with Jclerk , and equals zero if Jclerk =0. We stress
that Φclerk (Jclerk ) is dimensionless or without any units. The instantaneous (i.e., the instant at which
there are Jclerk clerks thinking) rate at which jobs are submitted by clerks is given by

instantaneous job submittal rate =
Tthink

Φclerk (Jclerk )_ __________ Jclerk =0,1,...,C

For example, if we model the clerk behavior by

Φclerk (Jclerk ) = min (Jclerk ,C ) = Jclerk Jclerk =0,1,...,C

note that no jobs will be submitted if Jclerk =0, i.e., if all clerks are waiting for a response. At the other
extreme, if all clerks are reading, thinking and typing, this will be the maximum rate of submitting jobs.
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Figure 6.2.Queueing Network Block Diagram

The processor queue operates as follows: if no processor is available, the job is inserted into a buffer,
with the lower the index the closer to the head of the queue. We assume the number of buffers is
greater than or equal to the number of processors, M ≥P . If there are Jproc jobs in the queue just prior
to arrival of a job, the new job is inserted into the queue in position I with probability δ(I ,Jproc +1). If a
job is inserted in position I , all other jobs are moved to one index higher position. The rate at which all
processors execute jobs depends upon the number of jobs in the queue. Let Φproc (Jproc ) denote the
amount of work done, measured in seconds, during one second of time. For example, if
Φproc (Jproc ) = min [Jproc ,P =2], then for Jproc =0 no work is done, for Jproc =1 one second of work is done
in one second, for Jproc =2 two seconds of work are done in one second, and for Jproc >2 two seconds of
work are done in one second. The instantaneous rate at which the processor subsystem is executing jobs
is given by

processor job execution rate =
Tproc

Φproc (Jproc )_ __________

For example, we might choose

Φproc (Jproc ) = min [Jproc ,P ] Jproc =0,...,M

In words, if there are P or fewer jobs present, then each processor can execute one job at a rate of one
job every Tproc seconds, while if there are more jobs than processors, then all processors are completely
busy executing jobs.

The rate at which job I is executed in the queue when there are Jproc jobs total either in execution or
waiting is given by γ(I ,Jproc )Φproc (Jproc )≤1, where

I =1
Σ
J

K

γproc (I ,Jproc ) = 1

We stress that γ(I ,Jproc ) is measured in seconds of service received during one second of actual time.

>From this point on, we assume either of two conditions hold governing the operation of the processor
system:

• The processor service time obeys an exponential distribution

f raction of time job executed in X seconds = 1 − exp [−X ⁄Tproc ]

• The service time distribution is arbitrary, and the fraction of time that a job is inserted into position
I with Jproc jobs in the queue equals the rate at which that job will receive service:
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γ(I ,Jproc ) = δ(I ,Jproc )

One example of a scheduling rule that meets these conditions is processor sharing, where all jobs are
multiplexed by the processor so quickly that effectively each receives a fraction of processor capacity
proportional to the number of jobs at the processor queue. If Jproc jobs are present, each receives 1⁄Jproc

the fraction of available processing capacity:

γ(I ,Jproc ) = δ(I ,Jproc ) =
Jproc

1_ ____

A second example is processor scheduling such that the last arrival is the first to receive service, with
subsequent later arrivals preempting the job currently in service, and service is resumed (eventually, after
all later arrivals are completely executed) at the point of interruption:

γ(I ,Jproc ) =


 0 otherwise

1 I =Jproc

A third example is where there is always a processor available to execute a job, so

γ(I ,Jproc ) = δ(I ,Jproc ) = 1

so that when a job arrives it immediately begins execution.

6.2.2 State Space What is the state of the system? The complete state space would involve specifying
the state of each clerk (busy with a transaction or waiting for the system to respond), and the state of
each job in the system (where it is in the queue and how much service it had received). Suppose we
only keep track of the total number of clerks busy with jobs, and the total number of jobs in the
system? The system state at any instant is given by the pair J_ =(Jclerk ,Jproc ) where Jclerk =0,...,C denotes
the number of clerks with jobs, i.e., reading, thinking and typing, and Jproc =0,...,M denotes the number
of jobs in the system, both queued and in execution. A key constraint is that each clerk is either busy
reading, thinking and typing, or waiting for a response; put differently, there are always C jobs
somewhere:

Jclerk + Jproc = C

The state space, the set of admissible pairs J_ is denoted by Ω:

Ω = {J_ =(Jclerk ,Jproc ) Jclerk =0,...,C ;Jproc =0,...,M ;Jclerk +Jproc =C }

In describing the operation of the system, we might measure the following items:

• The times at which jobs are submitted

• Whether a job is accepted or rejected because storage is not available

• The time an accepted job waits without being executed in the system

• The total time an accepted job spends in the system

For each of these, we could summarize the measurements with averages, carried out over a sufficiently
long time interval such that the mean values stabilized.

6.2.3 Goals What customer oriented criteria are we interested in here?

• the mean waiting time E (TW ) and mean queueing time E (TQ )

• the fraction of time a task waits at all PROB [TW =0]

• the fraction of time a task waits greater than X time units PROB [TW >X ]

• the fraction of time a task has a queueing time greater than X time units PROB [TQ >X ]

What system oriented criteria are of interest?

• the mean throughput rate of executing jobs
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• the mean number of busy processors

• the fraction of time each processor is busy, its utilization

• the fraction of time more than one processor and more than one clerk are busy

We want to operate in states with acceptable levels of customer and system oriented criteria. States with
acceptable customer oriented criteria may result in unacceptable system oriented criteria: delays may be
acceptable at the expense of idle processors and low throughput, while high utilization of each available
processor and high throughput rates may result in long queues and long delays.

6.2.4 Mean Value Analysis The first level of analysis is based on mean value inputs, with the outputs
being mean throughput rate and mean delay. The fraction of attempts that are blocked or rejected
because the available storage is filled is denoted by B . The mean throughput rate is

λo f f ered =
1 − B

λaccepted_______ λo f f ered (1 − B ) = λaccepted

On the other hand, each clerk spends a mean amount of time reading and thinking and typing, Tthink , and
then submits a job; if the job is accepted, i.e., the fraction of attempts that are accepted is 1−B , then the
job will spend a mean time E (TQ ) inside the system either waiting or in execution, and then the cycle
starts over again. Since there are C clerks, the mean throughput rate is given by

λaccepted =
(1 − B )E (TQ ) + Tthink

C_ __________________

In order to determine mean throughput rate and mean delay, we need to determine the fraction of
requests that are blocked. If there is no blocking, M =C , then we can handle this by the methods in the
previous sections; if there is blocking, C >M , then the earlier analysis will only give a lower bound on
mean throughput rate and an upper bound on mean delay.

If M =C , the system has three bottlenecks:

• If clerks are limiting the mean throughput rate, then

λ ≡
Tthink +Tproc

C__________

• If processor time is limiting the mean throughput rate, then

λ ≡
Tproc

P_ ____

• If storage or buffering is limiting the mean throughput rate, then

λ ≡
Tproc

M_ ____

Provided that M =C , we can write down upper and bounds on the mean throughput rate and mean
queueing time:

λlower ≤ λ ≤ λupper

λlower =
Tthink +

min [M ,C ]
C_ _________Tproc

C_ _____________________

λupper = min


 Tproc

P_ ____,
Tthink +Tproc

C__________




max



Tproc ,

λupper

C_ _____ − Tthink





≤ E (TQ ) ≤
min [M ,C ]

C_ _________ Tproc

In order to proceed further, we need to make use of the assumptions outlined earlier concerning arrival
and execution time statistics, and scheduling policies.
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6.2.5 Jackson Network Analysis Averaged over a suitably long time interval, the fraction of time the
system is in a given state is denoted by π(J_) which is the product of three terms, one dependent only on
clerks, one dependent only on the parallel processor group, and one that normalizes πC (J_) so that the
system is in some state all the time:

πC (J_) =
G
1_ __ (clerk dependent term ) × (processor dependent term ) J_ ∈Ω

J_ ∈Ω
Σ πC (J_) = 1

and the second factor depends only on the source (here clerks reading and thinking and submitting jobs),
while the final factor depends only on the system (which here is a group of parallel processors).

πC (J_) = πC (Jclerk ,Jproc ) =
G
1_ __

I =0
Π

J
clerk

−1

Tthink

Φclerk (I )_ _______
K =0
Π
J

proc

Φproc (K )

Tproc________ J_ ∈Ω

The function G is also called the system partition function, and is chosen such that

J_ ∈Ω
Σ πC (J_) = 1

The fraction of arrivals that are blocked or rejected is denoted by B , where

B = B (M ) =


 0

πC −1(Jproc =M )

C =M

C >M

Note that the fraction of time an arrival finds Jproc jobs in the system is different from the long term
time averaged distribution of jobs in the system, because when an arrival occurs it cannot be in the
system, i.e., effectively there are a total of C −1 jobs in the system:

f raction o f arrivals when system state is J_ = πC −1(J_)

The fraction of time that a job enters service immediately is given by

f raction o f time job enters service immediately =
1 − B (M )
K =0
Σ

P −1

B (K )
_ ________

The mean number of jobs in execution in the system is given by

E [min (Jproc ,P )] =
K =0
Σ

M −1

min (K ,P )
1 − B (M )

B (K )_ ________

The mean throughput rate is the mean number of jobs in execution divided by the mean time per job:

λ =
Tproc

E [min (Jproc ,P )]_ _____________

The mean queueing time per job, including both waiting and execution, is the ratio of the total mean
number of jobs in the processor system divided by the mean throughput rate:

E [TQ ] =
λ

E [Jproc ]_ _______ = Tproc E [min (Jproc ,P )]

E (Jproc )_ _____________

The mean queueing time is equal to the mean execution time of a job, multiplied by a stretching factor:

stretching f actor =
E [min (Jproc ,P )]

E (Jproc )_ _____________

If Jproc <<P then the stretching factor is one, i.e., there is zero mean waiting time, while if Jproc >>P
then the stretching factor grows as Jproc ⁄P .

The difference between the total number of jobs either queued or in execution, Jproc , and the number of
jobs actually in execution, min [Jproc ,P ], is defined as the number of jobs waiting. We can rewrite this
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as follows

Jproc − min [P ,Jproc ] = max [0,Jproc −P ]

The mean waiting time per job is the ratio of the mean number of waiting jobs divided by the mean
throughput rate:

E (TW ) =
λ

E [max (Jproc −P ,0)]_ ________________

In general, although we can obtain an expression for the joint distribution of number of jobs at each
stage in the system, we do not have an expression for the delay distribution and must infer mean delay
via Little’s Law. The exception is where jobs are executed in order of arrival, first come, for one case:
jobs are executed in order of arrival, first come, first serve. For this case, when a job arrives it must
wait for all jobs ahead of it to be serviced and then it will be executed. For this case, we can explicitly
calculate the delay statistics for a job.

PROB [TW >X  job accepted ] =
1 − B (M )

K =P
Σ

M −1

B (K )[1−ẼK −P +1(X )]
____________________

ẼK (X ) = 1 − exp(−X ⁄Tproc )
I =0
Σ

K −1

I !

(X ⁄Tproc )I
_ ________ K =1,2,...

EXERCISE. Calculate how quickly the mean value asymptotes are approached, as P →∞, with all
other parameters held constant. Is the rate of convergence exponentially fast? as a power of P ?

EXERCISE. Determine the rate of convergence to the mean value asymptotes with C →∞ but all other
parameters fixed. Is the rate of convergence exponentially fast? as a power of C ?

6.2.6 Additional Reading

[1] R.Syski, Markovian Queues, pp. 170-227 (Chapter Seven) in Proceedings Symposium on
Congestion Theory, W.L.Smith, W.E.Wilkinson (editors), 24-26 August 1964, University of
North Carolina Press, Chapel Hill, North Carolina, 1965.

6.2.7 Numerical Approximation Just because we have an analytic expression does not mean that we
can get numbers of interest for engineering actual systems. A key advantage of Jackson network models
is that a wide variety of performance measures can be quickly and efficiently (storage and execution
time) approximated. This is not to be dismissed lightly: these numbers often suggest design tradeoffs,
areas that require further study, in a very short period of time, rather than spending months (or years!)
finding out the obvious. Since it does not take long to get numbers, little has been invested, but perhaps
a lot is gained!

There exist several classes of algorithms that efficiently use storage for numerically approximating the
partition function and related quantities. We will explore these in this and later sections. For the
problem at hand, a recursion for approximating the system partition function appears to be most
appropriate, provided C is small, e.g., C <10.

We assume the total number of jobs in the system is fixed at M in what follows. The partition function
can be viewed as a function of two variables, the total number of nodes N and the total number of jobs
inside the system M . For this case, the mean throughput rate λ is given by

λ =
G (M ,N )

G (M −1,N )_ _________
K =1
Σ
N

JK = M

The fraction of time there are L jobs at node N , i.e., JN =L , is given by

π(JN =L ) =
J_ ∈Ω ;J

N
=L

Σ π(J_) =
G (M ,N )

G (M −L ,N −1)_ ____________
L !

(TN )L
_ _____

I =0
Π

L

max



1,

PL

I_ __




Here is an example written in FORTRAN for calculating these recursions:
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C SYSTEM PARTITION FUNCTION VIA RECURSION
C CLOSED JACKSON NETWORK MODEL
C N NODES, M JOBS IN SYSTEM
C
DOUBLE PRECISION PART(MEAN,PROB,UTIL,IP,N,IC,T)
C
C NODE 1 = CLERK NODE, IC CLERKS=M JOBS
C NODE 2 = SYSTEM PROCESSOR NODE
C T(K) = MEAN TIME PER JOB AT NODE K,K=1,...,N
C IP(K) = NUMBER OF SERVERS AT NODE K,K=1,...,N
C MEAN(K) = MEAN NUMBER OF JOBS AT NODE K,K=1,...,N
C PROB(K,J) = PROBABILITY J JOBS AT NODE K,K=1,...,N
C
DOUBLE PRECISION PROB,MEAN,SRATE,FRATE,T,G,SUM,TEMP
DIMENSION IP(N),MEAN(N),SRATE(N,IC+1),FRATE(N,IC+1)
DIMENSION PROB(N,IC+1),T(N)
C
C INITIALIZATION
C
DO 100 J=1,N
SRATE(1,J)=1.0d0
G(1,J)=0.0d0
DO 110 I=2,IC+1
G(I,J)=0.0d0
IMIN=I-1
IF(IMIN.GT.IP(J))IMIN=IP(J)
SRATE(I,J)=SRATE(I-1,J)/(DBLE(FLOAT(IMIN))*T(J))
110 CONTINUE
110 CONTINUE

C
C PERMUTATION OF NODE NUMBERS
C IPERM DENOTES FINAL NODE IN ONE PERMUTATION
C CYCLIC PERMUTATION: FIRST NODE 1, THEN NODE 2, ON UP
C TO NODE N CHOSEN FOR FINAL NODE IN RECURSION
C
IPERM=0
150 CONTINUE
IPERM=IPERM+1
DO 200 J=1,N
JCOM=J-IPERM
IF(JCOM.LE.0)JCOM=N+JCOM
DO 210 I=1,IC+1
FRATE(I,JCOM)=SRATE(I,J)
210 CONTINUE
200 CONTINUE

C
C INITIALIZE FIRST ROW,COLUMN OF PARTITION FUNCTION MATRIX
C
G(1,1)=1.0d0
DO 300 I=1,IC+1
G(I,1)=FRATE(I,1)
300 CONTINUE
DO 310 J=2,N
G(1,J)=1.0d0
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310 CONTINUE
C
C FILL OUT BODY OF PARTITION MATRIX
C
DO 400 J=2,N
DO 410 I=2,IC+1
G(I,J)=G(I,J-1)
DO 420 K=2,I
G(I,J)=G(I,J)+FRATE(K,J)*G(I-K+1,J-1)
420 CONTINUE
410 CONTINUE
400 CONTINUE

C
C PROBABILITY DISTRIBUTION OF NUMBER AT NODE IPERM
C
DO 500 K=1,IC+1
PROB(K,IPERM)=FRATE(K,N)*G(IC+1-K+1,N-1)/G(IC+1,N)
500 CONTINUE
TEMP=0.0d0
DO 510 K=1,IC+1
TEMP=TEMP+PROB(K,IPERM)
510 CONTINUE
DO 520 K=1,IC+1
PROB(K,IPERM)=PROB(K,IPERM)/TEMP
620 CONTINUE

C
C MEAN NUMBER AT NODE IPERM
C
MEAN(IPERM)=0.0d0
DO 530 K=1,IC+1
MEAN(IPERM)=MEAN(IPERM)+PROB(K,IPERM)*DBLE(FLOAT(K-1))
530 CONTINUE

C
IF(IPERM.LT.N)GO TO 150
RETURN
END

Figure 6.3.Partition Function FORTRAN Program

Two observations are in order:

• The recursion actually involves two aspects, the total number of jobs in the system, and the number
of nodes

• The recursion developed here will handle more than two nodes; we will use it later for a three node
system.

Here is one way to numerically approximate the following performance measures:

• the fraction of time greater than K jobs are buffered (waiting or in execution) at the processor stage

π[Jproc >K ] =
J

proc
=K +1
Σ
C

π[Jclerk =C −Jproc ,Jproc ]

• the fraction of time exactly K jobs are at the processor node
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π[Jproc =K ] = π[Jclerk =C −K ,Jproc =K ]

• the mean queue length at the processor stage

E [Jproc ] =
J

proc
=0

Σ
C

Jproc π[Jclerk =C −Jproc ,Jproc ]

• the mean number of jobs in execution

E [min (Jproc ,P )] =
J

proc
=0

Σ
C

min (Jproc ,P )π[Jclerk =C −Jproc ,Jproc ]

• the mean number of jobs waiting

E [max (Jproc −P ,0)] =
J

proc
=0

Σ
C

max (Jproc −P ,0)π[Jclerk =C −Jproc ,Jproc ]

• the fraction of time processors are busy doing work, their utilization

Uprocessor =
P
1_ _




1 −

K =0
Σ

P −1

π[Jclerk =C −K ,Jproc =K ]




• the fraction of time both one or more clerks and one or more processors are simultaneously busy

π[Jclerk >0,Jproc >0] = 1 − π[Jclerk =C ,Jproc =0]

− π[Jclerk =0,Jproc =C ]

• the mean throughput rate at the processor stage

mean throughput rate =
K =0
Σ
C

π[Jclerk =C −K ,Jproc =K ]
Tproc

min [K ,P ]_ ________

In the plots below the mean throughput rate and mean delay per transaction as well as upper and lower
bounds are calculated versus the number of clerks.

Figure 6.4.Mean Throughput Rate vs Number of Clerks

For the numbers chosen here, the mean value upper bound on mean throughput rate and lower bound on
mean delay closely approximates the Jackson network analysis. Put differently, the Jackson network
analysis refines our earlier analysis, showing in more detail (provided the underlying assumptions are
valid) how great contention is for processors or clerks. The mean value bounds arise from bottlenecks
that have a natural interpretation; oftentimes the designer can choose where the bottleneck should be, or
move it from one point to another as needs warrant it. Jackson network analysis results in a smooth
curve; mean value analysis results in a piecewise linear function. The interpretation of Jackson network
analysis results in bottlenecks being identified, just as in mean value analysis. A key contribution of the
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Figure 6.5.Mean Delay vs Number of Clerks

Jackson network analysis is to provide an independent check on what mean value bounds provide,
because the underlying assumptions are more stringent or different, and our findings are more robust.

6.2.8 Additional Reading

[1] S.C.Bruell, G.Balbo, Computational Algorithms for Closed Queueing Networks, Elsevier
North Holland, NY, 1980.

[2] J.P.Buzen, Computational Algorithms for Closed Queueing Networks with Exponential Servers,
C.A.C.M., 16(9), 527-531 (1973).

[3] R.B.Cooper, Introduction to Queueing Theory, pp.65-77, MacMillan, NY, 1972.

[4] K.G. Ramakrishnan, D. Mitra, An Overview of PANACEA: A Software Package for Analyzing
Markovian Queueing Networks, Bell System Technical Journal, 61, (10), I, 2849-2872 (1982).

[5] J.McKenna, D.Mitra, Integral Representations and Asymptotic Expansions for Closed Markovian
Queueing Networks: Normal Usage, Bell System Technical Journal, 61, (5), 661-683 (1982).

[6] J.McKenna, D.Mitra, K.G.Ramakrishnan, A Class of Closed Markovian Queueing Networks:
Integral Representations, Asymptotic Expansions, and Generalizations, Bell System Technical
Journal, 60 (5), 599-641 (1981).

6.3 Asymptotics

In order to gain insight into these formulae, we wish to examine two types of special cases. Both arise
from examining the formulae presented earlier. In all cases, we assume

Φclerk (Jclerk ) = Jclerk Φproc (Jproc ) = min [Jproc ,P ]

In the first type of special case, the total workload offered is fixed, measured in jobs arriving per second,
but the number of clerks becomes infinite. This is called an infinite source approximation, and it is also
called a Poisson approximation.

λ ≡
Tthink

C_ ____ = f ixed C →∞ Tthink →∞

Since Tthink →∞, each clerk spends more and more time reading and thinking and typing, but since we
have more and more clerks, the total workload is constant.
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A second type of limit is to fix ratios C ⁄M and C ⁄P and allow C →∞, with Tthink and Tproc fixed.
Should we have five clerks per processor, or ten clerks for two processors? Should there be three
buffers for every five clerks, or six buffers for every ten clerks? Since the mean time intervals Tthink

and Tproc , are fixed, the activity of each clerk stays the same, unlike the first case. The advent of
inexpensive processors may make this type of analysis of great practical import in times to come.

6.3.1 Infinite Source Asymptotics If we fix λ≡C ⁄Tthink and allow C →∞, then we find that the fraction
of time Jproc jobs are in the system is given by

π(Jproc ) =
G
1_ __

Jproc !

(λTproc )
J

proc

_ _________
K =0
Π
J

proc

max



1,

P
K_ _





Jproc =0,...,M

The distribution of jobs in the system at the instant a job arrives is now identical to the long term time
averaged number of jobs in the system. If M =C →∞, the fraction of time that a task must wait greater
than X time units is

PROB [TW >X ] =


 ∞

C (P ,A )exp [−(1−U )XP ⁄Tproc ]

A ≥P

A <P
M →∞

A ≡E [Jproc ] = λTproc U ≡ A ⁄P

The units of A are called Erlangs in honor of the Scandinavian teletraffic engineer A.K.Erlang, who was
a pioneer in engineering voice telephone transmission and switching systems. Since A is the mean
number of jobs in the processor queue, either waiting to run or in execution, if the mean number of jobs
is less than the actual number of processors then the processors can keep up with the work, and
otherwise they cannot. U is the fraction of time each processor is busy, its’ utilization.

The expression C (P ,A ), called Erlang’s delay function or Erlang’s function of the second kind, is given
by

C (P ,A ) =

K =0
Σ

P −1

K !
A K
_ ___ +

(P −1)!(P −A )
A P

_ ___________

A P ⁄(P −1)!(P −A )_ _____________________

This is a very important function, because we can compute many performance measures directly once
we know it:

• The fraction of time a task waits at all is

PROB [TW >0] = C (P ,A ) A <P

For a single processor, the fraction of time a task waits is the fraction of time the processor is busy;
for multiple processors, the fraction of time a task waits at all depends upon finding all the
processors busy first, and hence is more complicated.

• The mean waiting time for a task is given by

E (TW ) =
P −A

C (P ,A )Tproc_ ___________ =
(1 − U )P

C (P ,A )Tproc_ ___________ A <P

• The mean queueing time for a task is the sum of its mean waiting and service time:

E (TQ ) = E (TW ) + Tproc

For one processor, we see

C (P =1,A ) = A → E (TW ) =
1−A

ATproc_ _____ → E (TQ ) =
1−A

Tproc_ ____

The mean queueing time equals the mean execution time, multiplied by a stretching factor of 1⁄1−A .
Under light loading A <<1 the stretching factor is one, while as A →1 the stretching becomes larger and
larger than one.
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6.3.2 Modem Pooling In a dial up online computer system, users dial up the computer over voice
telephone lines. Each user will need a modem to connect to the computer. The mean holding time per
call is one minute. The mean arrival rate of calls is five calls per minute. We wish to have sufficient
modems so that the fraction of time that a user waits at all for a modem is under ten per cent. How
many modems are required?

The offered load to the system is given by

A = 5 calls per minute × one minute per call = 5 Erlangs

We wish to find P such that

C (P ,A =5) < 0.10

If we simply try various numbers, starting with P=5 since we expect to have five busy modems on the
average most of the time, we see that eight or more modems is sufficient to meet the delay criterion.

6.3.3 P=M Loss System A typical problem in voice telephony is to determine how many circuits are
needed to handle the load. Telephone calls arrive at random instants of time, and will tie up or hold a
telephone line for three to five to ten minutes. If all lines are busy, it is highly unlikely a line will
become free within the next few seconds, and the new arrival is blocked or rejected. A natural model of
this situation is calls or jobs arrive for service at a group of P =M parallel servers or processors, with
one buffer per processor. The mean service time of a job is denoted by E (TS ). If all servers are busy
when an arrival occurs, the new arrival is rejected or blocked and presumably will retry later.

What goals are to be achieved? >From the point of view of a customer, the fraction of time an arrival
is rejected should be acceptably low. What system oriented criteria are of interest? The mean number
of busy processors, and the fraction of time each processor is busy, its utilization, should be acceptably
high.

The interarrival times between jobs are assumed to be independent identically distributed exponential
random variables, i.e., the arrival statistics can be modeled by a Poisson distribution. The mean
throughput rate of completing tasks is denoted by the carried mean throughput rate, to distinguish it
from the offered load, which will be bigger than the carried load because some offered load was
rejected. The carried mean throughput rate is

λcarried = λo f f ered [1 − B (P ,A )]

where as above A is the mean offered load to the system A = λE (TS ) to distinguish it from the carried
(actual) load Â given by

Â = A [1 − B (P ,A )] = mean number o f busy servers

In some cases, only the carried load can be measured, and then we must work backwards to infer the
offered load. As long as the fraction of attempts blocked is negligible, the above expression provides a
convenient rough cut for doing so. B (P ,A ) is called Erlang’s blocking function or Erlang’s function of
the first kind, and is given by

B (P ,A ) =

K =0
Σ
P

A K ⁄K !

A P ⁄P !_ _________

B (P ,A ) is the fraction of time that all P processors are busy, or it is the fraction of time a new arrival is
blocked or rejected.

If a task is accepted, it waits no time at all to be processed. If a task is rejected, it waits forever and is
never processed. The queueing time, the sum of the waiting time and the service time, is either equal to
the service time if the task is accepted, or is infinite if the task is rejected.

For values of λo f f ered that result in small blocking the mean throughput rate λcarried equals λo f f ered ; for
λo f f ered →∞ the mean throughput rate approaches P ⁄E (TS ). For intermediate values, the exact
expressions must be used. The mean waiting time of accepted tasks is zero, while the mean queueing
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time of accepted tasks is E (TS ).

6.3.4 Circuit Switching We must configure a data computer communication system with sufficient
private communication lines so that the fraction of time call attempts are blocked because no line is
available is sufficiently small. Measurement data suggest a typical call lasts for forty five minutes, with
an average of ten calls per hour being attempted. We wish to examine two levels of service, one where
a call attempt is blocked no more than ten per cent of the time, and a second where a call attempt is
blocked no more than one per cent of the time. How many circuits are needed?

The mean number of calls in progress is

A = (3⁄4) hours ⁄call × 10 calls ⁄hour = 7.5 calls or Erlangs

Hence, at least 7.5, i.e., eight circuits are needed just to carry the load.

Using an Erlang blocking analysis, in order to meet the goal of calls being blocked no more than ten per
cent of the time, we need ten circuits. In order to meet the goal of calls being blocked no more than
one per cent of the time, we need fourteen circuits.

6.3.5 Relationships Between Loss and Delay Systems There are many relationships between loss and
delay systems. Here is one such formula relating Erlang’s loss formula and Erlang’s delay formula:

C (P ,A ) =
P + A [B (P − 1,A )−1]

A B (P − 1,A )_ ___________________

Thus, if we know how to calculate or numerically approximate Erlang’s loss formula, we can also
numerically approximate Erlang’s delay formula.

6.3.6 Numerical Approximation of Erlang’s Blocking Function We now present an algorithm for
numerically approximating the Erlang blocking function, due to D.Jagerman, that can be readily
programmed on a pocket calculator or other machine. The implementation presented here is in
FORTRAN, and requires two constants, one for underflow and one for overflow.

DOUBLE PRECISION FUNCTION BERL(N,A)
C
C INPUTS
C
C P--NUMBER OF PROCESSORS
C A--OFFERED LOAD IN ERLANGS
C
C OUTPUT
C
C BERL--ERLANG BLOCKING FUNCTION
C
C ALGORITHM--ITERATE ON THE INVERSE OF BERL
C

DOUBLE PRECISION BERL,A,XN,XA,TERM,SUM,DMIN,DMAX
C
C DMIN--CHOSEN TO MACHINE ACCURACY
C DMAX--RECIPROCAL OF SMALLEST BLOCKING OF INTEREST
C

DMIN=1.0D-10
DMAX=1.0d9

C
C PARAMETER INITIALIZATION
C

XN=DBLE(FLOAT(N))
XA=1.0d0/A
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TERM=XN*XA
SUM=1.0d0

C
C MAIN LOOP
C

10 CONTINUE
SUM=SUM+TERM
XN=XN-1.0d0
TERM=TERM*XN*XA
IF((TERM.LT.DMIN).OR.(SUM.GT.DMAX)) GO TO 20
GO TO 10

C
C TO REACH HERE MUST HAVE COMPLETED
C

20 CONTINUE
BERL=1.0d0/SUM
RETURN
END

Figure 6.6.Erlang Blocking Function FORTRAN Program

6.3.7 Additional Reading

[1] D.L.Jagerman, Some Properties of the Erlang Loss Function, Bell System Technical Journal, 53,
(3), pp.525-551, 1974.

6.3.8 C/M and C/P Fixed, C →∞ The remaining asymptotic case, where the ratios are fixed for C ⁄M
and C ⁄P but C →∞, is summarized by the following formulae:

• The fraction of time an attempt is blocked is given by

B = 1 − min






1,

Tthink + min


 P

CTproc_ _____ − Tthink ,Tproc P
M_ __





C_ _________________________________






• The fraction of time a processor is busy is given by

U = utilization ⁄processor = min



1,

P (Tthink +Tproc )

CTthink_ ____________




• The mean rate of submitting jobs is given by

λo f f ered = mean job submission rate =
Tproc

PU_ ____

• The mean throughput rate of jobs is given by

λcarried =
1 − B

λo f f ered_ ______ =
(1 − B )E (TQ ) + Tthink

C_ __________________

• The mean delay per job is given by

E (TQ ) = max



Tproc ,min



 P

CTproc_ _____ − Tthink ,
P
M_ __Tproc











-- --

CHAPTER 6 JACKSON NETWORK ANALYSIS 17

6.4 Teletraffic Engineering of an Automatic Call Distributor

An automatic call distributor, as the name implies, automatically distributes incoming calls among
various available agents. Customers dial a telephone number, and the calls are routed through the voice
telephony network to the call distributor. The call distributor either blocks or rejects a call attempt if all
incoming circuits or trunks to the call distributor are busy (either with calls waiting for an agent or calls
between agents and customers). Customers are queued for service by an agent. If all agents in a given
group are busy, the customer is queued for a receiver that plays a recorded message asking the customer
to be patient until an agent becomes available; in many cases, music is played while the customer is
waiting. After the agent handles the customer request there is often some clean up work associated with
that particular task, after which the agent is available for handling the next incoming call.

Automatic call distributors are currently in wide use. Some examples are

• airlines--for handling reservations, time of arrival and departure of flights, travel agent activity,
charter and tour operators, charging or billing information, internal administrative use

• hotels and motels--for handling reservations at a nationwide chain, billing questions, travel agent
activity

• credit authorization and verification--for a variety of bank credit cards, which require authorization if
the purchase price exceeds a given limit

• message service--major companies frequently have a centralized group of agents handle all messages
rather than tie up a secretarial pool with this job

6.4.1 Model The model inputs required here would be the mean arrival rate of calls, the mean time a
customer would wait for an agent, and the mean time to handle a customer plus any related work (such
as logging the result of the customer inquiry).

How can the number of trunks or links and agents be chosen such that the system meets both a given
blocking criterion and a mean delay criterion for each customer?

Here is a summary of model parameters for two illustrative cases, one for credit authorization, and one
for airline reservations and flight information.

Table 6.1.Model Parameters_ ______________________________________________________ _____________________________________________________
Attribute Credit Authorization Airline_ ______________________________________________________ _____________________________________________________

Announcement Time 10-20 Seconds 20-30 seconds
Talking Time 30-60 seconds 100-200 seconds

Goals are specified for a peak business hour load. During the first year of operation, the peak business
hour mean call arrival rate is four per minute. This will increase to eight calls per minute during the
second year, and twenty calls per minute during the third year. Each call that is accepted can wait for
fifteen seconds, on the average, and each inquiry will require a mean of one minute per agent. We
denote by Twait the mean waiting time (e.g., to hear an announcement), and Ttalk the mean time to
handle a customer request.

6.4.2 State Space The system state space is denoted by Ω. Elements are integer valued pairs denoted
by J_ =(Jwait ,Jtalk ), where Jwait denotes the number of calls waiting for an agent, and Jtalk denotes the
number of busy agents (busy handling customer requests). Since there are T trunks and S agents, the
state space is given by:

Ω = {(Jwait ,Jtalk ) Jwait +Jtalk ≤T ,Jtalk ≤S }

6.4.3 Mean Value Analysis The mean number of trunks held equals the mean arrival rate of accepted
calls multiplied by the mean trunk holding time. Since trunks are held for an announcement (if no agent
is available), and for handling customer requests, we can write

E [min (Jwait +Jtalk ,T )] = λ(Twait +Ttalk )

The mean number of busy agents is given by
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Figure 6.7.Call Distributor Block Diagram

Figure 6.8.Call Distributor Queueing Network

E [min (Jtalk ,S )] = λTtalk

This suggests the following two bottlenecks:

• If trunks are the bottleneck, then

λ =
Twait +Ttalk

T_ _________

For the number here, the required mean number of trunks is summarized in the table below:

Table 6.2.Number of Required Trunks_ __________________________________ _________________________________
Year Trunks_ __________________________________ _________________________________

1 5 trunks
2 10 trunks
3 40 trunks
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• If agents are the bottleneck, then

λ =
Ttalk

S_ ____

For the numbers described above, the mean number of required agents is summarized in the table
below:

Table 6.3.Number of Required Agents_ __________________________________ _________________________________
Year Agents_ __________________________________ _________________________________

1 4 agents
2 8 agents
3 20 agents






This analysis suggests that 1.25 trunks are required for every agent, i.e., (Ttalk +Twait )⁄Twait trunks per
agent.

6.4.4 Jackson Network Analysis What if we use an Erlang blocking analysis to determine the number
of trunks required? This means that we are looking for the largest value of T such that

B [T ,λ(Ttalk +Twait )] ≤ εtrunk

where εtrunk is the fraction of blocked or rejected call attempts. The table below summarizes these
calculations:

Table 6.4.Number of Trunks Required_ ____________________________________ ___________________________________
Fraction of Attempts Rejected

Year 0.001 0.01 0.1_ ____________________________________ ___________________________________
1 14 trunks 11 trunks 8 trunks
2 21 trunks 18 trunks 13 trunks
3 41 trunks 36 trunks 28 trunks







The interpretation of the data is that during year one 8-14 trunks suffice, during year two 13-21 trunks,
and during year three 28-41 trunks. Since trunks may come in bundles or integral multiples of one
trunk (such as six trunks or twenty four per trunk group, with all purchases in multiples of trunk groups)
economic considerations must be addressed here. For example, two trunk groups of six trunks each
would suffice for the first year, four trunk groups for the second year, and seven trunk groups for the
third year. On the other hand, the increment in carried load is simply the difference in blocking for T +1
trunks versus T trunks, multiplied by the carried load.

We next use Erlang’s delay formula to calculate the number of agents required to meet a given delay
criterion. This means we are looking for the largest value of S such that

C (S ,λTtalk ) ≤ εagent

where εagent is the agent delay criterion. The table below summarizes these calculations:

Table 6.5.Number of Agents Required_ _____________________________________ ____________________________________
Fraction of Time Call Waits > 0

Year 0.1 0.2 0.3_ _____________________________________ ____________________________________
1 8 agents 7 agents 6 agents
2 13 agents 12 agents 11 agents
3 22 agents 20 agents 19 agents







This table makes it clear fewer agents are needed than trunks, typically one agent for every 1.1 to 1.5
trunks. In all cases, the number of agents and trunks needed is larger than the mean value analysis
suggests. On the other hand, the mean value analysis appears to be a reasonable first cut at answering
how many trunks and agents are needed, one that can be refined as additional information comes to
light.
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6.4.5 Additional Reading

[1] L.Kosten, Stochastic Theory of Service Systems, pp.26-40, Pergamon Press, London, 1973.

[2] P.A.Brown, D.W.Clark, Automatic Call Distribution System-ASDP 162, Telecommunications
Journal of Australia, 29 (3), 245-255 (1979).

6.5 Teletraffic Engineering of an Automatic Call Distributor

An automatic call distributor, as the name implies, automatically distributes incoming calls among
various available agents. Customers dial a telephone number, and the calls are routed through the voice
telephony network to the call distributor. The call distributor either blocks or rejects a call attempt if all
incoming circuits or trunks to the call distributor are busy (either with calls waiting for an agent or calls
between agents and customers). Customers are queued for service by an agent. If all agents in a given
group are busy, the customer is queued for a receiver that plays a recorded message asking the customer
to be patient until an agent becomes available; in many cases, music is played while the customer is
waiting. After the agent handles the customer request there is often some clean up work associated with
that particular task, after which the agent is available for handling the next incoming call.

Automatic call distributors are currently in wide use. Some examples are

• airlines--for handling reservations, time of arrival and departure of flights, travel agent activity,
charter and tour operators, charging or billing information, internal administrative use

• hotels and motels--for handling reservations at a nationwide chain, billing questions, travel agent
activity

• credit authorization and verification--for a variety of bank credit cards, which require authorization if
the purchase price exceeds a given limit

• message service--major companies frequently have a centralized group of agents handle all messages
rather than tie up a secretarial pool with this job

6.5.1 Model The model inputs required here would be the mean arrival rate of calls, the mean time a
customer would wait for an agent, and the mean time to handle a customer plus any related work (such
as logging the result of the customer inquiry).

How can the number of trunks or links and agents be chosen such that the system meets both a given
blocking criterion and a mean delay criterion for each customer?

Here is a summary of model parameters for two illustrative cases, one for credit authorization, and one
for airline reservations and flight information.

Table 6.1.Model Parameters_ ______________________________________________________ _____________________________________________________
Attribute Credit Authorization Airline_ ______________________________________________________ _____________________________________________________

Announcement Time 10-20 Seconds 20-30 seconds
Talking Time 30-60 seconds 100-200 seconds

Goals are specified for a peak business hour load. During the first year of operation, the peak business
hour mean call arrival rate is four per minute. This will increase to eight calls per minute during the
second year, and twenty calls per minute during the third year. Each call that is accepted can wait for
fifteen seconds, on the average, and each inquiry will require a mean of one minute per agent. We
denote by Twait the mean waiting time (e.g., to hear an announcement), and Ttalk the mean time to
handle a customer request.

6.5.2 State Space The system state space is denoted by Ω. Elements are integer valued pairs denoted
by J_ =(Jwait ,Jtalk ), where Jwait denotes the number of calls waiting for an agent, and Jtalk denotes the
number of busy agents (busy handling customer requests). Since there are T trunks and S agents, the
state space is given by:

Ω = {(Jwait ,Jtalk ) Jwait +Jtalk ≤T ,Jtalk ≤S }
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Figure 6.7.Call Distributor Block Diagram

Figure 6.8.Call Distributor Queueing Network

6.5.3 Mean Value Analysis The mean number of trunks held equals the mean arrival rate of accepted
calls multiplied by the mean trunk holding time. Since trunks are held for an announcement (if no agent
is available), and for handling customer requests, we can write

E [min (Jwait +Jtalk ,T )] = λ(Twait +Ttalk )

The mean number of busy agents is given by

E [min (Jtalk ,S )] = λTtalk

This suggests the following two bottlenecks:

• If trunks are the bottleneck, then

λ =
Twait +Ttalk

T_ _________

For the number here, the required mean number of trunks is summarized in the table below:
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Table 6.2.Number of Required Trunks_ __________________________________ _________________________________
Year Trunks_ __________________________________ _________________________________

1 5 trunks
2 10 trunks
3 40 trunks






• If agents are the bottleneck, then

λ =
Ttalk

S_ ____

For the numbers described above, the mean number of required agents is summarized in the table
below:

Table 6.3.Number of Required Agents_ __________________________________ _________________________________
Year Agents_ __________________________________ _________________________________

1 4 agents
2 8 agents
3 20 agents






This analysis suggests that 1.25 trunks are required for every agent, i.e., (Ttalk +Twait )⁄Twait trunks per
agent.

6.5.4 Jackson Network Analysis What if we use an Erlang blocking analysis to determine the number
of trunks required? This means that we are looking for the largest value of T such that

B [T ,λ(Ttalk +Twait )] ≤ εtrunk

where εtrunk is the fraction of blocked or rejected call attempts. The table below summarizes these
calculations:

Table 6.4.Number of Trunks Required_ ____________________________________ ___________________________________
Fraction of Attempts Rejected

Year 0.001 0.01 0.1_ ____________________________________ ___________________________________
1 14 trunks 11 trunks 8 trunks
2 21 trunks 18 trunks 13 trunks
3 41 trunks 36 trunks 28 trunks







The interpretation of the data is that during year one 8-14 trunks suffice, during year two 13-21 trunks,
and during year three 28-41 trunks. Since trunks may come in bundles or integral multiples of one
trunk (such as six trunks or twenty four per trunk group, with all purchases in multiples of trunk groups)
economic considerations must be addressed here. For example, two trunk groups of six trunks each
would suffice for the first year, four trunk groups for the second year, and seven trunk groups for the
third year. On the other hand, the increment in carried load is simply the difference in blocking for T +1
trunks versus T trunks, multiplied by the carried load.

We next use Erlang’s delay formula to calculate the number of agents required to meet a given delay
criterion. This means we are looking for the largest value of S such that

C (S ,λTtalk ) ≤ εagent

where εagent is the agent delay criterion. The table below summarizes these calculations:

Table 6.5.Number of Agents Required_ _____________________________________ ____________________________________
Fraction of Time Call Waits > 0

Year 0.1 0.2 0.3_ _____________________________________ ____________________________________
1 8 agents 7 agents 6 agents
2 13 agents 12 agents 11 agents
3 22 agents 20 agents 19 agents
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This table makes it clear fewer agents are needed than trunks, typically one agent for every 1.1 to 1.5
trunks. In all cases, the number of agents and trunks needed is larger than the mean value analysis
suggests. On the other hand, the mean value analysis appears to be a reasonable first cut at answering
how many trunks and agents are needed, one that can be refined as additional information comes to
light.

6.5.5 Additional Reading

[1] L.Kosten, Stochastic Theory of Service Systems, pp.26-40, Pergamon Press, London, 1973.

[2] P.A.Brown, D.W.Clark, Automatic Call Distribution System-ASDP 162, Telecommunications
Journal of Australia, 29 (3), 245-255 (1979).

6.6 General Single Class Jackson Network Model

Clerks at terminals submit one type of job to a computer communication system.

Figure 6.9.System Block Diagram

A queueing network model of this system is as follows: A source submits one type of job to a system.
There are a total of P 0 sources. Each job enters a staging queue: if there are less than M jobs in the
system, the job immediately enters the system, and otherwise waits for the number of jobs in the system
to drop below M . Once a job enters the system, it visits a number of nodes or stations within the
network, and after being completely processed exits the system, where the cycle begins anew. The
number of processors or servers at node K is denoted by PK .

6.6.1 State Space The number of jobs either queued or in execution at time t at node K =1,...,N is
denoted by JK (t ). Elements JK (t ) are nonnegative integers, and are members of a state space denoted
by Ω. The number of sources with a job is denoted by J 0; if there is staging, then

number of jobs in staging queue = min [0,M − J 0]

Three cases will be dealt with:

[1] Jobs can be submitted to the system sufficiently fast such that the system always contains M
jobs. The state space for this case is given by

Ω = {(J 1,...,JN ) JK ≥0,1≤K ≤N ;
K =1
Σ
N

JK =M }

[2] The system always has room for a job, i.e., M ≥P 0, so there is never a job in the staging queue.
The state space for this case is given by
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Figure 6.10.Queueing Network Model Block Diagram

Ω = {(J 1,...,JN ) JK ≥0,0≤K ≤N ,
K =0
Σ
N

JK = P 0}

[3] One limiting case that is analytically tractable is a so called open network, where only the total
job arrival rate is known, denoted by λ = P 0⁄T 0, with P 0→∞. The state space is now given by

Ω = {(J 1,...,JN ) JK ≥0,1≤K ≤N }

It remains to specify the workload in greater precision, and the scheduling or arbitration rule for each
node.

6.6.2 Workload The system at any instant of time contains  J_  jobs, where

 J_   =
K =1
Σ
N

JK

Given the system contains  J_  jobs at time t and that the number of jobs at each node is observed
over time, the instantaneous job arrival rate at time t is given by

instantaneous job arrival rate =
T 0

Φ0( J_(t ) )_ __________ > 0

Each distinct visit to node K requires a possibly different amount of execution time by a server at that
node. The random variable τK denotes the service time per visit to node K , which is a sequence of
independent identically distributed random variables drawn from a common distribution denoted by
HK (X ):

PROB [τK ≤ X ] = HK (X )

The mean of τK is denoted by E (τK ).

Each job is routed through the network probabilistically: once a job is serviced at node K , it migrates
to node J with probability RKJ , where K =1,...,N and J =0,...,N , i.e., a job can exit the system and return
to the source node when J =0. An equivalent description of this process is that each job makes VK visits
to node K , and hence the total mean amount of service at node K , denoted by TK , is VK E (τK ).

6.6.3 Scheduling Policy for Arbitrating Contention When a job arrives at queue K and finds JK jobs
present, it is inserted into place I with probability δK (I ,JK +1) where I =1,...,JK +1. All tasks in position
I ,...,JK are shifted to the position with the next higher index. When a job finishes execution at position
I , all jobs at position I +1,...,JK are shifted to the position with the next lower index.
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When JK jobs are present at node K , work is executed at a total rate (measured in seconds of processing
per second, so that it is dimensionless), of ΦK (JK ). A job in position I out of JK at node K is
processed at a rate of γK (I ,JK )φK (JK ) ≤ 1, again measured in seconds of processing per second, such
that

I =1
Σ
J

K

γK (I ,JK ) = 1

or in words that some jobs are receiving all the available processing capacity.

We will not allow all possible scheduling rules, but only two classes. The first class of rules allows the
service time distribution to be arbitrary but the scheduling policy must be balanced in the sense that

γK (I ,JK ) = δK (I ,JK )

Examples of scheduling rules that meet these conditions are

• Processor sharing: if JK jobs are present, each receives 1⁄JK the fraction of available processing
capacity:

γK (I ,JK ) =
JK

1_ __

• Last come first serve preemptive resume: the last arrival is serviced first, with subsequent arrivals
preempting service, and service is resumed at the point of interruption:

γK (I ,JK ) =


 0 otherwise

1 I =JK

• An infinite server group, i.e., there is always available one server to execute a job, with no waiting
or queueing:

γK (I ,JK ) = 1

The second type of scheduling policy is to allow jobs to be executed in order of arrival, but now the
service time distribution must be exponential:

HK (τK ≤ X ) = 1 − exp [−X ⁄E (τK )]

6.6.4 Finite Source Arrival Statistics with Staging Analysis Granted the previous assumptions, the long
term time averaged fraction of time the system is in state J_ is denoted by π(J_), where

π(J_) = π(J 1,...,JN ) =
G
1_ __

I =0
Π

 J_   −1

T 0

Φ0(I )_ _____
K =1
Π
N

I =1
Π
J

K

ΦK (I )

TK_ _____

J_ ∈Ω
Σ π(J_) = 1 π(J_) ≥ 0

If ΦK (I )=min (I ,PK ), and the system always contains M jobs, this can be written as

π(J_) =
G
1_ __

K =1
Π
N

JK !

TK
J

K

_ ____
I =0
Π
J

K

max



1,

PK

I_ ___




J_ ∈Ω

For the case where there is a staging queue with P 0 sources, this can be written as

π(J_) =
G
1_ __

K =0
Π
N

JK !

TK
J

K

_ ____
I =0
Π
J

K

max



1,

PK

I_ ___




6.6.5 Asymptotics One natural type of asymptotic analysis is to fix the total arrival rate at λ while
allowing the number of sources to become infinite:
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λ ≡
T 0

P 0_ __ = f ixed P 0,T 0→∞

The resulting form of the long term time averaged distribution simplifies:

λ f ixed
lim π(J_) =









0

K =1
Π
N

I =1
Π
J

K

JK !

λTK_ ____
I =0
Π
J

K

max



1,

PK

I_ ___




λ≥
K

min
TK

PK_ ___ = λmax

λ<
K

min
TK

PK_ ___ = λmax

This last condition needs some elaboration: if λ<λmax, the mean value upper bound on the maximum
mean throughput rate, then all nodes can keep up with the workload, and otherwise the number of jobs
at the slowest or bottleneck nodes exceeds any threshold. This can be seen from evaluating the partition
function: the partition function is finite provided λ<λmax, and otherwise is infinite.

The total mean queueing delay of a job is the sum of the individual queueing delays at each node:

E (TQ ) =
K =1
Σ
N

E (TQ ,K )

where the mean queueing delay (waiting plus execution) at node K is given by

E (TQ ,K ) = TK D (PK ,UK ) K =1,...,N

U is the utilization, the fraction of time, each server or processor at node K is busy, and D (PK ,UK ) is
the stretching factor for node K , i.e., it shows how much TK is inflated or stretched to account for
queueing delays.

D (P ,U ) =
P (1 − U )
C (P ,P U )_ _________ + 1

C (P ,P U ) is the Erlang delay function discussed earlier. This can be readily approximated numerically.
For U <<1, light loading, D (P ,U )∼∼ 1, i.e., there is virtually no stretching of the execution time, while
under heavy loading U →1, D (P ,U )→∞, i.e., the waiting time can swamp the execution time.

What if we plot the mean throughput rate versus the degree of multiprogramming defined to be  J_  ?
We see for  J_   =1 the mean throughput rate is simply the reciprocal of the total time to complete one
job, and hence increasing the degree of multiprogramming will always be less than  J_  times the
mean throughput for one job. At the other extreme, as the degree of multiprogramming becomes larger
and larger, one or more resources will be completely utilized or busy with work, and we see

λ =
I

min


 TI

PI_ __




 J_   →∞

The nodes that reach complete utilization first are called bottleneck nodes. The queueing network
analysis allows us to interpolate between these two asymptotic regions, as shown in the figure below.
One figure of merit discussed earlier is the stretching factor which we defined as the ratio of the upper
bound on mean throughput rate due to the number of jobs being a bottleneck over the actual mean
throughput rate:

stretching f actor =
actual mean throughput rate

job bottleneck mean throughput bound_ _________________________________ =
λ(J >1)

J λ(J =1)_ _______

We want to operate with a stretching factor close to one, i.e., as we add more jobs, the mean throughput
rate scales or increases linearly with J, and we stay close to the ideal bound. The design question is to
intelligently choose the bottlenecks so that this in fact happens!

6.7 Pipeline Processing

The configuration studied here is a pipeline of N processors, one processor per stage. Jobs arrive at the
first stage, are processed, and move on to the second stage, until completely executed. What impact
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Figure 6.11.Mean Throughput Rate vs Degree of Multiprogramming

Figure 6.12.Pipeline Queueing Network Block Diagram

might fluctuations have on the performance of such a system?

6.7.1 Analysis The model ingredients are

• Jobs arrive according to simple Poisson statistics with mean arrival rate λ jobs per unit time

• Each job requires TS ,K service at node K , where the service times are independent identically
distributed random variables

• Jobs are serviced in order of arrival

If there is no contention at all, to completely execute a job will require on the average
E (T 1)+ E (T 2)+ ...+ E (TN ) time units.

We now wish to study the impact that fluctuations about the mean value of the processing times can
have on the time required to completely execute a job. First, if the processing times at each stage are
exponentially distributed, which might be the case if sometimes one branch were followed and another
time another branch were followed, then the mean time that a job is waiting while other jobs are being
executed is denoted by E (TW ) and is given by

E (TW ,exponential )=
k =1
Σ
N

1−λE (TS ,K )

λE 2(TS ,K )_ __________

For example, if E (TS ,1)=...=E (TS ,N )≡E (TS ), i.e., the processing times at each stage had the same mean
value, then
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E (TW ,exponential )=
1−λE (TS )

N λE 2(TS )_________ E (TS )≡E (TS ,1)=...=E (TS ,N )

On the other hand, if the processing times at each stage are constant, i.e., no fluctuations about the
mean, then the mean time that a job is waiting while other jobs are being executed is denoted by
E (TW ,constant ) and is given by

E (TW ,constant )=
2(1−λE (TS ,max ))

λE 2(TS ,max )_ ______________ E (TS ,max )=max (E (TS ,1),...,E (TS ,N ))

For example, if E (TS ,1)=...=E (TS ,N ), then

E (TW ,constant )=
2(1−λE (TS ,max ))

λE 2(TS ,max )_ ______________

Note that this can be N/2 times that for the exponential case if the fluctuations about the mean
processing times are reduced from the exponential spread to the constant processing time case, with
similar much more dramatic payoff if one wishes to cut the ninetieth percentile of the waiting time
distribution function, averaged over a long term time interval.

EXERCISE: Show that the result for constant service at each stage is true, by showing that all the
queueing or waiting occurs as if all jobs were queued at the stage with the longest service time,
independent of the order of nodes in the pipeline.

It is interesting to note that although the delay statistics in pipeline processing can be quite sensitive to
the processing time statistics at each stage of execution, the maximum mean throughput rate is the same
for either example above:

maximum mean throughput rate = 1⁄max (E (TS ,1),E (TS ,2),...,E (TS ,N ))

This means that small changes in the mean service rate result in small changes in the maximum mean
throughput rate but not in the mean delay as the underlying execution time distributions at each stage
are varied.

6.7.2 An Example Suppose a computer communication system consists of N steps for each job, and
each step requires a mean of one second. If jobs arrive at the first stage of the pipeline at the rate of
one job every two seconds, then we can compare the performance of this system for different number of
stages in the pipeline and to fluctuations about the mean service time, and the results are summarized in
the table below:

Table 6.6.Mean Delay with λ=0.5 jobs ⁄sec_ ____________________________________________________________ ___________________________________________________________
Number Mean Waiting Time E (TW ) Mean Queueing Time E (TQ )

of Stages Constant Exponential Constant Exponential_ ____________________________________________________________ ___________________________________________________________
3 0.5 sec 3.0 sec 3.5 sec 6.0 sec
4 0.5 sec 4.0 sec 4.5 sec 7.0 sec
5 0.5 sec 5.0 sec 5.5 sec 8.0 sec














This makes it evident that the mean waiting grows with the number of stages if the fluctuations are
severe. As a check on this study, we allow the first stage to require two units of service, the second
stage one half unit of service, and all the rest of the stages require one unit of service, with the
calculations summarized below:

Table 6.7.Mean Delay with λ=0.5 jobs ⁄sec_ ____________________________________________________________ ___________________________________________________________
Number Mean Waiting Time E (TW ) Mean Queueing Time E (TQ )

of Stages Constant Exponential Constant Exponential_ ____________________________________________________________ ___________________________________________________________
3 2.25 sec 5.67 sec 5.25 sec 8.67 sec
4 2.25 sec 7.67 sec 6.25 sec 10.67 sec
5 2.25 sec 9.67 sec 7.25 sec 12.67 sec














This makes evident that the mean waiting is significantly impacted by the imbalance at the first two
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stages in the service time, for both the constant and exponential distribution. However, the constant
service case is significantly less impacted than the exponential case.

6.7.3 Link Level Flow Control Consider a transmitter and a receiver that are connected via a data
network of N stages or nodes, with messages at stage K requiring a constant amount of processing,
E (TS ,K ),K =1,...,N . In order to insure that no messages are lost along the way, because one stage may
be transmitting while the receiving stage may have no storage or buffer space available, a flow control
policy regulates message flow between neighboring nodes. Each node has a buffer with two limits, its
maximum capacity or high water mark and a lower threshold or low water mark. When a buffer is
filled to its high water mark, the transmitting node is stopped, and the buffer is drained of messages
until it reaches its low water mark, at which point the transmitter node can continue to send messages.
From the previous discussion, it is straightforward to show that if the high water marks for all nodes are
greater than or equal to two messages, then the maximum mean throughput rate is given by

maximum mean throughput rate = 1⁄max (E (TS ,1),...,E (TS ,N ))

In other words, the flow control strategy under these assumptions has no impact on the maximum data
mean throughput rate. No messages will be lost due to buffer space being unavailable, and the slowest
stage will be the bottleneck. Furthermore, all of the queueing occurs at the stage with the greatest
processing time, and all of the delay analysis sketched earlier carries over immediately.

6.7.4 Additional Reading

[1] Gene M. Amdahl, Validity of the Single Processor Approach to Achieving Large Scale
Computing Capabilities, AFIPS Spring Joint Computer Conference Proceedings, pp.483-485,
1967.

[2] H.D.Friedman, Reduction Methods for Tandem Queuing Systems, Operations Research, 13 (1),
121-131 (1965).

[3] Wolfgang Kramer, Investigations of Systems with Queues in Series, Institute of Switching and
Data Technics, University of Stuttgart, Report #22(1975).

6.8 One Processor, One Paging Drum, One Moving Head Disk

The hardware configuration of a computer system consists of one processor, one moving head disk, and
one paging drum. From the earlier mean value analysis, we know that the best concurrency we might
achieve is to keep all three devices simultaneously busy. A job will undergo some processing, some
input/output, some processing, and so forth, and then leave, but at the instant it leaves another job will
enter to take its place, fixing the total number of jobs in the system at M at all times. Each job accesses
the paging drum a mean of seven times, the moving head disk a mean of twice, and has a mean of ten
processor visits. The total mean time spent using each resource without contention is:

Tprocessor = 280 msec Tdrum = 280 msec Tdisk = 560 msec

As we increase the total number of jobs, the disk will reach complete utilization first, i.e., the disk is the
system bottleneck (why?). It also happens to be the slowest device, but it is really the total load per
node that determines the bottleneck, not the speed or number of visits individually.

The mean throughput rate for M=1 is

λ(M =1) =
1120 msec

1_ _________ = 0.88 jobs ⁄sec

The table below summarizes the results of calculating the processor utilization versus M:

Table 6.8.Degree of Multiprogramming vs Utilization_ _______________________________________________ ______________________________________________
M 1 2 3 4 ∞_ _______________________________________________ ______________________________________________

Uprocessor 1/4 4/11 11/23 26/57 1/2

Most of the gain in maximizing mean throughput rate is achieved for increasing M from one to three,
and the increase beyond two buys little:
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mean throughput rate =
Tprocessor

Uprocessor_ _______

Since we have three devices, the best we could ever do is to keep all three simultaneously busy. For the
numbers here, with the disk time per job twice as great as the processor or drum time per job, the disk
will reach completely utilization first. If the disk is completely busy, the processor and the drum will
each be utilized fifty per cent of the time. Since the mean number of jobs in execution equals the
fraction of time each device is busy, the total mean number of jobs in execution with M →∞ is two, one
on the disk, and one half each for the drum and processor. The Jackson network analysis refines this
mean value asymptotic analysis, quantifying the mean throughput rate more precisely: 0.3636 jobs per
second (M=2) versus 0.4783 jobs per second (M=3), a net gain of 23.9 per cent.

EXERCISE. Graph the mean throughput rate versus M . Plot upper and lower bounds on mean
throughput rate versus M that were derived earlier, and compare the results.

6.8.1 Additional Reading

[1] H.Kobiyashi, Modeling and Analysis: An Introduction to System Performance Evaluation
Methodology, Addison Wesley, Reading, Mass, 1978.

6.9 Prototype Directory Assistance System Case Study

A prototype of an online directory assistance system was built to handle telephone number directory
assistance queries. In a typical cycle of operation, a person at a terminal would be involved in the
following steps

[1] Receive a query from a customer via voice telephone

[2] Enter the given information into a computer terminal while talking to the customer

[3] Wait for the system to respond with the answer to the query

[4] Tell the customer the reply over the voice telephone

[5] Close out customer interaction

[6] Wait to receive the next customer query

The hardware configuration for the system consisted of C terminals, a single processor, a single disk
controller, and a single disk spindle. An operating system coordinated scheduling and management of
these devices, while a set of prototype application programs handled query processing.

Measurements on the prototype system in operation showed that

• The mean time spent by a person talking, reading, and thinking, denoted by TC , was twenty seconds

• The mean processor time per query was broken down into three sets of application programs

• The operator interface front end programs consumed 180 milliseconds of processor time per
query on the average

• The index manipulation application programs consumed 420 milliseconds of processor time per
query on the average

• The data retrieval application programs consumed 330 milliseconds of processor time per query
on the average

• Miscellaneous application programs that were invoked for accounting, system administration, and
other purposes consumed one hundred and forty milliseconds (140 msec) per query

Hence, the total mean processor time per query, TP , was 1.07 seconds

• The mean number of disk accesses per query was twenty six (26), with the disk capable of making
one access every twenty five milliseconds (25 msec) which results in a mean time the disk is busy
per query, denoted TD , of six hundred fifty milliseconds (650 msec)
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The above measurements on total mean processor time and disk access counts were based on examining
the mean resources required for one hundred different queries to the system; the measurement error on
the processor time was felt to be under ten milliseconds, while the measurement error on the number of
disk accesses was felt to be under one access.

6.9.1 State Space The system state space Ω is given by

Ω = {J_ = (JC ,JP ,JD ) JC + JP + JD =C }

JC clerks are active entering a query, JP jobs are queued or running on the processor, and JD jobs are
queued or running on the disk.

6.9.2 Mean Value Analysis The upper and lower mean value bounds on mean queueing time or
response time are given by

max



TP +TD ,

max [TP ,TD ]
C_ __________ − Tthink





≤ E (TQ ) ≤ C (TP +TD )

while the associated upper and lower mean value bounds on mean throughput rate are given by

TC +C (TP +TD )
C_ ____________ ≤ λ ≤ min



 TC +TP +TD

C_ _________,
max [TP ,TD ]

1_ __________




6.9.3 Jackson Network Analysis Provided a Jackson network model adequately fits the data, the
distribution of number of jobs at each node is given by

π(J_) = π(JC ,JP ,JD ) =
G
1_ __

JC !

TC
J

C

_ ____ TP
J

P TD
J

D

G =
K_ _ ∈Ω
Σ KC !

TC
K

C

_ ____ TP
K

P TD
K

D

The mean number of jobs inside the computer system is

E [JP + JD ] =
K_ _ ∈Ω
Σ [KP + KD ]π(K_ _)

The mean throughput rate is simply the fraction of time the processor is busy multiplied by the
maximum rate, in jobs per unit time, that the processor can execute jobs:

mean throughput rate =
K_ _ ∈Ω
Σ [1 − π(KC ,KP =0,KD )]⁄TP =

TP

E [min (1,JP )]_ ___________

The mean queueing time per job is the mean number of jobs in the system divided by the mean
throughput rate:

mean queueing time per query =
mean throughput rate

E [JP + JD ]___________________

For infinite source arrival statistics, this simplifies:

mean throughput rate = λ =
TC

C___

mean queueing time per query =
1 − λE (TP )

E (TP )_ __________ +
1 − λE (TD )

E (TD )_ __________

These bounds are plotted in the figures below, along with observed data gathered over an eight hour
time interval with twelve C =12 operators and calculations based upon a closed queueing network model
with M =C obeying product form type solution. The goodness of fit of the closed queueing network
model to actual data was felt to be acceptable for the purposes at hand; the mean value lower bound on
mean delay and upper bound on mean throughput rate were also felt to give an indication of
performance limitations at an early stage of development, which the data gathering and refinement via a
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Figure 6.13.Mean Throughput Rate vs Mean Processor Time/Query

Figure 6.14.Mean Response Time vs Mean Processor Time/Query

closed queueing network model only strengthened further. Note that the system is achieving a great deal
of concurrency, because the actual mean throughput rate is much closer to the upper bound, not the
single thread lower bound, as is the mean delay.

6.10 Multiple Class Jackson Network Model

C types of jobs arrive to a system for execution. Each job stream is submitted by P 0 sources.
FI ,I =1,...,C is the fraction of job submissions of type I . Each job takes a route through the network,
specified by RI (M ),M =1,...,S (I ) where M denotes the step for job type I . The job step execution time
is denoted by τIK time units of service at node K =1,...,N . The total amount of service required at node
K by a type I job is given by aggregating the total service time for each step, denoted by TIK . Each
node consists of PK processors.

6.10.1 State Space The state of the system at any time instant t is denoted by J_ where

J_ = (J 11,...,JC 1,...,J 1N ,...,JCN )
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with JIK (t ),1≤I ≤C ,1≤K ≤N denoting the number of jobs either waiting or in execution at node K of
type I . We denote by JK* the total number of jobs at node K and by J*I the total number of jobs in the
system of type I :

JK* =
I =1
Σ
C

JIK J*I =
K =1
Σ
N

JIK

Finally, the total number of jobs in the system at time t ,denoted by  J_(t ) , is given by:

 J_(t )  =
K =1
Σ
N

I =1
Σ
C

JIK (t )

6.10.2 Scheduling Policy The instantaneous total throughput rate at node K is given by

rK =

I =1
Σ
C

FI TIK

ΦK (JK* )_ _______

If the queue discipline is balanced with an arbitrary service time distribution at each node, then the
fraction of time the system is in state J_ is given by a product of three terms, a partition function term, a
source term, and a term that is the product of one term for each node:

π(J_) =
G
1_ __ (source term ) ×

K =1
Π
N

(node K term )

source term =











λ  J_ 

1

J 0!

T 0
J

0

_ ___

T 0

P 0_ __=λ,P 0→∞

 J_   =M

J 0 = P 0 −  J_ 

node K term = JK* !
l =1
Π
J

K*

ΦK (l )
1_ _____

I =1
Π
C

JIK !

(FI TIK )
J

IK

_ ________ K =1,...,N

6.10.3 Infinite Source Asymptotics For the infinite source case, this can be simplified:

π(J_) =
G
1_ __

I =1
Π
C

K =1
Π
N

JK* !
JIK !

(λFI TIK )
J

IK

_ _________

G =













∞

K =1
Π
N

1 − λ
I =1
Σ
C

FIK TIK

1_ _____________

λ≥
K

min




 I =1
Σ
C

FI TIK

PK_ _______






λ<
K

min




 I =1
Σ
C

FI TIK

PK_ _______






6.10.4 Delay Analysis For either the finite source or infinite source model, the mean queueing delay is
simply the sum of the mean queueing delay at each node:

E [TI ,Q ] =
K =1
Σ
N

E [TIK ,Q ] I =1,..,C

The mean queueing delay at each node is the mean queueing delay for all jobs at that node, apportioned
according to the utilization of the node by that type of job:
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E [TIK ,Q ] =

I =1
Σ
C

FI TIK

FI TIK_ _______ E [TK ,Q ]

where

E [TK ,Q ] =
λ

E [JK ]_ _____ =


I =1
Σ
C

FI TIK








D (P ,U ) ≡ 1 +

P (1−U )
C (P ,PU )_ ________





C (P ,P U ) is the Erlang delay function discussed earlier, and D (P ,U ) is the stretching factor that
multiplies the total mean job execution time at node K . We stress that this can be readily approximated
numerically using the Erlang delay numerical approximations discussed earlier. Here the multiple class
analysis involves analyzing a single class system, with the total load on each node apportioned among
the different jobs, and then calculating the multiple class delays by apportioning the delay at each node
according to loading.

6.10.5 An Example As an example, suppose a single processor node N =1 executes two types of jobs
C =2. Jobs arrive according to Poisson statistics, with total job arrival rate λ; FK denotes the fraction of
arrivals of type K =1,2. The state space is given by

Ω = {(J 11,J 21) JI 1≥0,I =1,2}

The fraction of time the system is in state J_ =(J 11,J 21) is given by

π(J 11,J 21) =
G
1_ __λJ

1* J 1* !
J 11!

(F 1T 11)
J

11

_ ________
J 21!

(F 2T 21)
J

21

_ ________

The partition function is given by

G =
1 − λ(F 1T 11+F 2T 21)

1_ _________________

In order to calculate the mean throughput rate, we calculate the mean number of total jobs at the node,
E (J 1* ), and then apportion the mean number of each type job according to the workload:

E (JI 1) =
F 1T 11+F 2T 21

FI TI 1_ ___________ E [J 1* ]

If there is only one processor, the mean number of jobs at the node is given by

E [J 1* ] =
1 − λ(F 1T 11+F 2T 21)

λ(F 1T 11+F 2T 21)_ _________________

The mean throughput rate is λ which equals the total mean number of jobs divided by the total mean
execution time per job:

λ =
F 1T 11+F 2T 21

E [min (J 1* ,P 1)]_ _____________

The total mean delay (waiting plus execution) is given by

E [TQ ] =
λ

E [J 1* ]_ ______ = D (P ,U )(F 1T 11+F 2T 21)

which for one processor is simply

E [TQ ] =
1 − λ(F 1T 11+F 2T 21)

F 1T 11+F 2T 21_ _________________

The mean throughput rate for each type of job is λI =λFI . Finally, the total mean delay for each type of
job is apportioned according to the load:
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E [TI ,Q ] =
F 1T 11+F 2T 21

FI TI 1_ ___________E [TQ ]

6.11 Bounds on Mean Throughput Rate in Product Form Network Distributions

Our goal is to obtain upper and lower bounds on mean throughput rate without explicitly evaluating the
mean throughput rate based on the product form formula. These bounds will in general be tighter than
the mean value bounds obtained earlier, but unfortunately at present are only known for the case where
there is one processor or serially reusable resource at each step of execution, unlike the mean value
bounds which hold for multiple processors (and resources) held at each execution step.

6.11.1 Model The mathematical model dealt with here consists of

• One type of job that migrates amongst N stations or stages

• A single processor available to execute a job at stage K =1,...,N

• M tasks or jobs circulate among the nodes

• TK denotes the total mean amount of service required by a job summed over all its visits to stage
K =1,...,N

The system state is denoted by Ω:

Ω = {(J 1,...,JN )
K =1
Σ
N

JK = M }

At any given instant of time, the system is in state J_ = (J 1,...,JN ) where JK ,K =1,...,N denotes the
number of jobs at node K (both waiting and in execution). The long term time averaged distribution of
number of jobs at each node at an arbitrary instant of time can be adequately modeled by product form
or separation of variables formula

PROB [J 1=K 1, . . . , JN =KN ] =
GM

1_ ___
I =1
Π
N

TI
K

I (K 1,...,KN )∈Ω

GM = GM (T 1,...,TN ) =
J_ ∈Ω
Σ

I =1
Π
N

TI
J

I

GM is the system partition function chosen to normalize the probability distribution. Granted these
assumptions, we observe that the mean throughput rate of jobs making a complete cycle of the system is
given by

λ =
TK

PROB [JK >0]_ ___________ =
GM (T 1,...,TN )

GM −1(T 1,...,TN )_ _____________

Straightforward manipulations of this expression yield the desired bounds:

K =1
Σ
N

TK + (M −1)T max

M_ _________________ ≤ λ ≤ min





T max

1_ ____,

K =1
Σ
N

TK + (M −1)Taverage

M_ ___________________ 




Tcycle + (M −1)T max

M_ ________________ ≤ λ ≤ min


 T max

1_ ____,
Tcycle + (M −1)Taverage

M_ __________________




where Tcycle is the total mean execution time for a job to cycle through all nodes

Tcycle =
K =1
Σ
N

TK

and Taverage is the average execution time per node

Taverage =
N
1_ _

K =1
Σ
N

TK =
N

Tcycle_ ____
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and T max is the largest mean execution time per node:

T max =
K =1,...,N
max TK

If the average time per node spent in execution by one job during a cycle and the maximum time per
node per job are roughly comparable to one another, these bounds will be quite close to one another.

6.11.2 Example The hardware configuration for a computer system consists of a single processor and a
single disk. The computer system is assumed to have M jobs resident in main memory at any one time,
the so called degree of multiprogramming. How should M be chosen to maximize mean throughput
rate?

This can be modeled by a two stage queueing network, N =2, with the total mean processor time per job
denoted by Tproc while the total mean number of disk accesses per job multiplied by the mean time per
disk access gives the total mean disk time per job, denoted by Tdisk . The table below summarizes mean
value upper and lower bounds on mean throughput rate for this system as a function of M , the degree of
multiprogramming, i.e., the number of jobs in the system.

M (Tproc + Tdisk )
M_ ______________ =

Tproc + Tdisk

1_ __________≤λ≤min


 max [Tproc ,Tdisk ]

1_ _____________,
Tproc + Tdisk

M_ __________




Table 6.9.Mean Value Bounds on λ with Tdisk =1.0_ ____________________________________________________________ ___________________________________________________________
M Tproc =0.3 Tproc =1.0

(Jobs) λlower λupper λlower λupper_ ____________________________________________________________ ___________________________________________________________
1 0.77 jobs/sec 0.77 jobs/sec 0.50 jobs/sec 0.50 jobs/sec
2 0.77 jobs/sec 1.00 jobs/sec 0.50 jobs/sec 1.00 jobs/sec
3 0.77 jobs/sec 1.00 jobs/sec 0.50 jobs/sec 1.00 jobs/sec














All of benefit occurs in increasing the degree of multiprogramming from one to two, because only two
resources can be kept busy at any time; going beyond two buys nothing at this level of analysis.

For comparison, Table 6.10 summarizes queueing network upper and lower bounds for the same system:

Tcycle + (M −1)T max

M_ ________________≤λ≤min


 T max

1_ ____,
Tcycle + (M −1)Taverage

M_ __________________




Tcycle = Tproc + Tdisk Taverage =
2

Tcycle_ ____ T max = max [Tproc ,Tdisk ]

Table 6.10.Queueing Network Bounds on λ with Tdisk =1.0_ ____________________________________________________________ ___________________________________________________________
M Tproc =0.3 Tproc =1.0

(Jobs) λlower λupper λlower λupper_ ____________________________________________________________ ___________________________________________________________
1 0.77 jobs/sec 0.77 jobs/sec 0.50 jobs/sec 0.50 jobs/sec
2 0.87 jobs/sec 1.00 jobs/sec 0.67 jobs/sec 0.67 jobs/sec
3 0.91 jobs/sec 1.00 jobs/sec 0.75 jobs/sec 0.75 jobs/sec














The numbers show that the queueing network bounds are considerably tighter than the mean value
bounds, for the numbers chosen here. Furthermore, for the case of equal job time balance, Tproc =Tdisk ,
the queueing network upper and lower bounds on mean throughput rate are identical and hence equal the
exact mean throughput rate, something that might not be obvious a priori! Finally, most of the benefit
occurs in going from M =1 to M =2 for the imbalanced case, Tproc =0.3,Tdisk =1.0, while the gain for the
balanced case in increasing M are much more gradual, provided the Jackson network assumptions are
valid. This is a refinement beyond the information provided in the mean value bounds.

6.11.3 Additional Reading

[1] P.J.Denning, J.P.Buzen, The Operational Analysis of Queueing Network Models, Computing
Surveys, 10 (3), 225-261 (1978).
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[2] C.Sauer, K.Chandy, Computer Systems Performance Modeling, Prentice-Hall, Englewood
Cliffs, NJ, 1981.

[3] J.Zahorjan K.C.Sevick, D.L.Eager, B.Galler, Balanced Job Bound Analysis of Queueing
Networks, Communications of the ACM, 25 (2), 134-141 (1982).
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Problems

1) An online transaction processing system consists of one processor and C clerks at terminals. The
mean time a clerk spends reading, thinking and entering the transaction is denoted by Tthink . The mean
time required for the processor to execute the transaction is denoted by Tproc .

A. What is the state space for this system?

B. What are the resources required for each step of execution?

C. What are the bottlenecks?

D. Plot bounds on mean throughput rate and mean delay to execute a transaction versus number of
clerks using mean value analysis.

E. Plot the mean throughput rate and mean delay versus number of clerks using a closed Jackson
queueing network, and compare with the mean value analysis.

F. Suppose the total mean arrival rate of jobs is fixed at λ such that

λ = constant =
Tthink

C_ ____ C →∞,Tthink →∞

which is the infinite source model for this system. Plot the mean throughput rate and mean delay
versus arrival rate, and compare with the closed Jackson network analysis and mean value bounds.

2) An online transaction processing system requires dedicated links from front end terminal controllers
to back end data base management systems. Each transaction holds a circuit for a mean time interval of
one tenth of a second. The arrival statistics are assumed to be simple Poisson. During a normal
business hour the system must process ten transactions per second with the fraction of transactions
blocked due to all links being busy of less than one transaction in ten thousand. During a peak business
hour the system must process thirty transactions per second with the fraction of transactions blocked due
to all links being busy of less than one transaction in one hundred.

[1] If all circuits are busy, a transaction will be queued until a circuit becomes available.

A. How many trunks are needed to meet design goals?

B. Repeat the above if the mean transaction holding time is one fifth of a second.

C. Repeat the above if the mean transaction holding time is one twentieth of a second.

[2] If all circuits are busy, a transaction is rejected or blocked, and presumably will retry later.

A. How many trunks are needed to meet design goals?

B. Repeat the above if the mean transaction holding time is one fifth of a second.

C. Repeat the above if the mean transaction holding time is one twentieth of a second.

[3] Repeat both A) and B) for the following two new design goals

A. During a normal business hour, no more than one transaction in one hundred is delayed
due to trunks not being available. During a peak business hour, no more than one
transaction in five is delayed due to trunks not being available.

B. During a normal business hour, no more than one transaction in one million is delayed due
to trunks not being available. During a peak business hour, no more than one transaction
in ten thousand is delayed due to trunks not being available.
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3) Insurance agents dial up through the voice telephone network a central computer, and then use a
terminal connected to a modem to query the central computer about different types of insurance policies
for potential customers. A five year plan has been proposed. During the first two years of operations,
the system should handle five queries per second during a normal business hour, and ten queries per
second during a peak business hour. During the next three years, the system should handle twenty
queries per second during a normal business hour, and thirty queries per second during a peak business
hour. A query session has a mean duration of five minutes. If all ports are busy when a query attempt
occurs, a busy tone is generated, and the query is delayed.

[1] Assume all blocked queries are lost or rejected and will retry later:

A. How many modems are needed if the fraction of queries blocked due to no modem being
available is no more than one query in ten?

B. Repeat if the criterion is no more than one query in five is blocked?

C. Repeat if the criterion is no more than one query in one hundred is blocked?

D. Repeat all the above if the mean holding time per query is increased to ten minutes.

[2] Assume all blocked queries are queued or delayed until a port becomes available. Repeat all the
above.

4) Jobs arrive for service at a parallel group of P processors. The arrival statistics are Poisson with
mean arrival rate λ. The holding time or service time per job forms a sequence of independent
identically distributed exponential random variables with mean service time E (TS ). The offered load is
the mean number of busy servers provided we had an infinite number of servers, and this is measured in
Erlangs, and denoted by A:

A = λE (TS ) = o f f ered load (Erlangs )

The fraction of time P or more servers are busy with an infinite number of available servers is denoted
by F (P ,A ) and is given by

F (P ,A ) = f raction o f time P or more busy servers = e−A

K =P
Σ
∞

K !
A K
_ ___

A. Show the following relationships between Erlang’s blocking function,

B (P ,A ) =

K =0
Σ
P

K !
A K
_ ___

A P ⁄P !_ ______ A = o f f ered load (Erlangs ) P = number o f servers

which is also called Erlang’s function of the first kind and Erlang’s delay function,

C (P ,A ) =

K =0
Σ

P −1

K !
A K
_ ___ + A P ⁄(P −1)!(P −A )

A P ⁄(P −1)!(P −A )_ _______________________

which is also called Erlang’s function of the second kind:

B (P ,A ) < F (P ,A ) < C (P ,A )

Provide a physical interpretation for why this result is reasonable: draw some pictures!

B. Show the following:

C (P ,A ) =
(P ⁄A )−1+B (P ,A )

(P ⁄A )B (P ,A )_______________

C. Show the following:
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C (P ,A ) =

A B (P −1,A )
P − A_ ___________ + 1

1_ _______________

D. Show the following:

B (P ,A ) =
P + A B (P −1,A )

AB (P −1,A )_ _______________

E. Show the following:

C (P ,A ) =
1 +

A
P −A_ ____

(P −1−A )C (P −1,A )
P −1−A C (P −1,A )_ ________________

1_ __________________________

5) The hardware configuration for an online transaction processing system consists of one processor and
one disk. Each transaction requires a total mean amount of processor time denoted by TP and a total
mean number of disk accesses N each of which requires τD seconds, so the total disk access time per
job is denoted by TD . The system state is given by J_ = (JP ,JD ) where JP denotes the number of jobs
waiting or in execution at the processor queue and JD denotes the number of jobs waiting or in
execution at the disk queue. An infinite source open queueing network is felt to adequately model the
distribution of the number of jobs at each queue; if λ is the total mean arrival rate, in transactions per
unit time, and π(J_) denotes the fraction of time the system is in state J_, then

π(J_ =(JP ,JD )) =
G
1_ __ [λTP ]

J
P [λTD ]

J
D

A. Calculate the system partition function G

G =
I =0
Σ
∞

(λTP )I

J =0
Σ
∞

(λTD )J

B. Calculate the total mean number of jobs in system from first principles:

E [JP + JD ] =
J

P
=0
Σ
∞

J
D

=0
Σ
∞

[JP + JD ]π(JP ,JD )

C. Show that the mean delay (waiting plus execution time) per transaction equals

E [Tdelay ] =
λ

E [JP + JD ]_ __________ =
λ

TP_ __
∂TP

∂G_ ___ +
λ

TD_ ___
∂TD

∂G_ ____

D. For N =10,20 disk accesses, with one processor and one disk, and τD =50 msec while
τP =300 msec ,700 msec calculate the mean throughput rate and the mean delay.

6) The hardware configuration for a computer system consists of a single processor and a single disk.
The system state at any time is denoted by J_ =(JP ,JD ) where JP denotes the number of jobs waiting or
in execution on the processor, and JD denotes the number of jobs waiting or in execution on the disk.
Each job requires some processor time and some disk access time, in order to be completely executed.
The fraction of time a computer system spends in state J_ is denoted by π(J_). We are given some mean
value or average performance metric E[PM] which is a functional of the system state J_, denoted by
PM (J_):

E [PM ] =
J_ ∈Ω
Σ PM [J_]π(J_)

A. Show that the mean delay per transaction is an example of such a performance metric by
exhibiting an explicit formula for E[PM]
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B. Show that the processor utilization is an example of such a performance metric by exhibiting an
explicit formula for E[PM]

C. If we wish to assess the sensitivity of the performance metric to a change in speed of the
processor, show that

∂(1⁄TP )
∂E [PM ]_ _______ = E



 ∂(1⁄TP )
∂PM (J_)_ _______





− TP covar [JP ,PM (J_)]

where covar (I ,J ) denotes the covariance between I ,J , and illustrate what this is explicitly for the
mean delay and processor utilization performance metrics

D. Suppose that the time per transaction to access the disk is state dependent, such that it equals the
product of two terms, the first a disk speed dependent but state independent factor, and the second
a state dependent dimensionless function (which accounts for the disk scheduling algorithm):

TD = TD ,speed f (JD ) f (JD ) =


 (2JD −1⁄JD )
1

JD >0

JD =0

Write an analytic expression for the fraction of time the system is in state (JP ,JD ), denoted by
π(JP ,JD ), which is a modification of the expression shown earlier.

E. We wish to assess the sensitivity of changing the speed of the disk while keeping the same
scheduling algorithm. Show that

∂(1⁄TD )
∂E [PM (J_)]_ __________ = E



 ∂(1⁄TD )
∂PM (J_)_ _______





− TD covar [JD ,PM (J_)]

Evaluate this for a total mean delay performance measure and a disk utilization performance
measure

F. If TD =1 explicitly evaluate all these formulae for TP =1,=0.5,=0.2.

G. Suppose you can get one fast disk or two slower disks such that

TD ,one f ast disk = 1⁄2TD ,one slow disk

What is the maximum mean throughput rate of the disk for either system? Repeat all of the above
(including substitution of numbers into all formulae).

7) The hardware configuration for a computer system consists of a central processor unit (CPU) and two
direct memory access (DMA) disk controllers each handling a single spindle. Jobs arrive for execution
to this system in such a manner that the staging queue is never empty. The staging queue limits the
degree of multiprogramming to a constant level of M jobs always in the system. Measurements are
carried out on this system, and are summarized in the table below:

Table 6.11.Measurement Data Summary_ __________________________________________________ _________________________________________________
Attribute Symbol Quantity_ __________________________________________________ _________________________________________________

Processor Time/Job Tproc 2 sec
Mean Time/Disk Access Taccess 50 msec
Mean Number of Disk Accesses/Job:
To Spindle I Ndisk ,I 50
To Spindle II Ndisk ,II 20

Answer the following questions:

A. What is the state space for the operations of this system?

B. Plot upper and lower bounds on mean throughput rate of executing jobs versus M and state what
the bottleneck resource is as M →∞
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C. Suppose that the long term time averaged fraction of time the system is in a given state can be
adequately modeled by a product form distribution. What is an explicit expression for this
formula?

D. Plot the mean throughput rate of executing jobs versus M assuming the product form distribution
adequately models the system operation on the same plot as the mean value upper and lower
bounds on mean throughput rate.

E. Plot upper and lower bounds on the mean throughput rate of executing jobs versus M assuming
the a product form adequately models system operation. Do this on the same plot as the mean
value upper and lower bounds on mean throughput rate.

F. Suppose that the file access load is redistributed so that the mean number of disk accesses per job
stays the same but is equal to each spindle. Repeat all the above.

8) A data network consists of three nodes, A, B, C. At each node there are two Poisson streams of
arriving messages of equal intensity intended for each of the other nodes, with each stream having mean
arrival rate λ messages per unit time. Each message consists of a random number of bits with a mean
of B bits per message. Each node is connected to every other node by two one way links, with one link
for transmission and the other for reception. All links have capacity C bits per second.

A. What is the state space for this system?

B. What is an upper bound on the total number of messages per unit time carried by the network
versus the individual message stream arrival rate λ?

C. Assuming a Jackson network model is statistically valid, what is an explicit expression for the
fraction of time the system is in a given state?

D. Assuming the validity of a Jackson network model, what is an explicit expression for mean
message delay as a function of model parameters?

E. If A can only transmit to C, C can only to transmit to B, and B can only transmit to A, i.e., we
have a ring, with each link having capacity 2C bits per second, repeat all of the above analysis.
Which system should be chosen under what conditions?

9) N clerks each submit a single type of job to a computer system. The hardware configuration for the
computer system consists of a single processor and a single disk. Each clerk spends a variable amount
of time reading, thinking, and entering the job, and then waits for the system to respond before starting
the cycle over again. Each job undergoes processor execution, following by a single disk access,
followed by more processor execution, followed by a single disk access, until eventually the processor
completes execution of the job. The table below summarizes the quantitative data for this system:

Table 6.12.Measurement Data_ __________________________________________________ _________________________________________________
Attribute Symbol Quantity_ __________________________________________________ _________________________________________________

Mean Time Thinking Tthink 15 sec
Total Processor Time/Job Tproc 3 sec
Probability Job Migrates CPU->Disk R 360/361
Probability Job Migrates CPU->Clerk 1−R 1/361
Mean Time per Disk Access Taccess 50 msec

Answer the following questions:

A. What is a suitable state space to describe the operation of this system?

B. What is the mean number of disk accesses per job?
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C. Plot upper and lower bounds on mean throughput and mean response time per job versus the
number of active clerks.

D. What are the potential bottlenecks in this system?

E. Suppose that the long term time averaged fraction of time the system is in a given state can be
adequately modeled by the product form probability distribution. What is an explicit expression
for this probability distribution in terms of measurement data?

F. Plot the mean throughput rate and mean response time per job versus the number of active clerks
assuming the product form distribution adequately models the system operation. Do this on the
same plot as the mean value upper and lower bounds.

G. Suppose that the total rate at which jobs are submitted to the system is fixed at λ≡N ⁄Tthink while
the number of clerks is allowed to become infinite. What is the state space for this system? If a
product form distribution adequately models the long term time averaged operational statistics,
plot the mean throughput rate and mean response time per job versus the arrival rate λ.

10) Students want to use N terminals attached to a computer system that consists of a single processor.
The statistics for students requesting or demanding a terminal are adequately modeled by a Poisson
process with mean arrival rate λ which has the numerical value of two (2) sessions per hour. If all
terminals are occupied with a student when a request occurs, the requesting student goes away. Once a
student gets a terminal, the student keeps the terminal busy for a session. Each session consists of a
series of interactions between the student at the terminal and the computer. Each interaction consists of
a time interval with mean Tthink =4 sec where the student is reading and thinking and typing, and a time
interval for the system to respond. With only one student at one terminal using the computer, the mean
time for the system to respond is denoted by Tsystem =2 sec. There are a mean number of I =100
interactions per student during a session. Once a student completes a session, the student leaves, freeing
the terminal for another student.

A. What is the state space for describing the operation of this system?

B. Plot an upper bound on the mean number of sessions per unit time that the system can service
versus N =1,2,3.

C. If the system statistics for the number of students at terminals and the number of requests in the
computer can be adequately modeled by a product form distribution, write an explicit expression
for this distribution as a function of N .

D. Using the above product form distribution, plot the fraction of student requests that are blocked or
rejected versus N =1,2,3.

E. Using the above product form distribution, plot the mean number of sessions per unit time that the
system services versus N =1,2,3.

F. Plot the mean time per session for students that are not rejected for N =1,2,3.

11) A computer system executes one type of job. The system hardware configuration consists of one
processor, one fixed head disk (called a drum), and one moving head disk. The file system is configured
with some files physically located on the drum and others on the disk. Each job requires some
processor time, followed by a secondary storage access, and so on until the job is completely executed.
There are N secondary storage accesses, and N +1 processor interactions per job. The system holds M
jobs at any one time, either waiting or running on the processor, or waiting and accessing secondary
storage. The secondary storage subsystem consists of a moving head disk and a fixed head disk (also
called a drum). The file system is configured so that a fraction F of the secondary storage requests are
made to the drum, and the remainder to the disk. The mean time per processor interaction is Tcpu . The
mean time for a disk access is Tdisk , while the mean time for a drum access is Tdrum . In what follows,
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use the following numbers:

Table 6.13.Numerical Parameters_ ______________________________ _____________________________
Tcpu 10 msec
Tdrum 20 msec
Tdisk 30 msec

N 25 accesses
M 5 jobs

Answer the following questions:

A. What is the system state space?

B. Plot an upper bound on the mean rate of executing jobs as a function of F .

C. What choice of F maximizes the upper bound on the mean rate of executing jobs?

D. If the system statistics for the number of jobs queued or in execution at the processor, drum and
disk can be adequately modeled by a product form distribution, write an explicit expression for
this formula.

E. Using the above product form formula, plot the mean throughput rate of executing jobs versus F
on the same plot as the upper bound.

12) A communication system administrator wishes to determine the benefits of pooling resources. A
single type of message holds a link for a mean time interval of two seconds. There are two groups of
links that can handle this type of message. The first group has three links and messages arrive at a rate
of one message per second. The second group has four links and messages arrive at a rate of three
messages every two seconds. The administrator can also pool the links into one group of seven links,
with a total message arrival rate of five messages every two seconds.

A. What is the state space for each configuration?

B. Based on a mean value analysis, which configuration should be chosen?

C. If messages are blocked if no link is available, which configuration will achieve the lowest total
blocking?

D. If messages are delayed if no link is available, which configuration will achieve the lowest total
mean delay?
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In this section, we examine a variety of communication systems that can be modeled by Jackson
networks. We will deal with

• Flow control of a single virtual circuit over a single physical link

• Packet switching network design

• Variable bandwidth circuit switching design

• Circuit switching system design

This list is not exhaustive, but it does hint at the rich variety of phenomena that are amenable to this
type of analysis.

7.1 Flow Control over a Single Virtual Circuit on a Single Physical Link

A communications system is composed of a transmitter processor, a receiver processor, a set of B
buffers each capable of holding one message at the receiver, and a noiseless communications link. Here
are the steps involved in sending a message from the transmitter to the receiver:

[1] The transmitter processes a message. This step has a mean duration TT at the transmitter, and it
requires both the transmitter and a buffer at the receiver.

[2] The message propagates over the link from the transmitter to the receiver. This step has a mean
duration TT −R .

[3] The receiver processes the message. This step has a mean duration TR .

[4] An acknowledgement of correct receipt of the message propagates from the receiver to the
transmitter. This step has a mean duration TR −T . At the start of this step, the receiver marks the
buffer free.

[5] The transmitter processes the acknowledgement. This step has a mean duration of TA At the end
of this step, the transmitter marks the buffer free.

We assume from this point on that the time required by the transmitter to process the acknowledgement
is zero. Figure 7.1 shows a hardware block diagram of the system.

Figure 7.1.Hardware Block Diagram of Communications System

Figure 7.2 shows a queueing network block diagram of the system.

7.1.1 State Space The system state space is denoted by Ω where

Ω = {(JT ,JT −R ,JR ,JR −T ) JT + JT −R + JR + JR −T =B }

At any instant of time, the system is in a state given by a four tuple, (JT ,JT −R ,JR ,JR −T ) where each
component is nonnegative and integer valued, and the state space constraint is obeyed.

7.1.2 Mean Value Analysis Upper and lower bounds on mean throughput rate λ are as follows:

BTT + TT −R + BTR + TR −T

B_______________________ = λlower ≤ λ

λ ≤ λupper = min


 TT

1_ __,
TR

1_ __,
TT + TT −R + TR + TR −T

B_ ____________________
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Figure 7.2.Queueing Network Block Diagram of Communications System

The physical interpretation of the upper bound on mean throughput rate is as follows

• If the transmitter is the bottleneck, then

λupper =
TT

1_ __

• If the receiver is the bottleneck, then

λupper =
TR

1_ __

• If the number of buffers is the bottleneck, then

λupper =
TT + TT −R + TR + TR −T

B_ ____________________

The physical interpretation of the lower bound is that at most one message at a time is being handled by
the system.

The figures below plot these upper and lower bounds, as well as the results of a Jackson queueing
network analysis for the special case where
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TT = TR TT −R = TR −T

Three different cases are shown, where the propagation delay is much smaller than , equal to, and much
larger than the mean processing time at either end of the link.

Figure 7.3.Mean Throughput Rate vs Number of Buffers(Tprop =0.1)

Figure 7.4.Mean Throughput Rate vs Number of Buffers(Tprop =1.0)
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Figure 7.5.Mean Throughput Rate vs Number of Buffers(Tprop =10.0)

The fraction of time the Jackson network model predicts the system to be in state J_ is denoted by π(J_)
where

π(J_) =
G
1_ __ TT

J
T

JT −R !

TT −R
J

T −R

_______TR
J

R

JR −T !

TR −T
J

R −T

_______

where G is the system partition function.

7.1.3 Negligible Link Propagation Delay We now restrict attention to the special case where the
propagation delay is negligible compared to the processing at either end of the link, from this point on.
For one buffer, the mean throughput rate is upper bounded by

λ ≤ λupper =
TT + TT −R + TR + TR −T + TA

1_ _________________________ =
TT + TR

1_ _______

There is no concurrency or parallel execution of messages, and the total time required for message
handling is the sum of the individual steps.

For more than one buffer, this will yield an upper bound on the mean throughput rate of simply B times
the mean throughput rate for one buffer:

λ ≤ λupper =
TT + TT −R + TR + TR −T + TA

B_ _________________________ =
TT + TR

B_ _______

On the other hand, as the number of messages increases, then either the transmitter or the receiver (or
both) will become completely busy, yielding different upper bounds on mean throughput rate:

• The transmitter is a bottleneck

λ =
TT + TA

1_ _______ =
TT

1_ __

• The receiver is a bottleneck

λ =
TR

1_ __

Combining all this, we see
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λ ≤ min


 TT + TA

1_ _______,
TR

1_ __,
TT + TT −R + TR + TR −T + TA

B_ _________________________




λ ≤ min


 TT

1_ __,
TR

1_ __,
TT +TR

B_ ______




Increasing the number of buffers from one to two, B =1 to B =2, always increases the maximum mean
throughput rate, and now we see

λ ≤ min


 TT

1_ __,
TR

1_ __




B >1

Furthermore, this increase is maximized for TT =TR , and then the upper bound doubles in going from
one buffer to more than one buffer. Why is this so? By having more than one buffer, both the
transmitter and receiver can simultaneously be filling and emptying a buffer, allowing greater
concurrency or parallelism compared with the single buffer case. We also note that allowing more than
two buffers, e.g., infinite buffers, will not increase the upper bound on the maximum mean throughput
rate any further. This is because there are only two serially reusable resources, a transmitter and a
receiver, so once they are concurrently busy, no further gains can be achieved.

For the lower bound on mean throughput rate, we see that

λ ≥ λlower =
BTT + BTR

B__________ =
TT + TR

1_ _______

which is identical to the upper bound for B =1. Why is this so? There may be significant fluctuation
about the mean values shown above, and in the limit of one big swing about the mean value all of the
messages will pile up at one stage in the network and nothing will be transmitted until buffers become
available.

What is the impact of fluctuations about mean values on system performance? Suppose the transmitter
processing times are sequences of independent identically distributed exponential random variables with
mean TT . Suppose the receiver processing times are sequences of independent identically random
variables with common hyperexponential distribution GR (X ):

GR (X ) = (1−α)+α(1−e
−X µ

R )

In words, a fraction 1−α will require zero processing time at the receiver, while a fraction α will require
an exponentially distributed amount of processing time with mean 1⁄µR . The parameter α gives us an
additional degree of freedom to model fluctuations in the receiver processing times. For this case, we
choose to fix the squared coefficient of variation denoted by C 2. The squared coefficient of variation is
defined as the ratio of the variance to square of the mean (the standard deviation, measured in units of
mean value, squared):

squared coe f f icient o f variation =
E 2(X )

variance (X )_ __________ ≡ C 2

When this is zero, the variance is zero, and there is zero fluctuation about the mean. When this is one,
we have an exponential distribution, where the standard deviation equals the mean. When this is greater
than one, the standard deviation is greater than the mean. For this particular case, we see 0<α≤1 and
hence

C 2 =
α
2_ _ − 1 ≥ 1

If the mean is fixed but α is varied from one (the exponential distribution case, where the fluctuations
are the order of the mean) to zero (increasing fluctuations about the mean) with most jobs taking zero
time but a few taking a very long time, we can gain insight into the impact on performance. Since we
have fixed the squared coefficient of variation, the mean is also fixed, since
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TR =
µR

α_ __

The distribution of the number in the receiver subsystem at the completion of processing at the receiver
of a message is denoted by F (K ),K =0,...,B . If none are left behind, then the mean time to the next
completion epoch is TT + TR . If more than zero is left behind at the receiver, then the mean time to the
next completion epoch is TR . The mean throughput rate is given by

λ =
F (0)[TT +TR ] + [1−F (0)]TR

1_ _______________________ =
F (0)TT +TR

1_ __________

F (0) is the fraction of time the system is empty of messages at a completion of transmission epoch;
F (0) can be approximated numerically or measured empirically.

Illustrative numerical results are plotted in the figures below assuming the transmitter and receiver
service times are independent identically distributed exponential random variables.

Figure 7.6.Maximum Mean Throughput Rate vs Number of Buffers
Tprop =0,TT =1.0

Figure 7.7.Maximum Mean Throughput Rate vs Number of Buffers
Tprop =0,TT =0.5
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Figure 7.8.Maximum Mean Throughput Rate vs Number of Buffers
Tprop =0,TT =0.2

Note that for the special case where TR =TT =1, the mean throughput rate is given by

λ =
2 +

C 2+1
2(B −1)_ ______

1 +
C 2+1

2(B +1)_ ______
___________ C 2≥1

Here we see as C 2→∞ that the mean throughput rate approaches the lower bound of 1⁄2 arbitrarily
closely, i.e., there is no concurrency or gain in going to more than one buffer if the fluctuations are too
great. On the other hand, as B →∞ for C 2 fixed, the mean throughput rate approaches one, which is the
best possible. The numerical plots show in which regime which phenomenon (the fluctuations or the
buffering and concurrency) dominate the actual mean throughput rate. The impact of speed mismatch
(i.e., as the transmitter and receiver mean message execution times start to differ) tends to swamp the
impact of fluctuations: the greater the speed mismatch, the greater concurrency achieved, because the
exact mean throughput rate approaches the upper bound closer and closer as the speed mismatch
between transmitter and receiver increases. The upper bound on mean throughput rate corresponds to a
squared coefficient of variation of zero, while the lower bound corresponds to a squared coefficient of
variation that becomes infinite.

We now discuss this phenomenon in more detail, because the formulae give only one way of
understanding this model. The figure below shows an illustrative sample path generated from a
simulation of the model, for a total number of five jobs in the system.
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Figure 7.9.A.Transmitter Simulation Results

Figure 7.9.B.Receiver Simulation Results

In the initial part of the simulation, the first stage fluctuates between four and five jobs, while the second
stage fluctuates between zero and one job; in the final part of the simulation, the situation is reversed;
after sufficiently long time, we would return to the first case. When most of the jobs are at one stage,
the mean throughput rate is roughly the reciprocal of the time to execute one job from start to finish,
and there is no concurrency. The other cases, where there are multiple jobs at each stage, are transient
and the system spends relatively little time in these states. As the fluctuations and hence squared
coefficient of variation become larger, while the mean time spent at the transmitter and receiver stays
fixed, the fraction of time either all or none of the messages are at the transmitter can be shown to be
arbitrarily close to one, which is what the simulation result in the figure above shows. At the same
time, we see that the mean sojourn time in the state where the receiver is empty is given by

mean so journ time in idle receiver state =
K =1
Σ
∞

(1−α)K −1αKTT

=
α
TT_ __ → ∞ α→0

Put differently, if one were to measure the operation of this system, the system might be in the receiver
idle state for the entire duration of the observation process, and the other state of the receiver having all
jobs (which will also become successively longer and longer as α→0) will never be observed, or vice
versa! In the figure above, this would correspond to gathering data in the first part of the simulation,
never in the second part, or vice versa.

7.1.4 Queueing Network Analysis for Negligible Propagation Delay If we calculate upper and lower
bounds on mean throughput rate using the Jackson network model, we find:

λlower ≤ λ ≤ λupper
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λlower =
TT + TR + max [TT ,TR ]

1_ ___________________

λupper =
TT + TR + 1⁄2[TT + TR ]

1_ ___________________

The mean value bounds, the queueing network upper and lower bounds, and exact queueing network
analysis mean throughput calculations are all plotted in the figures below for TR = 1.0 and
TT =1.0,0.5,0.2.

Figure 7.10.Mean Throughput Rate Bounds vs Number of Buffers
TR =1.0,TT =1.0

Figure 7.11.Mean Throughput Rate Bounds vs Number of Buffers
TR =1.0,TT =0.5
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Figure 7.12.Mean Throughput Rate Bounds vs Number of Buffers
TR =1.0,TT =0.2

The queueing network bounds are identical to the exact analysis when the transmitter and receiver
execute messages at the same rate. When the transmitter becomes faster than the receiver, the bounds
and exact analysis tend to track the upper bound on mean throughput rate; in other words, the speed
mismatch is of greater importance than the impact of fluctuations.

7.1.5 Experimental Data In order to test predictions of this analysis against actual operations, a series
of experiments were carried out to determine the mean maximum throughput rate of a data
communications link constructed with two computers, one transmitting and one receiving, over a data
link where the link propagation time was negligible compared to the data communications processing at
either end of the link or the data transmission time of a packet over this link. The test described here
involved sending 51,200 bytes of data over a 9600 bit per second data link; similar results were found
for a 1200 bit per second data link. The source data were encoded into packets containing either thirty
two, sixty four, one hundred twenty eight, or two hundred fifty six bytes (one byte equals eight bits) of
data. We wish to test the gain in going from start stop or single buffering to double buffering and to
greater than double buffering; our previous analysis assumes that a mean value of data communications
processing time at the transmitter and receiver adequately characterizes the system performance.

The experiment involved simply measuring the time required to transmit 51,200 bytes of data over each
link for each size packet. No processing was done on the data at either the transmitter or receiver other
than to do the data communications processing required for correct operation.

The table below summarizes the results of that experiment:
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Table 7.1.Maximum Mean Throughput Rate for Transmission of
51,200 Bytes over 9600 BPS Data Link_ _________________________________________________________ ________________________________________________________

Number of Packet Time Maximum Link
Buffers Size (sec) Throughput Utilization_ _________________________________________________________ ________________________________________________________

1 Buffer 32 bytes 160.0 3200 bps 33%
1 Buffer 64 bytes 125.0 4096 bps 43%
1 Buffer 128 bytes 90.0 5688 bps 59%
1 Buffer 256 bytes 80.0 6400 bps 67%
2 Buffers 32 bytes 80.0 6400 bps 67%
2 Buffers 64 bytes 58.5 8752 bps 91%
2 Buffers 128 bytes 55.5 9225 bps 96%
2 Buffers 256 bytes 55.0 9309 bps 97%
7 Buffers 32 bytes 64.0 8000 bps 83%
7 Buffers 64 bytes 58.0 8827 bps 92%
7 Buffers 128 bytes 55.0 9309 bps 97%
7 Buffers 256 bytes 54.5 9412 bps 98%

The time required to send each of 51,200 bytes of data plus two additional bits (for parity and control)
over a serial 9600 bit per second data link is 53.3 seconds; thus, the data link transmission speed and
not the transmitter or receiver is limiting data flow here. This can also be seen directly by noting that
the link utilization is approaching one hundred per cent in the table above. This table shows that double
buffering at the receiver offers substantial improvement in mean message throughput over single
buffering, and there is no apparent advantage in terms of throughput in choosing a receiver buffer larger
than two (e.g., seven was tried). Finally, this suggests that for this purpose this level of analysis is
appropriate, i.e., that other phenomena that are present are in fact negligible for these purposes, as
shown by the data.

7.2 Packet Switching Communication Network Analysis

The figure below shows a block diagram of an illustrative computer communication network. Terminals
and computers are connected to one another via the network. The communication network consists of
four external ports and seven internal channels. In what follows we will assume there are N entry ports
and M channels each capable of a maximum transmission rate of CI bits per second, I=1,...,M. There
are two classes of policies for allocating transmission capacity

• circuit switching--at the start of a session, address and control information are used to find a path
through the network, and network transmission capacity is dedicated to that call for its whole
duration; if no paths are available, the call is rejected and presumably will retry later

• packet switching--each interaction contains both address and control information as well as data,
each interaction finds its path through the network, and if transmission capacity is not available is
buffered at intermediate nodes until transmission is possible

Circuit switching is used in conventional voice telephony, where the set up time is short compared to
the call duration. Packet switching is used in data communications, where the set up time is comparable
to the time to transmit the data.

7.2.1 Model In the analysis to follow, we assume the switching systems at intermediate nodes are
infinitely fast, so there is no queueing for their resources, but the links have finite speeds, and we buffer
or queue for each link.

Message lengths are assumed to be independent identically distributed exponential random variables,
with a mean of B bits/message:

PROB [message length ≤X bits ] = 1 − exp (−X ⁄B )

E [message length ] = B bits
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Figure 7.13.An Illustrative Communications System
4 External Ports/5 Internal Nodes/7 Channels or Links

A static policy is adopted here for routing messages through the network: all messages originating at
node J and intended for destination node K follow a route denoted by RJK which is a set of channels
connecting J and K

The arrival statistics for messages going from node J to node K are assumed to be Poisson, with mean
arrival rate λJK messages per second.

The mean offered load, in messages per second, on link A, is denoted by γA . This will be a function of
the topology, routing, and load. Although it is clear what this is intuitively, its analytic expression is
more formidable:

γA =
(J ,K ) A ∈ R

JK

Σ λJK

We measure performance by the mean time a message spends in the network, averaged over all message
types.

In order to pose meaningful design problems, we need one additional constraint:

D (CI ) = cost in dollars for transmission capacity CI

and typically we wish to constrain the total cost at Dtotal

Dtotal ≥
I =1
Σ
M

D (CI )

A wide hierarchy of design problems can now be described:

[1] Capacity Assignment Problem. Given a fixed routing and network topology, minimize the mean
message delay subject to a given cost criterion with respect to channel link transmission rate
assignment.
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[2] Flow Assignment Problem. Given a topology, find a routing R such that the mean message
delay is minimized subject to a cost constraint.

[3] Topology Assignment Problem. Find a routing R and a topology such that the mean message
delay is minimized subject to a constraint on transmission cost.

7.2.2 State Space At any instant of time, the state of the system is given by J_ where J_ is an M tuple
with elements being either zero (to show no message is being transmitted) or one (to show that a
message is being transmitted):

Ω = {J_  (J 1,...,JM ):JA =0,1; A =1,...,M }

7.2.3 Mean Value Analysis The mean number of messages in transmission over link A equals

E [min(1,JA ) = λA CA

B_ ___ A =1,...,M

This can be upper bounded by assuming the link is completely busy:

λA ≤
B

CA_ ___ A =1,...,M

The mean message delay can be lower bounded by the mean message transmission time, but it can be
arbitrarily bigger than this, due to fluctuations about the mean message transmission time. This
completes the mean value analysis.

7.2.4 Product Form Analysis If the number in system can be adequately modeled by a product form
distribution, the long term time averaged distribution for the number of messages at each node in the
network is given by

π[J 1=K 1,...,JM =KM ] =
J =1
Π
M

(1−ρJ )ρj
K

J

ρA =
CA

B λA_ ____ = mean utilization o f link A A =1,...,M

In order to calculate the mean message delay, we will use Little’s Law. The total mean flow rate into
the network is γtotal and is given by

γtotal =
I =1
Σ
M

J =1
Σ
M

γIJ

The total mean queue length is given by

E [J 1 + . . . + JM ] =
J =1
Σ
M

1−ρJ

ρJ_ ____

Hence, the total mean time in system of a message is

T =
γ
1_ _

J =1
Σ
M

1 − ρJ

ρJ_ ______ =
γ
1_ _

J =1
Σ
M

µCJ − λJ

λJ_ ________ =
J =1
Σ
M

γ
λJ_ __TJ

These results can be extended in a variety of ways:

• multiple communication links connecting nodes

• multiple message types of differing lengths

• control bit transmission time plus data bit transmission time

• varying length messages as the message moves through the network

7.2.5 Additional Reading

[1] L.Kleinrock, Communications Nets: Stochastic Message Flow and Delay, McGraw Hill, NY,
1964; reprinted, Dover, NY, 1972.
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[2] L.Kleinrock, Analytic and Simulation Methods in Computer Network Design, AFIPS Spring 1970
Joint Computer Conference, pp.569-579 (1970).

7.3 Engineering Alternate Routing Trunk Groups

In practice in voice telephony, it is uneconomical to develop a completely connected network. In fact, a
hierarchical network is used, with local calls switched by local switching systems, and other calls routed
through a high performance long distance or toll network. Typically the local trunks are engineered to
have relatively high blocking, say ten to thirty per cent blocking, due to economics. The toll network
trunks on the other hand are engineered to have one per cent blocking or less because this is the facility
of last resort: if a call cannot be completed with this network, it cannot be completed. Unfortunately,
the arrival statistics of calls to the backbone network is anything but Poisson: most of the time there is
virtually no call switching, because the local network can handle it all, but during a normal or peak busy
hour there will be bursts of call attempts. Our intent is to quantify how many trunks are required for a
given level of service and for a given level of call attempts that are being alternately routed through the
backbone network.

7.3.1 Model L local trunks are offered a load of A erlangs of voice traffic: this means that the arrival
statistics to the local trunks are Poisson with mean arrival rate λ, and the mean holding time for a call is
E (Ttalk ), while A =λE (Ttalk ). If a call attempt arrives and a local trunk is available, the call attempt
seizes the trunk for the duration of the call. If all local trunks are busy with call attempts when a new
call attempt arrives, the new call attempt searches a second group of C overflow trunks. If all local and
overflow trunks are busy when a new call attempt arrives, the new call attempt is rejected or blocked
from the system.

7.3.2 Equivalent Random Method Analysis The first type of analysis is called the equivalent random
method in voice telephone traffic engineering. The fraction of time that a call attempt is blocked by all
local trunks being busy is B (L ,A ), where this is the Erlang blocking function with L servers and an
offered load of A erlangs. The mean number of busy trunks is A B (L ,A )

M ≡ mean number o f local trunks busy = A B (L ,A )

The overflow stream to the toll trunk group will be characterized by two parameters, the mean number
of busy trunks for the local trunk group, and the squared coefficient of variation denoted by C 2 which
measures the fluctuation about the mean:

C 2 ≡ squared coe f f icient o f variation = 1 − M +
L + M + 1 − A

A_ _____________

These can be rearranged as follows:

M = A B



A

M +C 2 − 1
M +C 2

_ _________ − M − 1,A




L = A
M + C 2 − 1

C 2 + M_ __________ − M − 1

The problem is to solve for M and A . Knowing these, the blocking probability for overflow calls is
given by

over f low call blocking probability =
B (L ,A )

B (L +C ,A )_ _________

7.3.3 Hayward’s Approximation Analysis The equivalent random method is usually used only when the
service time distribution for calls on the local trunk group is exponential. For other distributions such as
a deterministic or constant holding time distribution, another approximation is widely used due to
Hayward:

blocking probability = B


 C 2

L_ __,
C 2

M_ __
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To use this requires that C 2 be determined, either from measurement or by analysis.

7.3.4 Numerics Newton’s method can be used to accurately numerically approximate A . The
fundamental recursion is

AK +1 = AK −
BK


LK + M + A − AK − (LK + M + 1)ln (AK )

AK BK − M_ ________________________________________ K =0,1,...

AK = M C 2 + 3 C 2 (C 2 − 1)

7.3.5 An Example Suppose that L =15, M =10, and C 2=3. Provided that the holding time distribution is
exponential, and using the equivalent random method of approximation, we find A =46.721 and
X =39.615. The blocking probability is found to be

blocking probability ∼∼
B (39.615,46.721)
B (54.615,46.721)_______________ = 0.151

Using Hayward’s approximation, we find

blocking probability ∼∼ B (5,3.333) = 0.139

This is consistent with λ=10, A =4. On the other hand, if the service time distribution is a
hyperexponential, with some mass at the origin and the remainder an exponential distribution, then
C 2=4.25, and hence Hayward’s approximation suggests

blocking probability ∼∼ B


 4.25

15_ ____,
4.25
10_ ____





= 0.187

which is significantly greater than the equivalent random method suggests.

7.3.6 Additional Reading

[1] R.Syski, Introduction to Congestion Theory in Telephone Systems, Oliver and Boyd,
Edinburgh, 1959.

[2] R.I.Wilkinson, Theories of Toll Traffic Engineering in the U.S.A., Bell System Technical Journal,
35 (2), 1956.

[3] L.Y.Rapp, Planning of Junction Networks in a Multi-Exchange Area, Part I, Ericsson Technics,
20, 1964.

[4] J.P.Moreland, Estimation of Point to Point Telephone Traffic, Bell System Technical Journal, 57
(8), 2847-2863 (1978).

[5] A.A.Fredericks, Congestion in Blocking Systems--A Simple Approximation Technique, Bell
System Technical Journal, 59 (6), 805-827 (1980).

7.4 Data Communication Network Design

We wish to build up our intuition design rules for high performance data communications networks. We
will do so by means of a variety of examples.

7.4.1 Uncoupled Links, Constraint on Maximum Transmission Capacity The simplest network we can
imagine, shown in the figure below, is one consisting of L links, each of which has a capacity CK

(K=1,...,L) bits per second. There is no coupling between the links! Jobs arrive according to simple
Poisson statistics with mean arrival rate λK to link K. The messages have independent identically
distributed exponential lengths, with all messages having the same mean length of B bits. The total
network capacity, Ctotal , is the sum of the individual link capacities:

K =1
Σ
L

CK = Ctotal

The total mean arrival rate of messages is λtotal and is the sum of the individual message arrival rates:
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Figure 7.14.L Uncoupled Links

λtotal =
K =1
Σ
L

λK

Based on mean value analysis, we require that the individual link capacity be greater than the total
offered load:

CK > B λK K =1,...,L

We are given the mean message length and the different mean link arrival rates, and our problem is to
choose the link capacities such that the total mean message queueing time is minimized:

E (TQ ) =
K =1
Σ
L

λtotal

λK_ ____
CK − B λK

B_ _________

We see that each link must be able to keep up with its offered work load, and this will require a
minimum amount of transmission capacity:

C min = B
K =1
Σ
L

λK = B λtotal

Thus, it makes sense to examine how we will proportion the excess transmission capacity:

Cexcess = Ctotal − B λtotal

CK = B λK + Cexcess ,K K =1,...,L

One way that comes to mind is to proportion the excess capacity proportional to the load for each link:

CK = B λK + Cexcess λtotal

λK_ ____ K =1,...,L

This will not minimize the mean queueing time of messages! The assignment that does this proportions
the excess transmission capacity according to the square root of the load for each link:

CK ,min = B λK + Cexcess

J =1
Σ
L

√  B λJ

√  B λK_ _______ K =1,...,L

7.4.2 Uncoupled Links, Routing Constraint The network is the same as described above, with one
additional constraint: the mean arrival rates are constrained such that
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λK ≥ αK K =1,...,L

The links are numbered such that

α1≥α2≥ . . . ≥αL

In words, the constraints {α K ,K =1,...,L } that we are given are due to our desire to make sure each link
carries at least a given minimum amount of traffic. Put differently, we have a type of routing constraint
on our traffic, usually for economic reasons. If we wish to minimize the mean queueing time, then it
can be shown that

λ1 = λtotal −
J =2
Σ
L

αJ λK = αK K =2,...,L

or in other words, we wish to put all of the load on that link that we wish to carry the most messages!

7.4.3 General Network, Constraint on Maximum Transmission Capacity Our third example consists of
a network with N ports, and a given offered point to point load of γIJ messages per second, I,J=1,...,N.
This is shown in the figure below.

Figure 7.15.General Network with N Ports and L Links

The message arrival statistics are simple Poisson. The message lengths are independent identically
distributed exponential random variables with mean B bits per message. The network contains L links,
with each link carrying a load of λK , K=1,...,L messages per second. We see that the total offered
message load is

γtotal =
I =1
Σ
N

J =1
Σ
N

γIJ

while the total message link load is

λtotal =
K =1
Σ
L

λK

>From our definitions, we see that the ratio of these two quantities is the mean number of links that a
message will traverse inside the network:

mean number o f links traversed per message =
γtotal

λtotal_ ____

Each of the links has a transmission capacity of CK ,K =1,...,L bits per second, and thus we wish to
define a quantity analogous to total network link utilization:
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σ =

K =1
Σ
L

CK

B γtotal_ _____

We will require σ<1 in order for all of the links to keep up with the message load. The total mean
queueing time is given by

E (TQ ) =
K =1
Σ
L

γtotal

λK_ ____
CK − B λK

B_ _________

If we rewrite this as follows

E (TQ ) =
γtotal

λtotal_ ____
K =1
Σ
L

λtotal

λK_ ____
CK − B λK

B_ _________

and since we are minimizing exactly the same function as we did in the second and first examples up to
an multiplicative constant, the optimum assignment of excess capacity again obeys a square root
proportionality rule:

CK ,opt =
µ

λK___ + Cexcess

J =1
Σ
L

√  B λJ

√  B λK_ _______ K =1,...,L

where

Cexcess =
K =1
Σ
L

CK − B λtotal

while the minimum mean queueing time for messages is given by

min E (TQ ) =

K =1
Σ
L

CK − (λtotal ⁄γtotal )γtotal

B λtotal ⁄γtotal [
K =1
Σ
L

√  λK ⁄λtotal ]2

_ _______________________ >

K =1
Σ
L

CK − B λtotal

B_ _____________

In words, this suggests that we look for paths that involve the shortest paths through the network, in
order to minimize both the mean number of hops traversed per message but also the mean queueing
time per message.

7.4.4 General Network, Cost Constraint on Transmission Capacity We can extend this third example
by allowing a cost, say dollars per unit of transmission capacity (dollars per bits per second), denoted by
DK for link K, and we wish to keep the total dollar cost for the network below a given maximum, say
D max:

K =1
Σ
L

DK CK = D ≤ D max

Proceeding as we did in the third example, we see that the assignment of transmission capacity that
minimizes the total mean dollar cost is given by a square root assignment of the offered load, weighted
by the dollar cost:

min E (TQ ) =
γtotal

λtotal_ ____
K =1
Σ
L

λtotal

λK_ ____

J =1
Σ
L

CJ − B λK

B_ ___________

CK ,opt = B λK +
DK

Dexcess_ _____

J =1
Σ
L

√  B λJ DJ

√B λK DK_ __________
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Dexcess =
K =1
Σ
L

DK −
K =1
Σ
L

DK B λK

7.4.5 Tree Network, Constraint on Maximum Transmission Capacity, Two Types of Links Our fifth and
final example is a tree network, as shown in the figure below.

Figure 7.16.An Illustrative Tree Network

This figure shows the mean message arrival rate from each port; since the network is a tree, this defines
the point to point offered load. All messages have a mean length of 120 bits. The total transmission
capacity available is 4500 bits per second. The table below summarizes the carried link load, the
optimum assignment of transmission capacity assuming transmission capacity is available in units of bits
per second, as well as the optimum assignment assuming only two speed links are available, 450 bit per
second links and 900 bit per second links:

Table 7.2.Tree Network Link Load and Capacity Assignment_ ______________________________________________________ _____________________________________________________
K λK CK ,opt CK ,discrete_ ______________________________________________________ _____________________________________________________
1 0.33 messages/sec 576 bits/sec 450 bits/sec
2 0.63 messages/sec 819 bits/sec 900 bits/sec
3 0.66 messages/sec 842 bits/sec 900 bits/sec
4 0.20 messages/sec 441 bits/sec 450 bits/sec
5 0.20 messages/sec 441 bits/sec 450 bits/sec
6 0.30 messages/sec 638 bits/sec 450 bits/sec
7 0.53 messages/sec 743 bits/sec 900 bits/sec

The mean queueing delay for the two networks is

E (TQ  optimum ) = 0.333 seconds E (TQ  discrete ) = 0.390 seconds

The penalty paid in having only two speeds of data links available appears to be quite reasonable for the
numbers chosen here.
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7.4.6 Additional Reading

[1] L.Kleinrock, Communications Nets: Stochastic Message Flow and Delay, McGraw Hill, NY,
1964; reprinted, Dover, NY, 1972.

[2] L.Kleinrock, Analytic and Simulation Methods in Computer Network Design, AFIPS Spring 1970
Joint Computer Conference, pp.569-579 (1970).

[3] S.Lin, B.W.Kernighan, An Effective Heuristic Algorithm for the Traveling Salesman Problem,
Operations Research, 21 (2), 498-516 (1973).

[4] S.Lin, Effective Use of Heuristic Algorithms in Network Design, Proceedings Symposium on
Applied Mathematics, 26, 63-84, American Mathematical Society, Providence, RI, 1982.

7.5 A Circuit Switching System

Some important ingredients in a node in a circuit switching system are

• A switching network

• A controller that governs access to the switching network

• A set of receivers that process messages or calls before connection is completed

• A controller for governing receiver access

Figure 7.17.Circuit Switching System Hardware Block Diagram

Each call on arrival must find a path through the switching network to an idle receiver; if no path is
available, a decision is made concerning further call processing. Each call temporarily requires a
receiver for message and call handling services; if no receiver is available, the system decides what
subsequent action is required for that call.

Here a highly simplified tractable model of such a system is studied to gain insight into performance
limitations and shed light on difficulties in extending analysis to more realistic switching systems.
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It is assumed that each call on arrival must be assigned to one of S channels or paths or links; if no
channel is available, the call is blocked or cleared from the system, and presumably will retry later.
Once a call is accepted, it holds a link and then requires a receiver; if no receiver is available, calls
queue until a receiver is available. Our goal is to determine the capacity of the switching system, which
is the joint choice of number of links and receivers that allows the largest possible mean completion rate
of calls while still meeting call set up delay goals. Our purpose is to show that one cannot
independently choose the number of links and receivers to achieve a desired capacity, i.e., these numbers
are coupled. In fact, we show it is possible to jointly choose the number of links and receivers to
achieve capacity superior to that when each is chosen separately; depending upon numbers and
application, this may be significant.

7.5.1 Model Description The model ingredients are

• the admissible set of states comprising the state space

• the arrival process

• the resources required at each stage of execution

• a policy for handling contention for resources

Figure 7.18.Circuit Switching System Queueing Network Block Diagram

The state of the system at any instant of time is given by an ordered pair (I,J), where the first
component I denotes the number of calls in the set up stage and the second component J denotes the
number of calls in the talking stage.

0 ≤ I + J ≤ S I ,J ∈{ 0,1,...,S }

The arrival statistics of calls are assumed to be Poisson, i.e., the sequence of interarrival times of calls
are independent exponentially distributed random variables, with mean arrival rate λ.

The first step of call set up involves holding a link and a receiver for a mean time interval denoted by
Tcontrol . The second step of talking involves holding a link for a mean time interval denoted by Ttalk .

The space of admissible states is denoted by Ω, where

Ω =
K =0
∪

S

ΩK

where ΩK denotes the state where there are a total of K calls in the system in both set up and talking:

ΩK = {(I ,J ) 0≤I ,J ≤S ,I + J = K }

7.5.2 Mean Value Analysis At any instant of time, the mean number of receivers busy with call set up
is

λaccepted Tcontrol = E [min (R ,I )]

The mean number of links or trunks busy with call set up or talking is
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λaccepted (Tcontrol +Ttalk ) = E [min (S ,J )]

The mean throughput rate is upper bounded by

λaccepted ≤ min


 Tcontrol

R_ ______,
Tcontrol +Ttalk

S_ __________




Two bottlenecks arise here.

• If receivers are the bottleneck, then

λaccepted =
Tcontrol

R_ ______

• If links are the bottleneck, then

λaccepted =
Tcontrol +Ttalk

S_ __________

For voice telephony, Ttalk > >Tcontrol , and we can engineer either links or receivers to be the bottleneck,
with receivers engineered according to call set up statistics, and links engineered according to call
holding time or talking statistics. For data, Ttalk ∼∼ Tcontrol , and there will be very strong coupling
between the control and link subsystems.

7.5.3 Jackson Network Analysis Given the previous assumptions, the fraction of time the system is in
state (I,J), averaged over a suitably long time interval, denoted by π(I ,J ), is given by

π(i ,j ) =
G
1_ __

K =0
Π

I

Φrec (K )

λTcontrol_ _______
M =0
Π

J

Φtrunk (M )

λTtalk_ ________

Φrec (K ) =


 min (R ,K ) K >0
1 K =0

Φtrunk (K ) =


 min (S ,K ) K >0
1 K =0

7.5.4 Long Term Time Averaged Blocking The fraction of time that an arriving call finds all S links
occupied and is cleared or blocked from entering the system is called the blocking probability, denoted
by B. There are two different approaches for calculating blocking probability. The first approach
involves calculating the fraction of time the system has all S links occupied (either with call set up or
talking)

B =
(I ,J )∈Ω

S

Σ π(I ,J ) =
G

GS_ ___

GK =
(I ,J )∈Ω

K

Σ
M =0
Π

I

Φrec (M )

λTcontrol_ _______
N =0
Π

J

Φtrunk (N )

λTtalk_ ________ 0 ≤ K ≤ S G ≡
k =0
Σ
S

Gk

An alternate approach equates the rate at which calls are accepted into the system to the rate at which
calls leave the system:

λ(1 − B ) = call acceptance rate

(I ,J )∈Ω
Σ Ttalk

J_ ____π(I ,J ) = call completion rate

The fraction of time a call is blocked depends upon all model parameters and not simply on just the
number of links.

7.5.5 Long Term Time Averaged Waiting Time Distribution Let πaccept (I ,J ) denote the fraction of time
that the system is in state (I,J) and an arriving call is accepted. From earlier definitions, this is given by
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πaccept (I ,J ) =
1 − B
π(I ,J )_ _____ =

(1−B )Gaccept

1___________
M =0
Π

I

Φrec (M )

λTrec_ _______
N =0
Π

J

Φtrunk (N )

λTtalk_ ________ (I ,J )∈Ω accept

Ωaccept =
K =0
∪
S −1

ΩK Gaccept =
(I ,J )∈Ω

accept

Σ
M =0
Π

I

Φrec (M )

λTrec_ _______
N =0
Π

J

Φtrunk (N )

λTtalk_ ________

Let π(I ) denote the marginal distribution of paccept (I ,J ):

π(I ) =
j =0
Σ

S −1−I

paccept (I ,J ) 0≤I ≤S −1

The random variable TW denotes the time interval from when an accepted call arrives until it is first
attached or assigned a receiver. Recall that calls are processed in order of arrival. If (R −1) or fewer
receivers are busy, the accepted call does not wait at all:

PROB [TW =0] =





 0 R =S

I =0
Σ

R −1

π(I ) R <S

The probability that an accepted calls waits greater than T >0 to start receiver processing is given by

PROB [TW >T >0] =





 1 R =S

I =0
Σ

R −1

π(I ) +
I =R
Σ
S −1

π(I )


 R + zTrec

R_ ________




I −R +1

R <S

The total call set up delay, denoted TQ , is the sum of the waiting time plus the receiver processing time:

TQ = TW + Trec

E [exp (−zTQ )] =
1+zTrec

1_ ______ E [exp (−zTW )]

>From Little’s Law or by differentiation of this expression and evaluating it at z =0 we see that

λ(1 − B )E (TQ ) =
I =0
Σ
S

J =0
Σ
S −I

I π(I ,J )

7.5.6 Capacity Determination Given R receivers, S links, with mean set up time Trec and mean call
talking time Ttalk , the problem is to find the largest mean arrival rate λ such that the blocking is
acceptable, i.e., B <δ for some threshold δ, and the fraction of time a call waits in set up before it starts
processing is acceptable, i.e.,

PROB [TW >T ] < ε

7.5.7 Asymptotics Before studying system behavior numerically, we want to see how the system
behaves asymptotically as various parameters become large, to get further insight.

One way to study behavior under an external overload is to allow λ→∞. In practice, during overload
the arrival statistics might change as customer behavior changes due to impatience or retries, as well as
for other reasons.

As λ→∞ we see that the long term time averaged distribution becomes concentrated in the states where
all S links are always busy (as soon as a call completes, another is ready to seize the link):

λ→∞
limπ(I ,J ) =



 π̃(I ,J ) I +J =S

0 I +J <S

π̃(I ,J ) =
G̃

1_ __
M =0
Π

I

Φrec (M )

Trec_ _______
N =0
Π

J

Φtrunk (N )

Ttalk_ ________ (I ,J )∈Ω S
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As the arrival rate becomes infinite, the blocking approaches one, i.e., virtually all calls are blocked:

B = 1 −
λ

λmax_ ____ + . . . λ→∞

The mean throughput rate of calls is given by

mean call throughput rate =
λ→∞
lim [λ(1−B )] = λmax = min



 Trec

R_ ___,
Ttalk +Trec

S_ ________




For the case where R=S we see that

λmax =
Ttalk

S_ ____

Trec

1_ ___+
Ttalk

1_ ____

1_ __________ R =S

In fact, it is also possible for the interaction between links and receivers to limit the maximum mean call
completion rate below either of these upper bounds. Because the network or links are used for two
purposes, control or call set up and talking or data transfer, it is possible for λmax to be less than S ⁄Ttalk

which would be the limit due to links being a bottleneck.

If the number of receivers is fixed and small, while the number of links is so large that calls rarely are
blocked, then for all intents the number of links is infinite. For this case, two regimes arise:

• R ⁄Trec ≤λ and hence λmax=R ⁄Trec , receivers are always busy executing calls

• R ⁄Trec >λ, receivers can keep up with arriving calls, and the distribution for number of calls in the
system is given by manipulations of the earlier expressions (Do this as an exercise!)

The mean waiting time is given by

E (TW ) =
R − λTrec

C (R ,λTrec )_ _________ Trec

For light loading, λTrec <<1, the mean waiting time goes to zero. For heavy loading, λTrec →R , the
mean waiting time exceeds any finite threshold. Furthermore, the above expression is an upper bound
on the actual mean waiting time, because for an infinite number of trunks all arrivals are accepted,
which can lead to greater waiting than if some arrivals are rejected and this is a finite number of calls
waiting.

7.5.8 Telephone Call Switching The table below is a summary of capacity, chosen such that the
blocking of calls occurs less than one per cent of the time and the fraction of time a call waits for a
receiver exceeding three seconds occurs less than one per cent of the time:

B < ε=0.01 PROB [TW >3 seconds ] < δ=0.01

For point of comparison, the case where receivers are infinitely fast is included to show how far off
capacity can be:
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Table 7.3.Capacity (Voice Telephone Calls/Hr)_ __________________________________________________ _________________________________________________
Links(S) γ=0 R=1 R=2 R=3 R=4 R=5_ __________________________________________________ _________________________________________________

5 24.7 5.0 21.6 24.0 24.0 24.0
10 80.3 5.0 72.0 78.0 79.0 79.0
15 145.8 5.0 72.0 145.0 145.0 145.0
20 216.4 5.0 72.0 214.0 216.0 216.0
25 290.7 5.0 72.0 260.0 330.0 335.0
30 366.3 5.0 72.0 265.0 330.0 335.0
35 443.7 5.0 72.0 265.0 385.0 426.0
40 522.4 5.0 72.0 265.0 385.0 498.0
45 603.0 5.0 72.0 265.0 385.0 566.0
50 682.2 5.0 72.0 265.0 385.0 599.0

Note that if the actual arrival rate becomes greater than the maximum capacity, performance drops off
much faster for large S than for small S. For example, with R=1, when S=2,3,4, doubling the mean
arrival rate from 24 to 48 calls per hour results in blocking probability not simply doubling, but
increasing by 2.6, 3.6, 6.1 and 10.1 respectively.

In certain cases a graph allows one to assess performance sensitivity to different parameter values more
readily than using tables of numbers. The figures below plot the probability of blocking, the mean
throughput rate, and the probability of waiting greater than three seconds, for one to ten links and one or
two receivers. We have chosen parameters typical of those found in voice telephony: a mean set up or
dialing time of ten seconds, and a mean call holding or talking time of two hundred seconds.

Figure 7.19.Blocking vs Mean Arrival Rate(R=1)
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Figure 7.20.Blocking vs Mean Arrival Rate(R=2)

Figure 7.21.Mean Throughput Rate vs Mean Arrival Rate(R=1)
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Figure 7.22.Mean Throughput Rate vs Mean Arrival Rate(R=2)

Figure 7.23.PROB[TW >3] vs Mean Arrival Rate(R=1)
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Figure 7.24.PROB[TW >3] vs Mean Arrival Rate(R=2)

Several observations can be made based on inspection of these figures:

• For a fixed mean arrival rate, the blocking decreases as the number of links increases. The ninetieth
percentile of the waiting time distribution also increases as the number of links increases. This
implies there is a subset of values of S (possibly an empty set!) such that for each given mean
arrival rate, a given criterion on blocking and waiting time percentile is met.

• For fixed mean arrival rate, blocking is insensitive to choosing the number of receivers, while the
waiting time percentiles are very sensitive to choosing both R and S. This shows that it is not
straightforward to design the number of links and receivers by studying two limiting cases where
receivers are infinitely fast (1⁄γ=0) for sizing the number of links and where links are plentiful (S =∞)
to size waiting time performance for choosing number of receivers.

7.5.9 Data Transmission Circuit Switching How will this system perform if it must circuit switch data
rather than voice? We have simply changed the mean set up time from ten seconds to one second (γ=1)
and the mean holding time from two hundred seconds to one second (µ=1). Performance here means
guaranteeing that the probability of waiting does not exceed one second more than ten per cent of the
time, while the mean throughput rate is ninety per cent of the offered load, i.e., ten per cent of the
arrivals are blocked.

PROB [TW >1 second ] < δ = 0.1 B < ε=0.1

Note the very strong coupling between performance or capacity and the joint choice of R and S, as
shown in the table below:
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Table 7.4.Capacity(Data Calls per Hour)_ ____________________________________________________ ___________________________________________________
Links(S) γ=0 R=1 R=2 R=3 R=4 R=5_ ____________________________________________________ ___________________________________________________

1 360 200 200 200 200 200
2 2160 760 1050 1100 1100 1100
3 4500 770 2500 2500 2500 2500
4 7280 780 3400 3500 3550 3550
5 10440 800 3800 5000 5200 5250
6 13680 800 3900 6400 6600 6800
7 16920 800 3900 7500 8050 8300
8 20160 800 3900 8300 9500 10000
9 23760 800 3900 8300 11000 11500
10 27180 800 3900 8300 12000 12400

The figures below plot the mean throughput rate, the probability of waiting more than one second, and
the fraction of calls blocked:

Figure 7.25.Blocking vs Mean Arrival Rate(R=1)
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Figure 7.26.Blocking vs Mean Arrival Rate(R=2)

Figure 7.27.Mean Throughput Rate vs Mean Arrival Rate(R=1)
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Figure 7.28.Mean Throughput Rate vs Mean Arrival Rate(R=2)

Figure 7.29.PROB[TW >1] vs Mean Arrival Rate(R=1)
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Figure 7.30.PROB[TW >1] vs Mean Arrival Rate(R=2)

7.6 Digital Circuit Switching

Voice telephone systems employ circuit switching: at the start of each call, all of the required resources
(links and switching system buffers) are allocated for the duration of the call, and otherwise the call
attempt is rejected or blocked. Current voice telephony requires 64 kilobits per second of transmission
capacity per telephone call from one person to another; computers and terminals require many other data
rates, such as multiples of 300 bits per second, as well as many other rates. How many links are
required, with what data rate for each link, connected to how many switching systems, in order to
handle a given workload with a given acceptable level of performance? Jackson networks are a step in
the direction of answering questions like these. Sometimes, it is possible to have zero blocking; this is a
baseline case which we wish to compare against allowing some blocking. Often, for economic reasons,
it may be possible to engineer a system with a small amount of blocking that costs less to manufacture
and operate than a system with zero blocking. How much less depends on the designer and available
technology!

7.6.1 Additional Reading

[1] C.Clos, A Study of Non-Blocking Switching Networks, Bell System Technical Journal, 32,
406-424 (1953).

[2] A.A.Collins, R.D.Pedersen, Telecommunications: A Time for Innovation, Merle Collins
Foundation, Dallas, Texas, 1973.

[3] T.Feng, A Survey of Interconnection Networks, Computer, 14 (12), 12-27 (1981).

7.6.2 An Illustrative Digital Circuit Switching System Figure 7.31 is an illustrative block diagram of a
digital circuit switching system.

One terminal inputs bits to a digital circuit switching system via input link 1. Eventually the bits should
reach another terminal, that receives bits on output link L. The sending terminal can transmit one chunk
of bits at a regularly spaced time interval called a frame. For simplicity, the input link and output link
frame periods are assumed identical, for example 125 µseconds, or 8000 times a second. The input
chunks are transmitted in time intervals called slots because time is multiplexed, one chunk per slot. In
the example shown, terminal two inputs bits during time slot five over link 1. The switch must send
these bits out on link L for terminal four during time slot three. How does it do this?
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Figure 7.31.Digital Circuit Switching System

In the example shown here, there are two special purpose hardware subsystems that accomplish this
switching function. The first subsystem is called a time slot interchanger because it interchanges the
time slots that bits come in on and go out on: in the example, bits in time slot five go out in time slot
seven. How might this be implemented? the input bits during one frame might be stored in one
memory location of the time slot interchanger, and are output one frame later. At the start of a circuit
session, a set of pointers are initialized in a table, showing which bits in which memory locations are to
be input and output. Similarly, bits in time slot seven go out on time slot three via a second time slot
interchanger. This requires that the time slot interchanger buffer two frames worth of bits, one for
receiving while the second is used for transmitting. In other words, circuit switching employs a very
limited amount of buffering, compared to packet switching: enough to buffer one input frame and one
output frame. The other special purpose piece of hardware is a space division switch, which consists of
L input links and L output links. The input from terminal two in time slot seven goes into the switch on
one link during one time slot, and comes out another link on another time slot, with the internal switch
multiplexing time slots at Finternal frames per second, which must equal or exceed Flink . Putting it all
together, bits go in from one terminal on one time slot and come out on the other terminal on another
time slot. The purpose in using either a time slot interchanger or a space division switch is to get
greater connectivity between the terminals than either alone might provide: it may well be that certain
patterns of bits going in and coming out, with the space division switch alone, make it impossible to
connect all inputs to all outputs. The purpose of using the space division switch is to get even greater
connectivity than would be possible with just time slot interchangers. Finally, this pattern can be
repeated, to allow building multiple stage switching systems out of these basic building blocks.

There are three types of bottlenecks here:

• The transmission capacity of the input link is completely utilized
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• The transmission capacity of the time slot interchanger or time division switch is completely utilized

• The transmission capacity of the output link is completely utilized

A related phenomenon here arises from variable bandwidth switching. Digital circuit switching involves
assigning a variable number of time slots (e.g., twice as many for a 9.6 KBPS source as for a 4.8 KBPS
source), and then rearranging these time slots via time slot interchangers and space division switches to
connect the appropriate inputs to the appropriate outputs. Two types of phenomena arise:

• External fragmentation, where the number of available time slots per frame is exceeded by the
number of competing demands

• Internal fragmentation, where a demand requires fewer time slots per request than the system can
actually assign (e.g., an attempt demands one time slot per frame but the system requires that two
time slots per frame be assigned)

We assume that the internal fragmentation is negligible from this point on, and focus only on external
fragmentation or blocking of attempts. Our goal is to quantify performance of such systems, starting
from simple examples and building up to more complex cases.

7.6.3 One Input Link, One Output Link Time Slot Interchanger To begin with, suppose we had one
input link and one output link, with no time slot interchanger. Each link has S slots per frame. The
state is given by the pair (J,K) where J denotes the number of calls up on the input link and K denotes
the number of calls up on the output link; each call is assumed to require one time slot per frame. We
assume that the interarrival times of calls are independent identically distributed exponential random
variables with mean arrival rate λ. The sequence of call holding times are independent identically
distributed random variables drawn from an arbitrary distribution with mean Tactive . Granted all these
assumptions, the long term time averaged fraction of time the system is in state (J,K), denoted by
π(J ,K ), is given by

π(J ,K ) =
G 2

1___
J !K !

(λTactive )J +K
_ __________ J ,K =0,...,S

G =
L =0
Σ
S

L !

(λTactive )L
_ ________

If there is no time slot interchanger, then the time slot on the input link is identical to the time slot on
the output link. The long term time averaged fraction of time a call is blocked is thus given by

f raction o f time call blocked =
G 2

1___
J =0
Σ
S

K =S −J
Σ
S



 S −K

S 





 S −K

J 

_______

J !K !

(λTactive )J +K
_ __________

which can be rewritten in terms of Erlang’s blocking function B (S ,A ) as

f raction o f time call blocked = B (S ,A )[S +1−A (1−B (S ,A ))] A = λTactive

For numbers of practical interest, B (S ,A )<<1 and thus

f raction o f time call blocked ∼∼ B (S ,A )[S +1−A ] B (S ,A )< <1

which is S +1−A larger than designing the system based solely on the input links or output links
blocking!

7.6.4 Example If the offered load is eight Erlangs per link, we need eight time slots per frame to
handle the load, based on a mean value analysis, with complete link utilization. If we desire blocking to
occur no more than one call in a hundred, averaged over a suitably long time interval, then eighteen or
more time slots per frame per link are required, and the maximum link utilization is four ninths. On the
other hand, B(S=18,A=8) is roughly one in one thousand, i.e., the total system blocking could be low by
a factor of ten if the interaction between the input and output links is ignored.
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What a time slot interchanger is added? Now the long term time averaged fraction of time a call is
blocked is

f raction o f time call blocked = B (S ,A )[2−B (S ,A )] A = λTactive

and thus the relative gain in blocking in using a time slot interchanger versus not using it is

blocking with time slot interchanger
blocking with no time slot interchanger_ __________________________________ = 1+

2−B (S ,A )
S −1−A +(A +1)B (S ,A )_ __________________

∼∼ 1+
2

S +1−A_ ______ B (S ,A )<<1

which can be calculated numerically for a given application. Here the relative gain for A =8,S =18 is 6.5.

7.6.5 Sensitivity Analysis How robust are these findings to a change in certain underlying assumptions?
For example, what if we change the arrival statistics? N sources can be in one of two states, idle
(where no circuit bandwidth is required) and active (which requires one time slot). The mean time in
each state is denoted by Tidle and Tactive . Then with no time slot interchanger, the fraction of time the
system is in state (J ,K ) is given by

π(J ,K ) =


 J

S 





 K

S 






P ≡

Tidle +Tactive

Tactive_ __________




J +K 


1 − P ≡

Tidle +Tactive

Tidle_ __________




2S −J −K

The long term time averaged fraction of blocked call attempts with no time slot interchanger is

f raction o f time call blocked = [P (2−P )]S −1

With a time slot interchanger, the blocking is given by

f raction o f time a call blocked = ENG (S ,A =SP )[2−ENG (S ,A =SP )]

where ENG (S ,A =SP ) is the Engset blocking formula* given by

ENG (S ,A =SP ) =

M ∈Ω
Σ π(M )[N −M ]

M ∈Ω
BLOCK

Σ π(M )[N −M ]

_ _________________

where Ω and ΩBLOCK are the sets of total admissible states and blocking states, respectively.

7.6.6 Variable Bandwidth Traffic Time Slot Interchanger What if not one time slot per frame is
required but rather R time slots per frame? Given J time slots occupied on the input link and K time
slots occupied on the output link, we see

π[R TIME SLOTS AVAILABLE  (J ,K )] = 

 J

S 





 R

S −K 





 J −R

K 

_ _____________

For example, we see

f raction o f time call blocked [I  J ,K ]

__________________

* Named in honor of the voice telephone traffic engineer who pioneered this type of analysis.
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=
M =0
Σ
I −1



 S −J

S 





 S −K −M

S −K 





 J +M +K −S

K 

_ _____________________

is the fraction of time that I or fewer time slots are available between source J and destination K, and
hence

f raction o f time call blocked (I ) =
J =0
Σ
S

K =0
Σ
S

π(J ,K )f raction o f time call blocked [I  J ,K ]

is the long term fraction of requests demanding I time slots are blocked, averaged over all inputs and
outputs. If the input offered load is Ainput Erlangs per line, and the output offered load is Aoutput Erlangs
per line, then

π(J ,K ) =

P =0
Σ
S

Q =0
Σ
S

(Ainput
P ⁄P !)(Aoutput

Q ⁄Q !)

(Ainput
J ⁄J !)(Aoutput

K ⁄K !)_ _______________________

EXERCISE: Numerically explore the parameter space for S =24, Tidle =300 sec, Tactive =100 sec.

7.6.7 L Input Links, L Output Links, One Time Slot Interchanger Next we allow blocking at either an
input link, a time slot interchanger, or an output link. L input links are connected to a time slot
interchanger capable of supporting M simultaneous calls with L output links. State is specified by
(I,J,K) where I is the number of input links and J the number of output links handling calls requiring K
time slots per frame. The interarrival times for each call type form a sequence of independent
identically distributed exponential random variables, with mean rate given by λ(I ,J ,K ). The sequence
of holding times are independent identically distributed random variables, Tactive (I ,J ,K ), drawn from an
arbitrary distribution. The admissible state space is denoted by Ω. Different policies for operating links
and switches will determine different admissible state spaces. The set of blocking states is denoted by
ΩBLOCK (K ).

Ω = {N (I ,J ,K ) 0≤N (I ,J ,K )≤S −K ;1≤I ,J ≤L }

ΩBLOCK (K ) = ΩBLOCK −INPUT (K )∪ ΩBLOCK −SWITCH (K )∪ ΩBLOCK −OUTPUT (K )

ΩBLOCK −INPUT (K ) = {N (I ,J ,K )
J =1
Σ
L

N (I ,J ,K )>S −K ,1≤I ≤L }

ΩBLOCK −SWITCH (K ) = {N (I ,J ,K )
I =1
Σ
L

J =1
Σ
L

N (I ,J ,K )>M −K }

ΩBLOCK −OUTPUT (K ) = {N (I ,J ,K )
I =1
Σ
L

N (I ,J ,K )>S −K ,1≤J ≤L }

The long term time averaged fraction of time the system is in state (I,J,K) is given by

π(N (I ,J ,K )=ν(I ,J ,K )) =
G
1_ __

(I ,J ,K )∈Ω
Π ν(I ,J ,K )!

(λ(I ,J ,K )Tactive (I ,J ,K ))ν(I ,J ,K )
_ _________________________

G =
(I ,J ,K )∈Ω

Σ
(I ,J ,K )∈Ω

Π ν(I ,J ,K )!

(λ(I ,J ,K )Tactive (I ,J ,K ))ν(I ,J ,K )
_ _________________________

The blocking states are given by ΩBLOCK , and hence

B =
(I ,J ,K )∈Ω

BLOCK

Σ π(N (I ,J ,K ) = ν(I ,J ,K ))
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7.6.8 Example Two classes of different types of tasks with different arrival rates and different holding
times request transmission capacity.

There are a total of N (1) type one sources and N (2) type two sources. Each source is idle for a random
time interval; the idle times are assumed to be independent identically distributed sequences of
exponential random variables with mean idle time Tidle (1) and Tidle (2) for type one and two,
respectively. When a source goes from idle to active and is not blocked, it holds a given amount of
transmission capacity for a random time interval. The holding times are assuming be mutually
independent sequences of independent identically distributed random variables drawn from arbitrary
distributions with mean holding time Tactive (1) and TS (2) for type one and two respectively.

In order to complete the problem description, we must describe how the calls are handled upon arrival
and completion. Each type of call has a dedicated amount of transmission capacity. In addition, there is
a shared pool of transmission capacity. If an arrival cannot find available transmission capacity in its
dedicated transmission system, it will attempt to find it in the shared pool. If an arrival cannot find the
requisite capacity in either place, it is blocked or rejected from the system. Presumably at a later point
it will return to retry.

The figure below shows the admissible state space for a set of 2.4 kilo bit per second and 4.8 kilo bit
per second data terminals with dedicated and partially shared transmission capacity.

Figure 7.32.State Space of Variable Bandwidth 2.4/4.8 KBPS Switch

7.6.9 Mean Value Analysis Consider the following example, motivated from office communications.
Two types of calls or messages are handled by a common link, voice telephony and data
communications (e.g., inquiry to a set of data bases, data entry, text processing). Each voice telephone
message lasts for a mean of three minutes with a total of twenty voice calls over a six hour day. Each
data message lasts for a mean of forty five minutes, and there are four data sessions over a six hour
business day. How many slots are required to support a given number of voice and data sessions with
given blocking? Should the slots be pooled or dedicated or a mixture of these two policies?

The rough sizing for this example might go as follows: we have a transmission link capable of
supporting 24 simultaneous voice calls. The offered load due to voice is 1/6 Erlang per station, and thus
we can have 144 telephone stations for voice with complete loading (we must backoff from this in order
to achieve lower blocking such as one per cent). The offered load due to data is 4 Erlangs per station,
and thus we can assign 6 data stations with complete loading. Note that if we pooled the transmission
capacity, it is possible for a small number of data terminals to lock out all the voice for very long time
intervals. If we dedicated say half the transmission capacity to voice and half to data, we could support
roughly 72 voice stations and three data stations, and we would engineer these separately without
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worrying about interactions between the two, which might be of great practical import. Finally, if the
channels are in fact 64 kilobit per second channels, and each voice call requires a 64 kilobit channel
while each data call requires a 2.4 kilobit per second channel, then total sharing results in 144 voice
stations or 156 data terminals, while dedicating half the transmission capacity to each results in 72 voice
terminals and 76 data terminals respectively. The analysis outlined earlier is a refinement of this crude
sizing, and allows us to see how far off from complete utilization we must operate to have adequate
service.

7.6.10 Additional Reading

[1] J.M.Aein, A Multi-User Class, Blocked-Calls-Cleared Demand Access Model, IEEE Transactions
on Communications, 26 (3), 378-385 (1978).

[2] J.S.Kaufman, Blocking in a Shared Resource Environment, IEEE Transactions on
Communications, 29 (10), 1474-1481 (1981).

7.6.11 Blocking with Balanced versus Unbalanced Loads How does the effect of load balancing (each
station generating the same message load equally likely to any other station) versus load imbalance
impact performance?

In the figure below we show a block diagram of a switching system capable of supporting at most two
simultaneous calls, and two input/output links each capable of supporting at most one call.

Figure 7.33.Two Input Links/One Switch/Two Output Links

The calling rate per idle source pair is λ(I ,J ),1≤I ,J ≤2 and the mean holding time per call is
Tactive (I ,J ),1≤I ,J ≤2. The state space is given by

Ω = {N (1,1),N (1,2),N (2,1),N (2,2)} =

{ (0,0,0,0),(0,0,0,1),(0,0,1,0),(0,1,0,0),

(1,0,0,0),(1,0,0,1),(0,1,1,0)}

Hence, the long term fraction of time the system is in a given state is

π(N (1,1),N (1,2),N (2,1),N (2,2)) =
G
1_ __

I =1
Π

2

J =1
Π

2

[λ(I ,J )Tactive (I ,J )]N (I ,J )

We wish to consider two cases to exhibit the phenomena here: the network offered load and the link
offered load is identical, with only the routing patterns of calls different:

• Total balance

λ(I ,J )Tactive (I ,J ) = f ixed 1≤I ,J ≤2

• Fifty per cent mismatch

λ(1,1)Tactive (1,1) = λ(2,2)Tactive (2,2) = (1⁄2)f ixed constant
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λ(1,2)Tactive (1,2) = λ(2,1)Tactive (2,1) = (3⁄2)f ixed constant

The results are plotted in the figure below, and show that the heavily loaded links experience less
blocking than the lightly loaded links, and bracket either side of the balanced case. This is reasonable,
although perhaps at first sight counterintuitive!

Figure 7.34.Blocking vs Balanced/Unbalanced Load

7.6.12 Variable Bandwidth Digital Circuit Switching The block diagram of the system in the figure
below is slightly more general than that above, to emphasize the impact of variable bandwidth traffic on
performance. The system consists of transmitters and receivers, with transmitter I sending only to
receiver I, 1≤I ≤5. Each link is multiplexed with two time slots per frame, as is the circuit switch
concentrator. Source three requires two time slots per call, while all other calls require one time slot per
call. There are two classes of calls, those requiring one time slot per call, indexed by J, and those
requiring two slots per call, indexed by K. The system state space is

Ω = {(J ,K ) (0,0),(1,0),(0,1),(2,0)}

Figure 7.35.Variable Bandwidth Circuit Switch
Two time slots per frame for each link and for switch

Sources 1,2,4,5 require one time slot per call
Source 3 requires two time slots per call

The mean arrival rate of calls requiring I time slots per call is λ(I ) while the mean holding time of a
call requiring I time slots is T (I ). The fraction of time the system is in state (J ,K ) is
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π(J ,K ) =
G
1_ __



 J

4 



A (1)J A (2)K λ(I )T (I ) ≡ A (I ) (J ,K )∈Ω

The mean fraction of call attempts requiring one time slot that are blocked is denoted by B (1) and given
by

B (1) =
4+12A (1)+12A (1)2+4A (2)

4A (2)+12A (1)2
_ ______________________

which shows the interaction of the two call types. The mean fraction of call attempts requiring two time
slots that are blocked is denoted by B (2) and given by

B (2) =
1+4A (1)+6A (1)2

4A (1)+6A (1)2
_ ______________

which shows that its blocking depends solely on the call statistics of single time slot calls, because only
one of these can block a two time slot call. In the figure below we have chosen to fix A (2)=0.25 and
varied A (1) to illustrate how counterintuitive the blocking behavior can be: blocking drops for small
offered loads before increasing, because some single slot traffic is blocking the two slot traffic more
effectively as load increases, making it more likely for single slot attempts to be successful.

Figure 7.36.Blocking versus Low Bandwidth Offered Load

7.6.13 Additional Reading

[1] V.E.Benes, Mathematical Theory of Connecting Networks and Telephone Traffic, Academic
Press, NY, 1965.

[2] V.E.Benes, Programming and Control Problems Arising from Optimal Routing in Telephone
Networks, Bell System Technical Journal, 45 (9), 1373-1438 (1966).

[3] L.Katzschner, R.Scheller, Probability of Loss of Data Traffics with Different Bit Rates Hunting
One Common PCM Channel, pp.525-1--525-8, Eighth International Teletraffic Conference,
Melbourne, Australia, 1976.
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Problems

1) Jobs arrive for execution by a system according to simple Poisson arrival statistics, mean arrival rate
λ. The system consists of a group of parallel servers: once a job begins execution, it executes until
finished. If all servers are busy, jobs are queued in order of arrival. The maximum mean throughput
rate of executing jobs with J jobs in the system (waiting and executing) can be written as the product of
two terms, one speed dependent and the other state dependent:

maximum mean throughput rate = R Φ(J )

A. Suppose the system consists of P processors, so that

Φ(J ) = min [J ,P ]

Calculate the partial derivative of the total job mean delay with respect to R. Evaluate this for
R =0.5,1.0,2.0. Do you see a pattern?

B. Suppose the system consists of a drum with B blocks per track and a rotational period of T
seconds, so that

R =
T
1_ _ Φ(J ) =

2 J + B − 1
2 J B_ __________

Calculate the partial derivative of the total job mean delay with respect to R. Evaluate this for
R =0.5,1.0,2.0. Do you see a pattern?

2) Two processors and two memories share a common bus. On its Kth memory access a processor will
retrieve data in MK sequential locations in memory, starting at address AK and going through address
AK +MK −1. The processor executes this data and then repeats this memory fetch process. The memory
addresses are assumed to be interleaved among the memory modules: memory fetches are made first
from one module, then the other, then the first and so on.

The system state at any instant is given by a pair (I,J) where I refers to the number of processors
accessing memory module one and J refers to the number of processors accessing memory module two,
I ,J =1,2. We denote by π(I ,J ) the fraction of time, averaged over a suitably long time interval, that the
system is in a given state.

A. If the mean number of memory locations fetched per access is E (M ) show

π(0,2) = π(2,0) =
2 + E (M )

1_ ________ π(1,1) =
2 + E (M )

E (M )_ ________

B. The unnormalized memory bandwidth is defined as the mean number of active processors doing
memory accesses. Show that this equals

unnormalized memory bandwidth = 2π(1,1) + π(0,2) + π(2,0)

C. The maximum number of processors doing memory accesses can be two, and hence we can
normalize the actual by the maximum memory bandwidth; show that this equals

maximum memory bandwidth
unnormalized memory bandwidth_ ____________________________ =

2 + E (M )
1 + E (M )_ ________

D. For interleaved memory accesses, with E (M )→∞, what is the normalized memory bandwidth?

E. For noninterleaved memory accesses, with E (M )→0, what is the normalized memory bandwidth?

F. BONUS: For a noninterleaved system with P processors accessing M memories via a full
crossbar interconnection switch, show via a Jackson network analysis that
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normalized memory bandwidth =
M + P − 1

M P__________

For P =4 plot this versus M =1,2,3,4. What is the incremental gain in going from one to two, two
to three, three to four processors?

G. BONUS: For a system with P processors and M memories, with constant number of memory
addresses fetched per memory access, show that

unnormalized memory bandwidth = min (P ,M )

3) A system consists of C clerks at terminals that submit transactions to an online system. Each clerk is
idle for fifteen seconds and then active. The system hardware configuration consists of terminals,
processors and disks. Each transaction requires some processor time and some time to access data
stored on disk. We wish to compare the following two configurations

[1] One processor and one disk, with the mean processor time per job equal to one second and the
mean disk access time per job equal to one second

[2] Two processors and two disks, with the mean processor time per job equal to two seconds and
the mean disk access time per job equal to two seconds

Answer the following questions:

A. What is the system state space?

B. What are the resources per job?

C. What are upper and lower bounds on mean throughput rate and mean delay?

D. Plot mean throughput rate and mean delay as well as upper and lower bounds on these quantities
versus number of clerks for a closed network. Repeat for an open network.

E. Which configuration should be chosen? Why?

4) We wish to compare the traffic handling characteristics of three different computer configurations:

• a single input stream feeding one buffer with one processor capable of executing a maximum of one
million assembly language instructions per second

• a single input stream feeding one buffer with two processors each capable of executing a maximum
of five hundred thousand assembly language instructions per second

• a single input stream that is split into two streams each of half the intensity of the original stream,
with each stream feeding its own buffer and own processor, and each processor capable of executing
five hundred thousand assembly language instructions per second

Each task involves the execution of an exponentially distributed number of assembly language
instructions, with a mean of one hundred thousand assembly language instructions executed per task.
The number of instructions executed per task are assumed to be statistically independent.

Plot the following quantities versus the mean arrival rate of tasks for each of the above three
configurations:

A. the mean rate of completing tasks

B. the mean waiting time per task

C. the mean queueing time per task

D. the mean queue length
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E. the fraction of time that a task waits greater than zero

F. the fraction of time that a task waits greater than T seconds vs T for a fixed processor utilization
of 0.1, 0.5, 0.9

5) Jobs arrive for processing by a pipeline of processors: the input stream is handled by stage one, the
output of stage one is the input to stage two, and so forth, for a total of N stages. Each job requires a
random number of assembly language instructions be executed; we assume the number of instructions
per job form a sequence of independent identically distributed exponential random variables with mean
INST total. Each processor is capable of executing a maximum of IPS (N ) assembly language
instructions per second, where we stress that the maximum execution rate of each processor depends on
the number of stages in the pipeline as we vary N. In an N stage pipeline, each processor will execute
1/Nth of the total number of instructions per job. The arrival statistics are Poisson; we fix the mean
arrival rate at the same value for both systems. We denote by E (TQ  N =1) the mean queueing time for
a one stage system that does exactly the same work as the N stage pipeline. We fix the mean queueing
time for either system at twice the mean execution time of the job on the single fast processor. Find the
required speed processor for each stage of the N stage pipeline, and plot IPS (N )⁄IPS (N =1) versus N for
the above conditions.

6) Two different time slot interchangers are under consideration. The first handles twenty four lines,
while the second handles ninety six lines. Each interchanges one eight bit sample on each line eight
thousand times a second. The second costs twice as much as the first to initially manufacture, test and
assemble; the market measured in terms of number of lines is the same for each. If the design goal is to
have blocking occur within the time slot interchanger no more than one ten thousandth of the time,
which system should be chosen, based on cost/benefit analysis? Why?

7) A time slot interchanger can interchange six time slots per frame. Two types of message traffic must
be switched. Low bandwidth messages require one time slot per frame, while wide bandwidth messages
require two time slots per frame. The mean holding time for the low bandwidth one time slot per frame
is two time slots, while the mean holding time for the high bandwidth two time slot per frame messages
are three frames.

[1] The total message arrival rate is two messages per frame. Plot the blocking of both types of
messages as the mix is varied from all low bandwidth to all wide bandwidth.

[2] Repeat the above if the total message arrival rate is doubled and halved.

[3] Repeat the above if the time slot interchanger can switch four slots per frame and eight slots per
frame.

8) A variable bandwidth circuit switch consists of

[1] Two input links, each capable of handling two time slots per frame

[2] Two output links, each capable of handling two time slots per frame

[3] A central switch, capable of switching four time slots per frame

Two types of calls are switched, one requiring one slot per frame, the other requiring two slots per
frame. The arrival statistics for each call type are simple Poisson. The sequence of call holding times
for each call type are independent identically distributed random variables.

A. Assume each call type is equally likely to go from any input link to any output link.
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[1] Plot the blocking for each call type versus the fraction of arrivals that are low bandwidth
(varied from zero per cent to one hundred per cent) assuming the two call types have
identical call holding times of one frame.

[2] Repeat the above, assuming the low bandwidth call has a holding time of ten frames, and
the high bandwidth call has a holding time of one frame.

[3] Repeat the above, assuming the high bandwidth call has a holding time of ten frames, and
the low bandwidth call has a holding time of one frame.

B. Assume all the high bandwidth calls arrive on one input link, and are destined for one output link.
Assume the low bandwidth calls all arrive on the other input link, and are all destined for the
other output link. Repeat all the above.

C. Repeat all the above if the switch capacity is increased to eight slots per frame.

D. Repeat all the above if the link capacity is reduced to one slot per frame.

9) A disk storage system must store two types of messages:

• Data messages with a mean of one kilobyte per message and a mean residence time (time from
arrival until retrieval) of two hours

• Voice messages with a mean of four kilobytes per message and a mean residence time (time from
arrival until retrieval) of four hours

The total message arrival rate is one message per ten seconds.

[1] The disk can store ten megabytes. Plot the fraction of time data messages and voice messages
are blocked or rejected if the disk storage is shared among the two types of messages as a
function of the mix of data messages, zero to one hundred per cent.

[2] Repeat the above if the disk storage is doubled to twenty megabytes.

[3] Repeat all the above if the mean arrival rate increases by a factor of ten, and one hundred.

[4] Repeat the above if the disk storage is partitioned into a fixed amount of storage for data and a
fixed amount for voice, with the fraction of each type of dedicated storage being in proportion to
the ratio of the mean arrival rate of each type multiplied by the respective holding time.
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In this section we examine computer applications of Jackson queueing networks. The examples
comprise

• A private branch exchange

• A multiple processor packet switching system

• An automatic call distributor

• A hierarchical analysis of a computer system

• A distributed online transaction processing system

These examples are quite lengthy, because the systems themselves are intrinsically complicated, and the
requisite analysis of design tradeoffs must be done systematically. Each example involves extensive
numerical studies, in order to gain insight into formulae.

8.1 Private Branch Exchange (PBX) Customer Communications Engineering

Customer premises voice switching systems (private branch exchanges or PBXs) can be configured with
a set of trunks for connecting the local switching system to the outside telephone system. The number
of trunks is typically chosen to meet a given grade of service, based on measurements of analysis (e.g.,
Erlang blocking formula). Currently available customer premises voice switching systems can be
configured with two different types of trunks for telephone calls made outside the premises. One type is
called private line because typically these are special or private facilities that are leased to take
advantage of tariffs, and the other type is called common carrier because these are offered by a provider
of service of the last resort (if all the private line circuits are busy, the common carrier is assumed to
have circuits available for completing telephone calls). The figure below shows a hardware block
diagram of such a system.

Figure 8.1.Hardware Block Diagram of PBX System

A customer hopes to take advantage of voice calling patterns, and save money, by configuring a PBX
with a mix of private line and common carrier facilities. A well engineered PBX most of the time would
complete calls with private line trunks, and only rarely (e.g., during a peak business hour) would there
be a significant demand for common carrier trunks. Customers need not know which set of trunks were
used to complete the call; only the system administrator would have this knowledge. How can this
system be engineered to achieve desired performance at an acceptable price? What measurements might
be gathered to quantify any statements in this realm? If call attempts can be buffered, waiting for an
available trunk, how many buffers are required? Customers can be impatient, and can hang up, renege,
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or defect from the buffer, if the time spent waiting (in the buffer) is unacceptable. How does customer
impatience impact a design? In a well engineered system, customers will only rarely defect and redial
telephone calls; how can we measure how many customers are trying for the first time and how many
have tried more than once to check this? These are typical of the questions we wish to address.

8.1.1 Model Figure 8.2 is a queueing network block diagram of the system to be analyzed.

Figure 8.2.Queueing Network Block Diagram of PBX

Calls arrive and are held in a buffer of maximum capacity B calls; if a call arrives and finds the buffer
full, it is blocked and presumably will retry later.

There are S trunks available for calls: if less than S trunks are busy when a call arrives, it seizes a trunk
for the duration of the call. If all the trunks are busy when a call arrives, the call is buffered and will
either defect or renege if it does not receive some service after a given time interval, or will seize a
server from a second group of infinite servers for the duration of a call if its waiting time exceeds a
threshold.

Calls attempts arrive to a system with the interarrival times being independent identically distributed
exponential random variables with mean interarrival time 1⁄λ.

Call holding times are independent identically distributed exponential random variables with mean
holding time 1⁄µ.

If a call is buffered because all trunks are busy, the sequence of time intervals until defection, given that
no service was received, are assumed to be independent identically distributed exponential random
variables with mean 1⁄α.

If a call is buffered because all trunks are busy, the sequence of time intervals until a call seizes a
common carrier trunk are independent identically distributed exponential random variables with mean
time out interval 1⁄β.

If there are B calls in the buffer, all new arrivals are blocked or rejected. Calls are removed from the
buffer in order of arrival.

8.1.2 Jackson Network Asymptotics Here are a number of tractable special cases.

First, if the buffer capacity equals the number of private line trunks B =S , there will be no queueing, and
call attempts will be either accepted or rejected. The fraction of call attempts that are rejected is given
by the Erlang blocking function:

f raction o f blocked call attempts = B (S ,λ⁄µ) =

K =0
Σ
S

(λ⁄µ)K ⁄K !

(λ⁄µ)S ⁄S !_ ___________
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This provides a baseline case for comparing all subsequent studies. In a well engineered system, there
should be little waiting, and little reason to have the number of buffers significantly larger than the
number of private line trunks.

A second special case is to choose B →∞, which effectively means that there is never any buffer
overflow. For this case, for the system to simply keep up with the work, we must demand

λ < S µ + α+β

In words, the arrival rate of calls must be less than the call departure rate (either due to successful
completion or defection).

A final special case is to allow λ→∞, an overload. As λ→∞ the number of calls in the buffer is always
B, and hence

π(B ) = 1 π(K ) = 0, K =0,1,...,B −1

EXERCISE: What happens if S →∞?

8.1.3 Summary For a private branch exchange, under normal conditions there should be no calls
queueing for private line trunks: most of the calls should be completed by the private link facilities.
Call buffering should occur rarely, and buffer overflow should trigger an alarm that the system is not
engineered properly. The time out for overflow to common carrier facilities should be set shorter than
the mean time to defect. This suggests measuring the mean number of calls completed by the private
line and common carrier facilities, the number of call attempts blocked by either buffers or private line
trunks not being available, the number of calls that time out, the number of calls that renege and how
long they are in the system, and the time a successful call waits to be completed.

8.2 A Data Packet Switching Node

We analyze traffic handling characteristics of different configurations of a data packet switching system.

8.2.1 Functional Description The figure below shows a hardware block diagram of a multiple
processor packet switching system.

Figure 8.3.Hardware Block Diagram of Packet Switching System

The companion figure below shows a functional block diagram of each step of packet handling.
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Figure 8.4.Data Flow Block Diagram of Packet Switching System

Two types of transactions arrive from elsewhere in the network to be executed:

• control packets--these carry data describing a portion of the network state, maintenance information,
routing information, and other network management data, but do not carry any customer data

• data packets--these carry both control information concerning the sequence number of the packet in a
message and actual useful data information supplied by a customer

For control packets, there are three stages of execution:

• input handling--checking the packet to determine whether it is a control or data packet, checking the
packet for errors due to transmission anomalies, and formatting it for subsequent execution

• switching and routing--updating various network management files with information on facility status
at selected points in the network, modifying routing strategies to account for perceived problem areas

• output handling--formatting the control packet for subsequent transmission to another cluster in the
network, adding status information concerning this cluster

For data packets, there are five stages of execution:

• input handling--checking the packet type, checking the packet for errors due to transmission
anomalies, and formatting it for execution at the next stage

• switching and routing--determining the next cluster to which the packet will be sent as well as the
path through the network

• output handling--formatting the data packet for subsequent transmission to another network cluster

• acknowledgement of correct receipt of the packet at the destination cluster-- the receiver of the
packet now sends back a special data packet acknowledging proper receipt of the data packet which
is first handled by the input handler

• switching and routing--this module updates appropriate network management files to acknowledge
that the packet was correctly transmitted and then releases or discards its copy of the original data
packet which was held until this point in case the transmitted packet was unsuccessfully transmitted

In any actual application, there will in fact be lost packets and a variety of failures that must be guarded
against. Here we have made the assumption that everything is performing properly which hopefully
would be the case in any actual system during normal operation; within this very restricted framework
there are still a great many issues to be explored quantitatively.

The hardware configuration is a set of multiple processors connected by a high speed communications
network or bus. The operating system allocating resources for this configuration is distributed across the
processors, and administers and facilitates communication between the different modules. How many
processors are needed? Should there be one processor running all this code, or more than one? Should
there be functionally dedicated processors running only one portion of this code, and if so how many of



-- --

CHAPTER 8 APPLICATIONS II 5

each? How fast should the processors be for adequate performance? What type of delay and throughput
will occur for control packets versus for data packets? How much buffering will be required in each
processor? For a more detailed exposition of a data communications packet switch the interested reader
is referred to the references at the end of this section.

The figure below is a block diagram of a queueing network corresponding to the above verbal
description.

Figure 8.5.Queueing Network Block Diagram of Packet Switching System

Control packets migrate from cluster to cluster via steps C1, C2, C3. Data packets migrate according to
steps D1, D2, D3, D4, D5, D6. Should each processor be capable of executing all steps, or should
processors be dedicated to steps?

8.2.2 Traffic Handling Requirements Before determining what this system could do, we wish to specify
what it should do. Our goals are as follows:

• for data packets, in the initial field system we desire a mean throughput rate of one hundred packets
per second with a mean delay at a node from arrival until system buffers are flushed of all work
related to that packet no larger than one hundred milliseconds during an average business hour and
no larger than two hundred milliseconds during a peak business hour; two years after initial
deployment we wish to handle two hundred data packets per second with the same delay during an
average business hour and a peak business hour

• for control packets, for the initial field system we desire a mean throughput rate of twenty packets
per second with a mean delay at a node from arrival until system buffers are flushed of all work
related to that packet no larger than ten milliseconds during an average business hour and no larger
than twenty milliseconds during a peak business hour; two years after initial deployment we wish to
handle forty control packets per second with the same delay as the initial system

The control packet delay criterion is much more stringent than the data packet delay criterion because
we wish to minimize delays in controlling the entire data communications network to prevent overload,
deadlocking, and so forth. There are a variety of ways to achieve this goal and we will investigate one
family of approaches in the following sections.

8.2.3 Mean Value Analysis The fraction of arriving packets that are control and data packets are
denoted by Fcon ,Fdata , respectively.

The tables below summarize the number of assembly language instructions, both application and
operating system, that must be executed at each stage of execution. We have included illustrative
numerical values for the symbolic parameters in order to make this more concrete.
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Table 8.1.Number of Instructions Executed at Each Step per Packet_ _______________________________________________________________ ______________________________________________________________
Control Packets Data Packets

Step Number of Instructions Step Number of Instructions
Number of Assembly Language Number of Assembly Language
(Fig.8.5) Symbol Value (Fig.8.5) Symbol Value_ _______________________________________________________________ ______________________________________________________________

C1 Cinput 300 D1 Dinput 300
C2 Cswitch 1500 D2 Dswitch (1) 5000
C3 Coutput 200 D3 Doutput 300

D4 --- ---
D5 Dinput (2) 300
D6 Dswitch (2) 750













Next, we must describe the number of processors of each type, and their respective maximum instruction
rates.

Table 8.2.Processor Hardware Description_ ________________________________________________ _______________________________________________
Type Number Maximum Instruction Rate_ ________________________________________________ _______________________________________________

Input Handling Pinput Iinput instructions/sec
Switching Pswitch Iswitch instructions/sec

Output Handling Poutput Ioutput instructions/sec

Our goal is to obtain an upper bound on mean throughput rate. First, we must calculate the total time
required per module for each type of transaction. For brevity, we assume we have either one pool of
processors doing all packet switching functions or three types of dedicated processors.

The crudest level of sizing is to assume either only control packets or only data packets. Each control
packet requires 2,000 lines of assembly language code to be executed, and hence with a processor
capable of executing 300,000 lines of code per second, 150 control packets per second can be executed
on one processor. Each data packet requires 6,650 lines of assembly language code to be executed, and
with the same speed processor 45 packets per second can be executed on one processor.

For a system with three types of processor clusters, it is useful to look at the ratio of number of lines of
assembly language code executed for each of the three functions, in order to gain some feel for the
approximate ratio of processor types required. Output handling requires the smallest number of lines of
code per packet to be executed, and hence we normalize our results by saying that for every one output
handler processor, we will require two input handler processors and from eleven processors (for a 80%
control packet/20% data packet traffic mix) to eighteen processors (for a 20% control packet/80% data
packet traffic mix) for routing and switching.

Table 8.3A.Single Processor Cluster--Total Time per Packet per Module_ _______________________________________________________________ ______________________________________________________________
Control Packets Data Packets_ _______________________________________________________________ ______________________________________________________________

Iproc ×Iproc

Cinput +Cswitch +Coutput_ _________________
Iproc ×Pproc

Dinput (1)+Dswitch (1)+Doutput +Dinput (2)+Dswitch (2)_ _______________________________________
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Table 8.3B.Three Functionally Dedicated Processor Clusters
Total Time per Packet per Module_ _____________________________________________________ ____________________________________________________

Processor Type Control Packets Data Packets_ _____________________________________________________ ____________________________________________________

Input
Iinput ×Pinput

Cinput_ __________
Iinput ×Pinput

Dinput (1)+Dinput (2)_ _______________

Switching
Iswitch ×Pswitch

Cswitch_ ___________
Iswitch ×Pswitch

Dswitch (1)+Dswitch (2)_ _________________

Output
Ioutput ×Poutput

Coutput_ ___________
Ioutput ×Poutput

Doutput_ ___________


























We focus on two special cases:

• 20% control packets and 80% data packets--this is typical of what might be encountered in a well
designed system during a peak busy hour for example

• 80% control packets and 20% data packets--this is typical of what might be encountered during
severe network congestion during a peak busy hour for example

The following tables give the system capacity, in packets per second, for the case of a single cluster of
processors versus three clusters of functionally dedicated processors.

Table 8.4A.Maximum Mean Throughput Rate
for Single Cluster of Processors_ _________________________________________ ________________________________________

Number of 20% Control 80% Control
Processors 80% Data 20% Data_ _________________________________________ ________________________________________

1 52 packets/sec 102 packets/sec
2 103 packets/sec 204 packets/sec
3 156 packets/sec 306 packets/sec
4 209 packets/sec 409 packets/sec
5 261 packets/sec 511 packets/sec


















Table 8.4B.Maximum Mean Throughput Rate for Three Clusters of
Functionally Dedicated Processors/One Input and One Output Processor_ ________________________________________________________________ _______________________________________________________________

Number of 20% Control 80% Control
Switching Processors 80% Data 20% Data_ ________________________________________________________________ _______________________________________________________________

1 61 packets/sec 127 packets/sec
2 122 packets/sec 254 packets/sec
3 183 packets/sec 381 packets/sec
4 245 packets/sec 509 packets/sec
5 306 packets/sec 636 packets/sec


















The capacity for the input handling processor with 20% control packets is 429 packets per second, while
with 80% control packets it is 750 packets per second. The capacity for the output handling processor is
independent of mix, and is 1000 packets per second. Thus, the routing and switching processor cluster
is the bottleneck in the three functionally dedicated cluster implementation, and by adding processors to
do that task capacity will increase linearly over the above range of values, until the input processor
becomes a bottleneck.

The main thrust of traffic studies is to first make sure that the maximum mean throughput rate is well in
excess of that required for a given application before next turning to meeting delay criteria. This excess
margin of throughput will be used to assure that delay criteria are met: since the resources are not fully
utilized, there will be less contention and hence shorter waiting times. Determining the maximum mean
throughput rate is a necessary but by no means sufficient condition for assuring adequate system
performance.



-- --

8 PERFORMANCE ANALYSIS PRIMER CHAPTER 8

8.2.4 Delay Analysis The mean delay analysis is developed in several steps. First, if we have P
identical processors each capable of a maximum instruction execution rate of Iproc handling one type of
job with a mean of Ijob instructions, and each processor has mean utilization U , then the mean delay per
job is

E (TQ ) =
Iproc

Ijob_ ____



D (P ,U ) =

P (1 − U )
C (P ,P U )_ _________ + 1





where C (P ,P U ) is the Erlang delay function discussed earlier. Second, if we allow the P identical
processors to execute two different job types, with the mean number of instructions executed per job
being IJ ,J =1,2 then the mean delay for each job type is

E (TQ ,J ) =
U (1) + U (2)

U (J )_ ___________ D (P ,[U (1) + U (2)]) J =1,2

U (J ) = λ × FJ ×
P Iproc

IJ_ ______ J =1,2

where FJ denotes the fraction of type J jobs that are executed over a long time interval. Finally, for the
case at hand, we can calculate for each of the three workload partitions the mean delay for both control
and data packets; we do so only for one case, the case of three functionally dedicated processor clusters,
and omit the remaining cases for brevity:

E (TQ ,control ) =
Iinput

Cinput_ _____D (Pinput ,Uinput ) +
Iswitch

Cswitch_ _____D (Pswitch ,Uswitch )

+
Ioutput

Coutput_ _____D (Poutput ,Uoutput )

E (TQ ,data ) =
Iinput

Dinput (1)+Dinput (2)_ _______________D (Pinput ,Uinput )

+
Iswitch

Dswitch (1)+Dswitch (2)_ _________________D (Pswitch ,Uswitch ) +
Ioutput

Doutput______D (Poutput ,Uoutput )+Tack

where Tack is the acknowledgement delay.

8.2.5 Illustrative Numerical Results We now present illustrative numerical results for

• different workload partitioning

• different numbers of processors

• different mixes of control and data packets

• different processor speeds

The numbers chosen to generate the curves that follow are those described in the previous section for
number of lines of assembly language code per packet.

In the study that follows, we assume that all the processors are identical, and execute either 0.3 or 0.5
million assembly language instructions per second* which is felt to be typical of current technology,
based on discussions with numerous knowledgable workers in the field plus a variety of trade
publications.

We vary the mix of control and data packets from 20% control and 80% data to 80% control and 20%
data.

__________________

* One million instructions per second is abbreviated to one mip in current common usage.
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The following cases are studied:

• One processor cluster executing input handling, switching, and output handling, with from one to
five processors in the cluster

• Three processor clusters, one cluster for input handling, one cluster for switching, and one cluster for
output handling, with from one to five switching processors and one processor handling input and
one processor handling output

The remaining case, one cluster for input and output handling, and one for switching, is omitted for
brevity, and its performance should be bounded by the above two extreme points.

Acknowledgement delay is varied from ten to fifty milliseconds.

We wish to calculate or approximate the largest total mean packet arrival rate such that a given set of
delay criteria is met. The goals we wish to meet are the mean data packet delay, including
acknowledgement, at a given node should not exceed one hundred milliseconds, while the mean control
packet delay at a given node should not exceed ten milliseconds.

We first examine the data packet handling characteristics for different values of acknowledgement delay
and for different mixes. We tabulate the results below:

Table 8.5A.Maximum Total Mean Arrival Rate with Mean Data Packet Delay

Less Than 100 msec--20% Control/80% Data Packets--0.3 MIPS per Processor_ ______________________________________________________________ _____________________________________________________________
Total Single Cluster Number of Three Clusters

Number of Acknowledgement Delay Switching Acknowledgement Delay

Processors 10 msec 50 msec Processors 10 msec 50 msec_ ______________________________________________________________ _____________________________________________________________
1 35 pkts/sec 30 pkts/sec 1 40 pkts/sec 30 pkts/sec

2 85 pkts/sec 80 pkts/sec 2 105 pkts/sec 85 pkts/sec

3 140 pkts/sec 130 pkts/sec 3 165 pkts/sec 140 pkts/sec

4 185 pkts/sec 195 pkts/sec 4 225 pkts/sec 215 pkts/sec

5 235 pkts/sec 250 pkts/sec 5 270 pkts/sec 290 pkts/sec










Table 8.5B.Maximum Total Mean Arrival Rate with Mean Data Packet Delay

Less Than 100 msec--80% Control/20% Data Packets--0.3 MIPS per Processor_ _______________________________________________________________ ______________________________________________________________
Single Cluster Number Three Clusters

Number of Acknowledgement Delay of Switching Acknowledgement Delay

Processors 10 msec 50 msec Processors 10 msec 50 msec_ _______________________________________________________________ ______________________________________________________________
1 75 pkts/sec 60 pkts/sec 1 100 pkts/sec 75 pkts/sec

2 180 pkts/sec 155 pkts/sec 2 225 pkts/sec 190 pkts/sec

3 280 pkts/sec 260 pkts/sec 3 360 pkts/sec 400 pkts/sec

4 350 pkts/sec 370 pkts/sec 4 430 pkts/sec 460 pkts/sec

5 450 pkts/sec 470 pkts/sec 5 550 pkts/sec 600 pkts/sec










Inspection of these two tables reveals that

• the workload mix has a definite impact on performance

• adding processors can increase traffic handling faster than one might expect naively because the
processors are not completely utilized

We now turn to control packet traffic handling characteristics. The results are tabulated below:
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Table 8.6A.Maximum Total Mean Arrival Rate with Mean Control Packet Delay

Less Than 10 msec--0.3 MIPS per Processor_ _______________________________________________________________ ______________________________________________________________
Single Cluster Number of Three Clusters

Number of Workload Mix Switching Workload Mix

Processors 20% Control 80% Control Processors 20% Control 80% Control_ _______________________________________________________________ ______________________________________________________________
1 15 pkts/sec 35 pkts/sec 1 25 pkts/sec 50 pkts/sec

2 65 pkts/sec 120 pkts/sec 2 75 pkts/sec 185 pkts/sec

3 110 pkts/sec 215 pkts/sec 3 130 pkts/sec 270 pkts/sec

4 160 pkts/sec 310 pkts/sec 4 185 pkts/sec 370 pkts/sec

5 210 pkts/sec 400 pkts/sec 5 240 pkts/sec 470 pkts/sec










Based on both these tables, we see that the control packet delay criterion and not the data packet delay
criterion is limiting performance for the numbers chosen here.

How sensitive is performance if we change the delay criterion? We might design the system for an
average control packet delay of ten milliseconds and a peak control packet delay of twenty milliseconds.
The numbers are tabulated below:

Table 8.6B.Maximum Total Mean Arrival Rate with Mean Control Packet Delay

Less Than 20 msec--0.3 MIPS per Processor_ ___________________________________________________________________________ __________________________________________________________________________
Single Cluster Number of Three Clusters

Number of Workload Mix Switching Workload Mix

Processors 20% Control 80% Control Processors ........... 20% Control 80% Control_ ___________________________________________________________________________ __________________________________________________________________________
1 35 pkts/sec 70 pkts/sec 1 40 pkts/sec 85 pkts/sec

2 85 pkts/sec 165 pkts/sec 2 105 pkts/sec 215 pkts/sec

3 135 pkts/sec 265 pkts/sec 3 165 pkts/sec 330 pkts/sec

4 190 pkts/sec 370 pkts/sec 4 225 pkts/sec 425 pkts/sec

5 235 pkts/sec 475 pkts/sec 5 285 pkts/sec 590 pkts/sec










System engineers can then block out total network performance knowing that data packet delays are one
hundred milliseconds or less per node while control packet delays are ten milliseconds or less per node
on the average, and twenty milliseconds or less per node during peak loading.

What would happen if a faster processor were available? The tables below summarize the results of one
such exercise assuming the maximum instruction rate of each processor is 500,000 instructions per
second:

Table 8.7A.Maximum Total Mean Arrival Rate with Mean Data Packet Delay

Less Than 100 msec--20% Control/80% Data--0.5 MIPS per Processor_ _______________________________________________________________ ______________________________________________________________
Single Cluster Number Three Clusters

Number of Acknowledgement Delay of Switching Acknowledgement Delay

Processors 10 msec 50 msec Processors 10 msec 50 msec_ _______________________________________________________________ ______________________________________________________________
1 75 pkts/sec 65 pkts/sec 1 65 pkts/sec 55 pkts/sec

2 150 pkts/sec 140 pkts/sec 2 160 pkts/sec 150 pkts/sec

3 250 pkts/sec 235 pkts/sec 3 280 pkts/sec 260 pkts/sec

4 320 pkts/sec 310 pkts/sec 4 380 pkts/sec 355 pkts/sec

5 420 pkts/sec 400 pkts/sec 5 480 pkts/sec 460 pkts/sec
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Table 8.7B.Maximum Total Mean Arrival Rate with Mean Data Packet Delay

Less Than 100 msec--80% Control/20% Data--0.5 MIPS per Processor_ ________________________________________________________________ _______________________________________________________________
Single Cluster Number Three Clusters

Number of Acknowledgement Delay of Switching Acknowledgement Delay

Processors 10 msec 50 msec Processors 10 msec 50 msec_ ________________________________________________________________ _______________________________________________________________
1 150 pkts/sec 120 pkts/sec 1 175 pkts/sec 155 pkts/sec

2 300 pkts/sec 280 pkts/sec 2 390 pkts/sec 360 pkts/sec

3 480 pkts/sec 455 pkts/sec 3 600 pkts/sec 570 pkts/sec

4 650 pkts/sec 630 pkts/sec 4 800 pkts/sec 270 pkts/sec

5 820 pkts/sec 800 pkts/sec 5 1030 pkts/sec 1010 pkts/sec










Table 8.8A.Maximum Total Mean Arrival Rate with Mean Control Packet Delay

Less Than 10 msec--0.5 MIPS per Processor_ _______________________________________________________________ ______________________________________________________________
Single Cluster Number of Three Clusters

Number of Workload Mix Switching Workload Mix

Processors 20% Control 80% Control Processors 20% Control 80% Control_ _______________________________________________________________ ______________________________________________________________
1 50 pkts/sec 100 pkts/sec 1 60 pkts/sec 120 pkts/sec

2 125 pkts/sec 260 pkts/sec 2 150 pkts/sec 340 pkts/sec

3 210 pkts/sec 425 pkts/sec 3 250 pkts/sec 550 pkts/sec

4 300 pkts/sec 600 pkts/sec 4 350 pkts/sec 750 pkts/sec

5 400 pkts/sec 770 pkts/sec 5 450 pkts/sec 950 pkts/sec










Table 8.8B.Maximum Total Mean Arrival Rate with Mean Control Packet Delay

Less Than 20 msec--0.5 MIPS per Processor_ ________________________________________________________________ _______________________________________________________________
Single Cluster Number Three Clusters

Number of Workload Mix Switching Workload Mix

Processors 20% Control 80% Control Processors 20% Control 80% Control_ ________________________________________________________________ _______________________________________________________________
1 65 pkts/sec 140 pkts/sec 1 85 pkts/sec 180 pkts/sec

2 155 pkts/sec 350 pkts/sec 2 185 pkts/sec 380 pkts/sec

3 245 pkts/sec 425 pkts/sec 3 285 pkts/sec 600 pkts/sec

4 315 pkts/sec 650 pkts/sec 4 375 pkts/sec 800 pkts/sec

5 430 pkts/sec 800 pkts/sec 5 475 pkts/sec 1025 pkts/sec










The benefit in going to a faster processor is greater than just a simple speed scaling! This is because the
processors are not completely utilized, and an economy of scale benefit is present.

8.2.6 Summary of Performance Analysis for Data Packet Switch We conclude with a brief summary of
the relevant performance parameters for the data packet switch example discussed here.

The switching module is the main bottleneck. To alleviate this problem, designers can

• add more dedicated or shared processors, making a tradeoff between parallelism achieved by
pipelining versus parallelism achieved by multitasking

• fix the number of processors and vary the workload partitioning

• chose different speed proocessors

• combinations of the above

We can achieve this with either

• three processors in a cluster handling input, routing and switching, and output, assuming all
processors execute 0.3 MIPS

• five processors in three clusters, with one in one cluster for input handling, one cluster of three
processors for routing and switching, and one for output, assuming all processors execute 0.3 MIPS
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• two processors in one cluster, with each processor handling all three tasks, assuming all processors
execute 0.5 MIPS

• four processors in three clusters, with one input handling cluster of one processor, one routing and
switching cluster of two processors, and one output handling cluster of one processor, assuming all
processors execute 0.5 MIPS

If we fix the total workload and the total number of processors, then the greatest gains are to be made
not by functionally dedicating processors but rather by pooling them to execute packets, if the goal is to
minimize the total mean packet delay. The refinement of having some processors for input alone and
others for output alone may not be justified in terms of traffic handling capacity alone, based on the
numbers at hand. Even dedicating some processors to input and output handling and others to routing
and switching is not justified. However, if we wish to minimize the response time for a particular type
of packet, then it may prove worthwhile to add dedicated rather than shared processors.

Varying the control and data packet mix or the processor speed can have great impact on system
performance for the numbers presented here. A combination of all of the above items appears to offer
the greatest potential for traffic performance improvement for the numbers presented here. The tables
quantify precisely the amount of gain for each of these factors.

8.2.7 Additional Reading

[1] W.Bux, Modelling and Analysis of Store and Forward Data Switching Centres with Finite Buffer
Memory and Acknowledgement Signalling, Elektronische Rechenanlagen, 19 (4), 173-180(1977).

8.3 Automatic Call Distributor with Customer Defection

We now return to the automatic call distributor system described earlier, in order to illustrate how to
include the phenomenon of reneging where customers defect or hang up rather than waiting for service
by an agent. Even music while you wait need not keep everyone happy! In a more serious vein, this
example illustrates the versatility of Jackson queueing network models to handle quite complicated
realistic situations, involving interactions between customers, trunks and agents. The power of the
method is it makes all this look easy! A variety of models are possible, only one of which is presented
here. Finally, this is a standard computer communications system that virtually everyone has
encountered everyday, vitally important in daily business. Suppose you were put in charge of managing
such a system: the analysis presented here would suggest where to begin to look for coming to grips!

8.3.1 Model The initial ingredients in the model are

• S servers or agents

• T trunks or links

• The arrival statistics of calls

• The service statistics of calls

The arrival statistics are assumed to be Poisson, with total offered mean arrival rate λ. The call service
statistics are assumed to be adequately modeled by independent identically distributed exponential
random variables with mean 1⁄µ for the mean service time per call (this includes the time an agent and
customer spend talking plus time spent by the agent in call cleanup work with no customer).

After handling this model (always do this first, simply as a check or baseline case for comparison,
before doing the more complicated model), we will allow customers to defect after they have been
accepted but before an agent has handled them.

8.3.2 State Space The system state space is denoted by Ω which is the set of all integer valued
admissible numbers of customers in the system:

Ω = {K  K =0,1,...,T }
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Figure 8.6.Automatic Call Distributor with Customer Defection Queueing Network

8.3.3 Mean Value Analysis The mean throughput rate of completing calls is denoted by λ. The mean
number of occupied trunks is given by

E [min (K ,T )] = λTtrunk

where Ttrunk is the mean trunk holding time for completed calls, including waiting for an agent. We will
calculate this in the next section; for now, it suffices to note that if trunks are the bottleneck, then

λ =
Ttrunk

T_____

The mean number of busy agents is given by

E [min (K ,S )] =
µ
λ_ _

If agents are the bottleneck, then

λ = S µ

Combining all this, we find

λ ≤ min



S µ,

Ttrunk

T_____




For the bottleneck to occur at either the trunks or the agents, we must demand that

S
T_ _ = µTtrunk trunks ⁄agent

If we choose µ=1⁄30 seconds while Ttrunk = 45 seconds , then we need 45⁄30=1.5 trunks per agent.

8.3.4 Jackson Network Analysis Let K denote the number of customer calls in the system. The long
term time averaged fraction of time that K calls are in the system is given by

πK =
G
1_ __

K !
(λ⁄µ)K
_ _____

I =0
Π
K

max



1,

S
I_ _





As before, the system partition function, denoted by G, will determine various measures of performance.

Many call distributors are operated with a blocking of ten to thirty per cent of offered call attempts, in
an attempt to have fewer agents and equipment than would be needed for a blocking of one to five per
cent. This has an impact on customer arrival statistics. Customers will defect, hang up, or abandon
waiting if too much time passes before an agent handles their transaction; this occurs when more call
attempts are present rather than agents. Here is one way to quantify this phenomenon, using the
modeling techniques developed earlier: the call holding rate is allowed to depend upon the number of
calls in the system, such that for S or fewer calls (one per agent) the call holding time is not affected at
all, while for greater than S calls, the call holding rate goes up; equivalently, the mean call talking time
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goes down:

Φ(K ) =


 S µ + (K −S )α
K µ

K >S

K ≤S

The new parameter α is the mean rate at which calls defect or abandon because no agent handles them.
How does this impact the distribution of the number in system? We see

πK =
G
1_ __

I =0
Π
K

Φ(K )
λ_ _____

8.3.5 Blocking We first deal with the case of no defection. The fraction of time that all T trunks are
busy is given by

blocking =

K =0
Σ
T

GK

GT_ _____ GK =
J =0
Σ
K

I =1
Π

J

Φagent (J )
λ⁄µ_ ________ K =0,...,T

Φagent (J ) =


 min (S ,J )
1

J >0
J =0

It is instructive to rewrite this in terms of Erlang’s blocking function to see how the number of agents as
well as the number of trunks enters into determining the blocking:

blocking =
1 + ρB (S ,a )[1 − ρT −S ]

ρT −S B (S ,a )_ ___________________

B (S ,A ) =

K =0
Σ
S

K !
A K
_ ___

S !
A S
_ ___

_ ______ ρ ≡
S
A_ _

ρ<1 denotes the fraction of time each agent is busy (either talking with a customer or doing cleanup
work). Since this is less than one, the blocking can be approximated (why?) by

blocking ∼∼
1 + ρB (S ,A )
ρT −S B (S ,A )_ ___________ ∼∼ ρT −S B (S ,A ) ρ<1

Thus the blocking can be significantly less (why?) than we might expect based on an Erlang blocking
analysis alone.

Finally, how do we include defection? We simply replace GK in the initial expression with the
appropriately modified expression, and the method for calculating the blocking is still valid (although the
numbers are different!) To emphasize this, we denote by PK ,K =0,...,T the fraction of time there are K
calls in the system.

The mean call completion rate is given by

λ(1−B ) = µ
K =1
Σ
T

min (K ,S )PK

8.3.6 Waiting Time Suppose that calls cannot defect. The fraction of time that a call waits greater than
X seconds, given that it is accepted and not blocked upon arrival, is given by

PROB [TW >X  accepted ] =
G
1_ __

1−B
(λ⁄µ)S ⁄S !_ _______

J =0
Σ

T −S −1

ρJ

K =0
Σ
J

e−S µX

J !
(S µX )J
_ ______

The mean waiting time of an accepted call is the mean number of calls divided by the mean call
completion rate, given that a call is not blocked:
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E [TW  accepted ] =
G
1_ __

λ(1−B )
(λ⁄µ)S ⁄S !_ _______

J =1
Σ

T −S −1

J ρJ

Next, we allow for defection of accepted calls. The fraction of time a customer is blocked is PT , which
is the fraction of time all trunks are busy. The fraction of time that a calling customer waits without
defecting and without being blocked is given by

PROB [TW >X  no blocking ,no de f ection ] =

=
1−PT

1_ _____
K =S
Σ

T −1

PK



 µS
α+µS_ _____





K −S +1

X
∫
∞

e−τ(α+µ(K −S +1))

(K −S )!
[τ(K −S +1)]K −S +1
_ ______________d τ

8.3.7 Closing Comment In a well engineered call distributor, approximating the blocking by the Erlang
B analysis and analyzing delay by Erlang C analysis should be the starting point for virtually any
performance analysis. This analysis is very sophisticated compared to the much more rudimentary
Erlang analysis. In any event, either analysis should be confirmed by data from an actual automatic call
distributor, before doing anything else. As an exercise, try and determine for what set of parameters the
mean value or Erlang analysis will give misleading insight compared with the analysis developed here.

8.3.8 Additional Reading

[1] J.W.Cohen, Basic Problems of Telephone Traffic Theory and the Influence of Repeated Calls,
Telecommunications Review, 18 (2), 49-100 (1957)

8.4 Hierarchical Analysis

Our intent in this section is to describe a hierarchical performance analysis of a model of a computer
communication system. The bottommost level is processor and memory interaction. Outputs of an
analysis of this subsystem will feed the next level, operating system critical region contention. Outputs
of this analysis in turn feed the next level, paging for memory management to drums and file accesses to
moving head disks. Finally, outputs of that analysis feed in turn the topmost level, clerks at terminals
interacting with the multiple disk spindle, multiple processor computer system.

An implicit assumption in this type of analysis is that each subsystem is in a steady state. On the other
hand, the time scales for each subsystem (or layer) can be and are radically different. The processor and
memory contention occurs on a time scale of tens of microseconds. The operating system critical region
contention occurs on a time scale of tens of milliseconds; this means that many processor and memory
interactions occur relative to any operating system critical region activity. The paging memory
contention and file system access activity occurs on a time scale of hundreds of milliseconds to seconds;
this means that many accesses to the operating system table occur for every page or I/O related activity.
Finally, human interaction and response times have a time scale of one to ten seconds, so that many
page faults and file accesses occur for every human interaction.

The figure below is a block diagram of the processor memory subsystem.

Figure 8.7.Processor/Memory Hardware Block Diagram
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At the hardware system level, P processors are connected to M memory subsystems via a crossbar
switch, i.e., any processor can access any memory. Each processor has a local cache memory that it
checks first; if the instructions or data are not in the cache, the processor accesses the appropriate
memory. Execution of that job is resumed when the appropriate memory retrieval is finished.
Contention arises when more than one processor demands access to the same memory subsystem.

The figure below is a block diagram of processors contending for a serially reusable operating system
kernel table:

Figure 8.8.Process Contention for Operating System Table

At the operating system kernel level, only one logical abstraction of a processor (a so called process) at
a time can access an operating system table. This is done to insure logically correct operation, e.g., the
operation of table access is atomic and irreversible. Contention arises when more than one process
demands access to this table.

The figure below is a block diagram of the memory paging subsystem:

Figure 8.9.Memory/Drum Subsystem Block Diagram

Each application process is segmented into pages of memory. At any given instant of time, only a
subset of all the pages associated with a given application process need be in main memory. A fixed
head disk or drum stores all pages that cannot fit into main memory. How large should main memory
be to insure that the delay due to waiting for pages to be moved into and out of secondary storage is
acceptable?

The figure below is a block diagram of operators interacting with the computer system. Operators at
terminals use the system. Each operator submits the same type of job to the system, with each job
consisting of a sequence of steps involving some processing time and some input/output to moving head
disks. How many operators can the system support with acceptable delay with a given processor,
memory, drum and moving head disk configuration?
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Figure 8.10.Clerk/System Block Diagram

8.4.1 Additional Reading

[1] P.J.Kuehn Approximate Analysis of General Queuing Networks by Decomposition, IEEE
Transactions on Communications, 27 (1), 113-126 (1979).

[2] P.J.Kuehn, Analysis of Switching System Control Structures by Decomposition, Archiv fuer
Elektronik und Uebertragunstechnik, 34, 52-59 (1980).

8.4.2 Processor/Memory Model Each job requires a mean total of I instructions to be completely
executed by P identical processors. No job can execute in parallel with itself, i.e., at any instant of time
each job is in execution on at most one processor. Each job executes on a processor with a local cache
memory: the processor checks the local memory to see if the appropriate text and data are present, and
if they are, executes work. If local memory does not contain the appropriate text or data, it is fetched
from one of M distinct memories. Each job involves two time intervals, one for execution out of cache
memory and one for waiting for memory fetches to be completed. If all the instructions and data are in
cache memory, a job will execute in a mean time Tcache ; if none of the instructions or data are in cache
memory, a job will execute in a mean time Tmemory . The fraction of time a job executes out of cache
memory is denoted by Qcache ; the fraction of time a job executes out of main memory is denoted by
Qmemory = 1 − Qcache . If there are JP active processors, where 0≤JP ≤P , then the mean job execution
rate of the system denoted by I (JP )is given by

I (JP ) =
Qcache Tcache + Qmemory [Twait (JP )+Tmemory ]

JP_ __________________________________

where Twait (JP ) is the mean waiting time for a memory box. A different way of thinking about this is
that a processor executes an average of Icache instructions before a memory fetch is made, and that while
executing out of cache the processor completes ν instructions per second, so Tcache is the total mean
time to execute a job, multiple time intervals each of mean duration νIcache .

All processors are fed jobs from a single ready job queue, i.e., all jobs in the queue hold all requisite
resources (e.g., files, memory, buffers) except for a processor. If a processor is idle, a ready job begins
execution on the idle processor. Each job will make a fraction of FK ,K =1,...,M accesses to memory K
in its execution. Because there is contention for memory, as more and more processors are added the
mean throughput rate of executing jobs will not scale linearly with the number of processors, but will
increase at a slower rate. The total number of jobs, summed over all memories, equals all processors:

I =1
Σ
M

[Jmemory ,I +Jcache ,I ] = JP processors JP =1,2,...,P

Jmemory ,I ,Jcache ,I denotes the respective numbers of jobs executing out of cache and out of main memory
directly. Twait and Tmemory are related by
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Twait +Tmemory = Tmemory × stretching f actor

stretching f actor =
EK [min (1,J 1) + . . . + min (1,JM )]

EK [J 1 + . . . + JM ]_ _____________________________

If there is no contention for memory, the stretching factor is one (why?), while if there is memory
contention, the stretching factor can be greater than one (why?).

If we refine this analysis by using a Jackson network model, then the state space is given by

Ω = {J_  JC +
K =1
Σ
M

JK = JP }

The fraction of time the system is in state J_ is given by

πJ
P
(JC ,J 1,...,JM ) =

GJ
P

1_ ___
Jcache !

(Qcache Tcache )
J

cache

_ ______________
K =1
Π
M 

Qmemory FK Tmemory



J
K

This can be used to explicitly calculate the stretching factor. A mean value analysis would only allow
us to bound the stretching factor. A different way of thinking about this is to determine the effective
number of processors, denoted by Φ(JP ). Even though there are P processors, the memory contention
will reduce this below P . The effective number of processors is given by

Φ(JP ) =
GJ

P

GJ
P
−1_ ____ Tcache ≤ min[JP ,P ]

This is simply the mean throughput rate multiplied by the mean time to execute a job out of cache
memory.

8.4.3 Additional Reading

[1] J.Bell, D.Casaent, C.G.Bell, An Investigation of Alternative Cache Organizations, IEEE
Transactions on Computers, 23 (4), 346-351 (1974).

[2] W.F.Freiberger, U.Grenander, P.D.Sampson, Patterns in Program References, IBM J.Research
and Development, 19 (3), 230-243 (1975).

[3] A.J.Smith, Multiprocessor Memory Organization and Memory Interference, Communications of
ACM, 20 (10), 754-761 (1977).

[4] A.J.Smith, Cache Memories, Computing Surveys, 14 (3), 473-530 (1982).

8.4.4 Operating System Table Model There are a total of JP active processors. There are JU

processors executing unlocked reentrant code and JL processors either waiting or executing locked
nonreentrant code, with

JP = JU + JL

The nonreentrant code is serially reusable. A total of IU and IL instructions are executed in each state,
respectively. The output of the memory/processor interference analysis enters into the operating system
contention at this point. The rate at which jobs execute unlocked code is given by

αU (JU ) =
IU [JU + min (1,JP − JU )]

JU_ _____________________ Φ[JU + min (1,JP − JU )] ν

The rate at which jobs execute locked code is given by

αL (JL ) =
IL (JP − JL +min [1,JL ])

min [1,JL ]_ ___________________ Φ[JP − JL + min (1,JL )] ν

The fraction of time the system is in state JU ,JL is given by π(JU ,JL ), where
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π(JU ,JL ) =
GJ

A

1_ ___
I =1
Π
J

U

αU (I )
1_ _____

K =1
Π
J

L

αL (K )
1_ _____ JU +JL =JA

The effective mean number of active processors is denoted by Φ′(JA ) and is given by

Φ′(JA ) = Φ 
E (JU + min (1,JA −JU ))

This will be even lower than what we found for memory contention (why?).

8.4.5 Drum/Disk/Memory Paging Model Each job makes an average of F file system accesses, with an
associated mean time per access denoted by Taccess . A job stores its text and data in memory pages; at
any instant of time, only a subset of all the memory pages associated with a job needed for execution.
Those pages that are not needed can be stored on a secondary storage device, a fixed head disk called a
drum. A page fault is said to occur when the desired next page is not in main memory but is stored on
the drum and must be moved into main memory before execution can resume. The mean number of
page faults per job is a function of the mean number of pages per job: the mean number of page faults
per job will decrease monotonically as we increase the mean number of pages per job. We assume that
we can measure the mean number of page faults per job as a function of JA . We denote this function
by PF (JA ). The mean time to service a page fault is denoted by TP .

The page fault also requires execution of additional memory management operating system code. A job
requires IE instructions to be executed, assuming no page fault activity, and IPF instructions to be
executed per page fault, so the total mean number of instructions executed per job is given by

mean number o f instructions per job = IE + IPF PF (JA )

The fraction of time a processor is doing useful work is the ratio of the mean number of useful
nonpaging instructions executed per job IE divided by the total mean number of instructions executed
per job. The mean number of effective processors divided by the total mean number of instructions per
job is the rate at which jobs are executed. The product of these two terms is the completion rate of
executing jobs, denoted by β(JA ) and is given by

β(JA ) =
IE +IPF PF (JA )

IE_ ____________
IE +IPF PF (JA )

Φ′[JA ]_ ____________

Finally, we need to specify the disk activity. Each job makes an average of NK disk accesses to disk
K =1,...,D . Each disk access requires a mean time of TD . There is only one paging drum. The system
state at any instant of time is given by J_ where JP jobs are waiting or in execution at the processors,
JPF jobs are waiting or in page fault activity at the drum, and JK ,K =1,...,D jobs are waiting or in access
to disk K . The state space constraint is that the total number of active jobs JA must equal the total
number of jobs in each activity:

JP + JPF +
K =1
Σ
D

JK = JA

The fraction of time the system is in J_ is denoted by π(J_):

π(J_) =
GJ

A

1_ ___
K =1
Π
J

P

β(K )

IE ν_ ____ (TPF )
J

PF

I =1
Π
D

J =1
Π
J

I

(TD NJ )J

The mean throughput rate of executing jobs is given by

mean throughput rate =
GJ

A

GJ
A
−1_ ____

8.4.6 Additional Reading

[1] P.J.Denning, Virtual Memory, Computing Surveys, 2 (3), 153-189.

[2] P.J.Denning, G.S.Graham, Multiprogrammed Memory Management, Proceedings of the IEEE, 63
(6), 924-939 (1975).
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8.4.7 Clerk/System Model There are C clerks at terminals. Each clerk spends a mean amount of time
TC reading and thinking and typing, and then waits for the system to respond. There are D disks. The
mean processor time per job will be inflated due to execution of memory management paging code. The
mean number of drum accesses per job will be inflated due to paging. Each job has a dedicated amount
of memory for its own pages. The system state at any instant of time is given by JC , the number of
clerks reading and thinking and typing, JP , the number of jobs waiting or in execution on the
processors, JPF , the number of jobs waiting or servicing a page fault on the drum, and JK ,K =1,...,D , the
number of jobs waiting or servicing an access to disk K . The total number of jobs must equal the
number of clerks:

JP + JPF +
K =1
Σ
D

JK = C

The fraction of time the system is in state J_ is denoted by π(J_), and is given by

π(JP ,J 1,...,JD ) =
GC

1_ ___
JC !

TC
J

C

_ ____
K =1
Π
J

P

β(K )

ν⁄IE_ ____(TPF )
J

PF

K =1
Π
D

(TD NK )
J

K

8.4.8 Additional Reading

[1] J.Abate, H.Dubner, S.B.Weinberg, Queueing Analysis of the IBM 2314 Disk Storage Facility,
Journal of the ACM, 15 (4), 577-589 (1968).

[2] J.P.Buzen, I/O Subsystem Architecture, Proceedings of the IEEE, 63 (6), 871-879 (1975).

8.4.9 Summary In a well engineered system, there should be little contention for resources:

• Processors execute most of the time out of local cache memory, while contention for main memory
should be rare

• Processors should contend rarely for a common operating system table

• Paging should occur rarely because most jobs should fit into memory

• Clerks should contend rarely for common files and processor cycles

EXERCISE: Plot the effective number of processors versus JP , the mean number of jobs waiting or in
execution for one of P processors, on the same plot, for

A. The mean value analysis min [JP ,P ]

B. With memory contention

C. With memory contention and operating system critical region lockout

D. With memory contention, operating system critical region lockout, and secondary storage activity
for paging and for file I/O

E. With memory contention, operating system critical region lockout, secondary storage activity for
paging and for file I/O, and with clerks submitting jobs at random instants of time

Interpret your results.

8.4.10 Additional Reading

[1] A.A.Fredericks, Approximations for Customer Viewed Delays in Multiprogrammed, Transaction
Oriented Computer Systems, Bell System Technical Journal, 59 (9), 1559-1574 (1980).

[2] J.C.Browne, K.M.Chandy, R.M.Brown, T.W.Keller, D.F.Towsley, C.W.Dissly, Hierarchical
Techniques for the Development of Realistic Models of Complex Computer Systems, Proceedings
of the IEEE, 63 (6), 966-975 (1975).
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8.5 On Line Transaction Processing

The motivation for this section was taken from what is widely known as online transaction processing:

• Attendants or clerks receive telephone calls from customers

• Information is entered into and retrieved from an online data base by clerks talking with customers

• Workers who do not have direct customer access fill the customer order again by interacting with the
online system

This particular system is involved with handling telephone repair transactions, but the principles
encountered here could just as well be applied to banking, finance, distribution, transportation, or other
market segments. In fact, one of the first applications of this type of system was found in the airline
industry, and the hard won lessons there have been applied in numerous other applications.

The system must execute four different types of transactions:

[1] Trouble Entry (TE)--The telephone number of the problem telephone is entered into the system,
and the clerk waits for the system to respond with a list of past problems associated with that
telephone plus customer information plus a list of potential times and dates when a service call
can be made (if necessary)

[2] Trouble Report (TR)--A more detailed description of the problem is entered into the system for
use later on, or in some cases for closing out the problem

[3] Trouble Tracking (TT)--Customers and service staff interrogate the system to find the status of a
particular job

[4] Testing--Actual repair staff testing, either remotely or on premises, of the facilities in question

The figures below are a representative hardware configuration and a queueing network block diagram for
this system:

Figure 8.11.Hardware Configuration
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Figure 8.12.Queueing Network Block Diagram

8.5.1 System Traffic Performance Goals The table below is a representative set of mean value arrival
rates and mean response time goals for each type of transaction:

Table 8.9.Traffic Goals________________________________________________________________________________________________________
Transaction Interarrival Response

Type Frequency Time________________________________________________________________________________________________________
Trouble Entry 1 per clerk per two minutes 5 seconds
Trouble Report 1 per clerk per two minutes 10 seconds
Trouble Tracking 1 per clerk per minute 15 seconds
Testing 1 per clerk per five minutes 45 seconds

These goals are intended for a peak busy hour: if they are met, performance is adequate. As a
refinement, we might wish to specify these goals at two different points, say during a normal business
day (10-11 AM or 2-3 PM), as well as during a peak busy hour (busiest day in the month, quarter,
year), in order to assess sensitivity to fluctuations in offered load.

The figure below plots the total mean time to complete one customer contact (both a trouble entry and
trouble report) transaction as a function of the mean number of lines that each attendant must handle.
We have assumed one order per line per year, and two hundred fifty business days per year. We might
wish to assign staff to this type of job for only part of a day, say two or four hours, rather than for eight
hours a day, and have plotted the impact on system performance in this figure for these three choices.
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Figure 8.13.Mean Throughput Rate vs Number of Lines/Clerk

We complement this plot with a second plot showing mean customer delay vs number of lines per clerk,
shown below.
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Figure 8.14.Mean Customer Delay vs Number of Lines/Clerk

8.5.2 Resources Required Per Transaction What are the resources required for each step of each
transaction? First, we show the workflow and resource used at each step for each transaction type in the
figures below:
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Figure 8.15.Trouble Entry Work Flow
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Figure 8.16.Trouble Report Work Flow
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Figure 8.17.Trouble Tracking Work Flow
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Figure 8.18.Testing Work Flow

The tables below summarize the mean time required to hold these resources at each step of execution of
each transaction:
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Table 8.10.Trouble Entry Work Flow Resources_ ___________________________________________________ __________________________________________________
Task Mean Time_ ___________________________________________________ __________________________________________________

Transmit 30 Bytes Data from Terminal to XFE 80 msec
XFE Switching 250 msec
Transmit Data from XFE to FE 80 msec
Front End Processor 500 msec
Front End Disk Access(5 Accesses) 125 msec
Transmit Mask(800 Bytes) from FE to XFE 250 msec
XFE Switching 250 msec
XFE to Terminal Transmission(800 Bytes) 250 msec_ ___________________________________________________ __________________________________________________
Total 2.785 sec

Table 8.11.Trouble Report Work Flow Resources_ ___________________________________________________________ __________________________________________________________
Task Mean Time_ ___________________________________________________________ __________________________________________________________

Data Transmission from Terminal to XFE(500 Bytes) 1.25 sec
XFE Switching 250 msec
XFE to FE Data Transmission 1.25 sec
Front End Processor Execution 750 msec
Front End Disk Access Time(12-15 Accesses) 300-375 msec
FE to XFE Data Transmission 125 msec
XFE Switching 250 msec
XFE to Terminal Data Transmission(50 Bytes) 125 msec_ ___________________________________________________________ __________________________________________________________
Total 4.3-4.375 sec

Table 8.12.Tester Work Flow Resources_ __________________________________________________________ _________________________________________________________
Task Mean Time_ __________________________________________________________ _________________________________________________________

Data Transmission from Terminal to FE(150 Bytes) 750 msec
FE Processor Time 100 msec
FE Disk Access Time(2 Disk Accesses) 100 msec
Data Transmission from FE to MLT(150 bytes) 750 msec
MLT Execution 20-30 sec
MLT to FE Data Transmission(300 Bytes) 1.5 sec
FE Processor Time 100 msec
FE Disk Access Time(2-3 Disk Accesses) 100-150 msec
Print Output(900 characters, 30 char/sec) 30 sec_ __________________________________________________________ _________________________________________________________
Total 53.4-63.45 sec

Table 8.13.Trouble Tracking Work Flow Resources_ ___________________________________________________ __________________________________________________
Task Mean Time_ ___________________________________________________ __________________________________________________

Terminal to FE Data Transmission(200 Bytes) 1.0 sec
FE Processor Time 500 msec
FE Disk Access Time(5 Accesses) 250 msec
Transmit Data to Terminal(200 Bytes) 1.0 sec_ ___________________________________________________ __________________________________________________
Total 1.75 sec

8.5.3 Delay Analysis We choose to fix the background workload and vary the number of clerks at
terminals handling TE and TR transactions. The background load we fix is

• Two hundred forty trouble status transactions per hour

• Sixty tester transactions per hour per front end

The remaining parameters that can be varied are

• Number of cross front end processors
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• Number of front end subsystems

• Number of disks per front end

• Number of data links between the clerks’ terminals and XFE

• Number of data links between each FE and XFE

• Work balance per FE

We begin with the simplest case, doing a single type of transaction, TE. If performance is inadequate
here, it will presumably be worse with multiple transactions being executed. This also gives us a natural
starting point for more detailed studies, a baseline comparison case. The table below summarizes the
mean number of trouble entry transactions per hour that can be handled with a mean response time of
four seconds or less, assuming

• Six front ends

• Two cross front ends

• Six terminal to XFE data links

• Two disks per FE

• 50 msec per disk access per transaction

• 250 msec FE processor time per transaction

Table 8.14.Trouble Entry Mean Throughput Rate
with Mean Response Time 4 Seconds or Less

with No Other Types of Transactions Executed_ ____________________________________________ ___________________________________________
XFE Time FE Disk Access/TE

per TE 5 Disk Accesses 25 Disk Accesses_ ____________________________________________ ___________________________________________
0.10 sec >29,647 TE/HR 22,235 TE/HR
0.20 sec >29,647 TE/HR 21,176 TE/HR
0.30 sec 19,059 TE/HR 17,470 TE/HR
0.40 sec 13,764 TE/HR 12,706 TE/HR
0.50 sec 10,588 TE/HR 9,529 TE/HR
0.60 sec 8,470 TE/HR 7,941 TE/HR










Each trouble entry transaction is switched twice by the XFE, once going in, once going out, and requires
250 msec per switch, so the current system is operating at a maximum of roughly ten thousand TE
transactions per hour with no other work going on.

What if we include the three other transaction types? How will this impact the system performance?
The table below summarizes calculations for that exercise:

Table 8.15.Trouble Entry Mean Throughput Rate
with Mean Response Time 4 Seconds or Less

with Other Transactions Concurrently Executed_ ____________________________________________ ___________________________________________
XFE Time FE disk Access/TE

per TE 5 Disk Accesses 25 Disk Accesses_ ____________________________________________ ___________________________________________
0.10 sec 28,059 TE/hr 18,000 TE/hr
0.20 sec 23,294 TE/hr 16,941 TE/hr
0.30 sec 15,353 TE/hr 13,765 TE/hr
0.40 sec 11,118 TE/hr 10,059 TE/hr
0.50 sec 8,470 TE/hr 7,412 TE/hr
0.60 sec 6,882 TE/hr 5,823 TE/hr










This impact is roughly twenty per cent: the system TE handling capability drops from 10,588 or 9,529
TE/hr to 8,470 or 7,412 TE/hr
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What if the XFE were replaced with a high speed bus, i.e., such as ETHERNET or any of a wide
number of variants? This would move performance down to the regime where the XFE time per
message is under ten milliseconds, increasing capacity to 18,000 TE/hr at the worst! Note that the total
system capacity increases by roughly a factor of two to three if the XFE is infinitely fast, because the
XFE is no longer the bottleneck limiting performance.

What if we vary the number of CRSAB-XFE data links? The table below summarizes the impact on
performance in going from four to six links, with five disk accesses per TE:

Table 8.16.Trouble Entry Mean Throughput Rate
with Mean Response Time 4 Seconds or Less

5 Disk Accesses/TE_ _______________________________________________ ______________________________________________
XFE 25 msec/disk access

Time/TE 4 CRSAB-XFE Links 6 CRSAB-XFE Links_ _______________________________________________ ______________________________________________
0.10 sec 29,647 TE/hr 29,647 TE/hr
0.20 sec 29,647 TE/hr 29,647 TE/hr
0.30 sec 19,059 TE/hr 19,059 TE/hr
0.40 sec 13,765 TE/hr 13,765 TE/hr
0.50 sec 10,588 TE/hr 10,588 TE/hr
0.60 sec 8,470 TE/hr 8,470 TE/hr










Hence, we see that going from four to six CRSAB-XFE data links has negligible impact on performance
at this level of analysis.

What is the impact on performance due to file system layout? One way to quantify this is to vary the
disk access time from twenty five milliseconds per access to fifty milliseconds per access:

Table 8.17.Trouble Entry Mean Throughput Rate
with Mean Response Time 4 Seconds or Less

Four CRSAB-XFE Data Links_ _______________________________________________ ______________________________________________
XFE 5 Disk Accesses/TE

Time/TE 25 msec/Disk Access 50 msec/Disk Access_ _______________________________________________ ______________________________________________
0.10 sec 18,529 TE/hr 18,529 TE/hr
0.20 sec 18,529 TE/hr 18,000 TE/hr
0.30 sec 14,823 TE/hr 14,823 TE/hr
0.40 sec 10,588 TE/hr 10,588 TE/hr
0.50 sec 8,470 TE/hr 8,470 TE/hr
0.60 sec 6,682 TE/hr 6,682 TE/hr










This shows that at this level of analysis, varying the file system layout has virtually no impact on
performance.

What if we go from one to two XFE systems? The table below is a summary of calculations for one
such exercise:

Table 8.18.Trouble Entry Mean Throughput Rate
with Mean Response 4 Seconds or Less

5 Disk Access/TE--4 CRSAB-XFE Data Links_ ____________________________________________ ___________________________________________
XFE One Two

Time/TE XFE XFEs_ ____________________________________________ ___________________________________________
0.10 sec 18,529 TE/hr 18,529 TE/hr
0.20 sec 13,235 TE/hr 18,000 TE/hr
0.30 sec 6,882 TE/hr 14,823 TE/hr
0.40 sec 4,765 TE/hr 11,117 TE/hr
0.50 sec 3,176 TE/hr 8,470 TE/hr
0.60 sec 2,647 TE/hr 6,882 TE/hr
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This table makes clear the traffic handling capability of the system is roughly doubled in going from one
to two XFEs, because this is the bottleneck!

What if we drop the mean response time criterion from four seconds to three seconds? The table below
is a summary of one such set of calculations:

Table 8.19.Trouble Entry Mean Throughput Rate
vs XFE Time per TE

5 Disk Accesses/TE--Two XFEs_ ____________________________________________ ___________________________________________
XFE Maximum Mean Response Time

Time/TE 3 Seconds 4 Seconds_ ____________________________________________ ___________________________________________
0.10 sec 18,000 TE/hr 18,529 TE/hr
0.20 sec 17,470 TE/hr 18,000 TE/hr
0.30 sec 14,291 TE/hr 14,823 TE/hr
0.40 sec 10,059 TE/hr 11,118 TE/hr
0.50 sec 7,941 TE/hr 8,470 TE/hr
0.60 sec 5,823 TE/hr 6,682 TE/hr










This suggests that the total system traffic handling capability is sensitive to the mean response time goal,
since going from three to four seconds increases the mean throughput rate by ten per cent.

Additional studies can be carried out varying

• The amount of front end processor time per TE

• The number of front end processors

• The tester workload distribution (uniformly distributed across all front ends versus all focused on one
front end)

8.5.4 Buffering Analysis What type of buffering might be employed in the XFE? Most of the time a
transaction demands a buffer, a buffer should be available: the fraction of time a buffer is not available
should be negligible. As an exercise, show that the fraction of time no buffer is available, given Bbu f f er

buffers for a PXFE processor XFE configuration is given by

f raction o f time no bu f f er available =
P (1 − U ) (1 − BErlang (P ,P U ))

P U
B

bu f f er
+ 1 − P

XFE BErlang (P ,P U )_ ___________________________

where BErlang (P ,A ) is the Erlang blocking function:

BErlang (P ,A ) =

K =0
Σ
P

A K ⁄K !

A P ⁄P !_ ________

and U is the fraction of time each XFE processor is busy, its utilization.

The table below summarizes one set of calculations for number of buffers for either one or two XFE
processors (i.e., the calculation was not sensitive to the number of XFEs):

Table 8.20.Minimum Number of Buffers_ _________________________________________ ________________________________________
Processor Fraction of Time All Buffers Filled
Utilization 0.001 0.0001 0.00001_ _________________________________________ ________________________________________

0.50 11 14 17
0.60 14 19 23
0.70 20 27 33
0.80 32 42 52
0.90 66 88 110









In practice, it is important to dedicate buffers to different FE processors rather than to pool buffers for
all FE processors, because one FE will typically be congested, and will hold its buffers for much longer
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than all the other FE systems, effectively locking out or hogging resources.

8.5.5 Summary First we developed a systematic description of the flow of control and data throughout
the system, the resources required for each step of each job, and the mean time for each job step.
Second we used this to determine bottlenecks. What are the bottlenecks? The candidates are

• The XFE processor is a bottleneck

• The FE processor is a bottleneck

• The FE disk is a bottleneck

• The MLT is a bottleneck

• The data links between the attendants and XFE are a bottleneck

• The XFE to FE data links are a bottleneck

The numbers here suggested that for virtually any scenario, under light load, the attendants are the
bottleneck, while under heavy load, the XFE is the bottleneck. If the XFE is replaced by a much higher
speed local area network or switch, then the FE (either processor or disk) becomes the bottleneck.

Third, we carried out sensitivity studies, that showed that

• If the system executed TE transactions alone, then the current mean throughput rate is 10,000 per
hour, while if a representative mix of TE, TR, Tracking and Testing transactions are executed, then
this drops to 7,500 transactions per hour.

• Once the XFE-CRSAB has four or more data links, the data links are not a significant bottleneck.

• If the file system layout is changed on the FE disk, this has virtually no impact on performance.

• Doubling the number of XFEs more than doubles the number of TEs per hour with acceptable mean
response time (3,000 TE/hour with one XFE, 8,000 TE/hour with two XFEs). The reason it more
than doubles is that the XFE is not executing jobs at its maximum rate, plus there is an economy of
scale in going from one to two XFEs.

• Changing the acceptable mean response time from four to three seconds had negligible impact on
performance.

8.5.6 Additional Reading

[1] R.L.Martin, System Architecture of the Automated Repair Service Bureau, Bell System Technical
Journal, 61 (6), Part 2, 1115-1130 (1982).

[2] J.P.Holtman, The Context-Sensitive Switch of the Loop Maintenance Operations System, Bell
System Technical Journal, 61 (6), Part 2, 1197-1208 (1982).
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Up to this point we have concentrated on analyzing the mean throughput rate for multiple resource
systems, and the mean throughput rate and mean delay bounds for networks of single resource systems.
We saw that for many different types of systems typically one single type of resource is limiting the
maximum mean throughput rate. The avenues available for improving system performance are to add
more resources (perhaps moving the bottleneck resource elsewhere) or scheduling the single resource in
an effective manner. In this section we will focus on different techniques for scheduling a single
resource, in order to meet delay criteria. In practice a system cannot be exercised continuously at its
maximum mean rate of completing work, but rather must complete work at some lower rate in order to
meet delay criteria of different types. How much below complete utilization this one resource can
operate is the subject of this section (and the realm of queueing theory as a branch of applied
mathematics).

Rather than focusing on simply a mean value analysis, we now worry about other phenomena:

• fluctuations about a mean value and

• correlations among the fluctuations.

Intuitively, the more regular (the less the fluctuations) or constant and the more predictable the
fluctuations (the correlations in the fluctuations), the easier it will be to meet delay criteria, and vice
versa. Since more detailed questions are asked, more detailed information must be given to describe
system operation. In any queueing system there are three main ingredients:

• a characterization of the arrival statistics of each transaction type

• a characterization of the resources required at each stage of execution of each transaction type

• a policy arbitrating contention for resources (remember there is only a limited amount of each
resource type!)

In the previous sections, we used mean values to characterize the arrival statistics (e.g., a rate) and
resources required at each stage of execution, for a given policy. In analyzing the mean throughput rate
and mean delay in earlier sections, when we fixed the mean time for execution at each stage of each job,
we saw that the best performance was obtained when the mean times for each stage of execution were
constant or deterministic while the worst performance was obtained when the fluctuations about the
mean times became larger and larger. Here, we expect to see similar phenomena. Remember: all the
systems we deal with are deterministic in their functional operation, but they are sufficiently complex
that we choose a statistical or probabilistic characterization of the arrival and service statistics, in order
to summarize with a very small number of parameters what in fact is a very large number of parameters
whose detail may be overwhelming.

9.1 Time Scale of Interest

What time scale is of interest? In order to adequately characterize a system statistically, we expect the
measurements we take to stabilize at some (small!) range of values if measurements are carried out over
a sufficiently long time interval. How long is long enough? There is no simple answer here. For
example, if the disk subsystem is capable of making a disk access every thirty milliseconds, and the
processor is capable of doing useful work every ten milliseconds, then if we gather measurements over a
time scale one hundred or one thousand times as long as these smallest time intervals, for example,
every ten or every thirty seconds, then this is a long time interval during which there is a reasonable
possibility that the system has stabilized. On the other hand, it is easy to produce counterexamples in
which this need not be the case. The problem is studied in the realm of time series analysis and we will
drop it from further consideration here. Our intent is merely to point out that this is a real problem that
must be dealt with in actual systems. Queueing systems have both an initial or transient behavior and a
long term time averaged behavior. The long term time averaged behavior will occupy all of our
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attention here, but the transient behavior is clearly of great interest in many applications. When
measurements are presented on any system, always check to see at what point transients have died out
and at what point long term time averaged behavior appears to set in. Unfortunately, since we wish to
study behavior with congestion, as load builds, transients take longer and longer to die out, and we need
more and more data to see the demarcation between the two regimes!

9.2 Workload Arrival Statistics

How do we characterize the arrival statistics? Suppose we observed N arrivals in an interval of duration
T time units starting at time zero, and we recorded the arrival time epochs as tK ,K =1,...,N which may
possibly be the empty set. One way to characterize the arrival statistics would be by a cumulative
distribution function

distribution f unction = PROB [t 1≤T 1, . . . , tN ≤TN ]

for each value of N, or the interarrival time distribution for each value of N. In practice, this becomes
very unwieldy, so in the next section we introduce additional restrictions on the arrival process that are
very often met in practice yet are analytically tractable.

9.2.1 Finite Source Arrival Statistics We first turn to the type of arrival statistics that we used to model
clerks at terminals submitting transactions in earlier sections. Since we only have a finite number of
clerks and terminals, the population is finite and the arrival statistics are due to a finite set of sources
which leads to the title of this section. The sequence of times from the completion of the last
transaction until the submission of the next transaction fluctuate; the time intervals are called random
variables because they vary and because the fluctuations, while due to many diverse causes, are so
complex that we simply summarize all of this by calling them random. Every sequence of time intervals
is different from every other, because the precise combination of events leading to that set of times is
highly likely to be duplicated exactly.

Example. Ten clerks submit one hundred transactions each to an online transaction processing system.
The time interval between the completion of the last transaction and submission of the next transaction
is recorded, and the results summarized in the table below:

Table 9.1.One Hundred Transactions/Each of Ten Clerks_ __________________________________________________ _________________________________________________
Intersubmission Time Number of Transactions_ __________________________________________________ _________________________________________________

0-2.5 seconds 150
2.5-5.0 seconds 135
5.0-7.5 seconds 110
7.5-10.0 seconds 90
10.0-12.5 seconds 80
12.5-15.0 seconds 65
15.0-17.5 seconds 60
17.5-20.0 seconds 45
20.0-25.0 seconds 75
25.0-30.0 seconds 55

>30 seconds 135

We want to summarize all this information with one parameter, the average or mean intersubmission
time. We compute this by multiplying the fraction of transactions with a given mean intersubmission
time by the maximum intersubmission (e.g., 0-2.5 seconds means we assume all jobs had an
intersubmission time of 2.5 seconds), and then summing the resultant terms:

E (Tidle ) = 2.5(.150)+5.0(.135)+7.5(.110)+10(.09)+12.5(.08)+15(.065)

+17.5(.06)+20(.045)+25(.075)+30(.055)+45(.135) = 14.425 seconds ∼∼ 15 seconds

Note that we have assumed that all intersubmissions greater than thirty seconds were arbitrarily forty
five seconds.
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In summary, we can summarize all the data by its average or mean value of approximately fifteen
seconds, and if we wish to assess sensitivity to this parameter we can change it to ten seconds or to
twenty seconds or to whatever value is felt to be appropriate.

We now make even stronger assumptions:

• The sequence of intersubmission times are independent from transaction to transaction and operator
to operator (no coffee breaks, no ganging up at the water cooler)

• The sequence of intersubmission times are identically distributed random variables (all operators and
transactions lead to identical intersubmission time statistics)

• The intersubmission times are exponentially distributed random variables.

This last statement, the choice of an exponential distribution to summarize all the intersubmission time
statistics, is a key assumption. In words, this says the fraction of intersubmission times that is less than
a given threshold, say X seconds, is approximated by an exponential distribution:

f raction o f time intersubmission time interval ≤X =

1 − exp [−X ⁄E (Tidle )] = 1 − e
−λ

idle
X λidle ≡

E (Tidle )
1_ _______

To test this goodness of fit, the figure below shows a quantile quantile plot of empirical or data quantiles
versus exponential model quantiles.

Figure 9.1.Empirical Quantiles vs Exponential Model Quantiles

Since the plot is approximately a straight line, the goodness of fit is felt to be acceptable, and we can
use the exponential model with as much confidence as we place in our data and its analysis.

The fraction of time one clerk is idle less than or equal to X is given by

PROB [Tidle for one clerk ≤ X ] = 1 − exp [−X ⁄E (Tidle )] = 1 − e
−λ

idle
X

The probability or fraction of time that we have J submissions by N clerks in an interval of duration T is
given by

PROB [J submissions by N clerks in interval ≤ X ]

=


 J

N 




1 − exp (−X λidle )

J 
exp(−X λidle )

N −J
J =0,1,...,N
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Many times the moment generating function of a distribution is easier to work with (analytically or
numerically) than the actual distribution. Here the moment generating function is given by

E [X J ] =
J =0
Σ
N

Y J PROB [J submissions by N clerks ] =


exp (−X λidle )+Y (1−exp (−X λidle ))

N

This can be differentiated to find the mean number of submissions in a given time interval, and hence
the mean arrival rate:

dY
d_ __E [Y J ] Y =1 = E (J ) = N [1−exp (−λidle X )]

The total mean arrival rate of work is thus given by the mean rate at which each clerk submits work
multiplied by the mean number of clerks in the idle state, reading, thinking, typing, and so on:

total mean arrival rate = mean number o f idle clerks × λidle

As we add more and more clerks, the mean number idle (as well as the mean number waiting for
response) will grow without bound over any threshold we set. What we want to do is fix the total mean
arrival rate and increase the total number of clerks; this means the total mean number of idle clerks will
grow without bound, while the total mean arrival rate is fixed, so the mean idle time per transaction
must also grow without bound:

N × λidle =
E (Tidle )

N_ _______ = total mean arrival rate ≡ constant = λ

If we do this, we see that the mean number of arrivals in an interval of duration X seconds is given by

N →∞
lim



 J

N 




1−exp (−X λidle )

J 
exp(−X λidle )

N −J
=

J !
(λX )J
_ _____e−λX J =0,1,2,...

Note that each terminal or source is contributing less and less arriving work, because the individual
mean arrival time is growing without bound, and hence we call this the infinite population limit (N →∞)
of the finite population arrival process, the so called Poisson arrival process, which is the subject of our
next section.

9.2.2 Infinite Source Poisson Process Now we assume the interarrival times are independent identically
distributed exponential random variables, or, that the arrival statistics are Poisson distributed. This
means that the interarrival times obey the following relationship:

PROB [tK +1 − tK ≤ X ] = 1 − exp (−X ⁄E [TA ]) = 1 − e−λX K =1,2,3,...,N −1

E [tK +1 − tK ] = E [TA ] =
λ
1_ _ K =1,2,...,N −1

Numerous real life situations can in fact be adequately modeled by Poisson statistics. Why should this
be a reasonable fit to actual data? Because whenever there is a superposition of a number of
independent sources of arrivals, no one of which dominates, then under a variety of assumptions it can
be shown that as the number of sources approaches infinity the superposition or sum of all the arrival
streams converges to a Poisson process (this is the so called generalized Central Limit Theorem of
probability theory). Another reason why the Poisson process matches actual data is that it has two
properties that are often met in practice:

• the number of arrivals in disjoint time intervals are independent random variables

• the number of arrivals is proportional to the duration of the observation time interval

These are properties that are unique to the Poisson process, and for all these reasons make it a worthy
candidate first cut model of arrival statistics in many applications.
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What are some analytic properties of the Poisson process that might be useful in modeling?

• the superposition or sum of Poisson processes is Poisson, with mean arrival rate being the sum of
the individual arrival rates: if we add two processes, the rates add and the new process is Poisson

• the randomized thinning of a Poisson process is a Poisson process, whereby at each arrival epoch we
flip a coin and with probability P include the arrival epoch while with probability (1−P ) we discard
it, i.e., we thin the arrival stream, with mean arrival rate P times that of the original process’s arrival
rate

The moment generating function of the interarrival time distribution is given by

E [exp (−z (tK +1−tK )) =
0
∫
∞

e−zX dX [1−e−λX ] =
λ + z

λ_ ____

and this can be used to find moments of all integral order by the identity

E [TA
K ] = (−1)K

dz K

d K
_ ___



 λ + z

λ_ ____



 z =0 K =1,2,3,...

For example, the second moment of the interarrival time distribution of a Poisson process is given by

E (TA
2) =

λ2

2_ __ → var (interarrival time ) = E (TA
2) − E 2(TA ) = E 2(TA ) =

λ2

1_ __

A related quantity is the number of arrivals in a time interval of duration T, denoted N (T ). Assuming
the arrivals are Poisson we see

PROB [N (T ) = K ] =
K !

(λT )K
_ _____ exp (−λT ) K =0,1,2,3,...

The moment generating function is given by

E [X N (T )] =
K =0
Σ
∞

X K e−λT

K !
(λT )K
_ _____ = e−λT (1−X )

This can be differentiated to find all factorial moments using this identity:

E [N (T )[N (T )−1][N (T )−2]...[N (T )−K +1]] =
dX K

d K
_ ____e−λT (1−X ) X =1

This has mean value

E [N (T )] = λT

while the second factorial moment is given by

E [N (N −1)] = (λT )2

9.2.3 General Interarrival Time Statistics What if the interarrival time distribution is arbitrary, i.e., not
finite or infinite source processes? One way to characterize the interarrival time distribution is by its
first two moments, for example. One measure of the fluctuations in the interarrival time sequence is to
measure the variance in units of the mean interarrival time (squared), with the result called the squared
coefficient of variation:

squared coe f f icient o f variation =
E 2(interarrival time )
var (interarrival time )___________________

Three cases arise:

squared coe f f icient o f variation =





 1
1
<1

more irregular than Poisson

Poisson

more regular than Poisson
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9.2.4 Message Switching System A message switching system must handle two different types of
messages. Twenty per cent of the messages have a mean interarrival time of 320 microseconds, while
eighty per cent of the messages have a mean interarrival time of 1024 microseconds. What is the
squared coefficient of variation? First we calculate the mean interarrival time:

mean interarrival time = E (TA ) = 0.20×32 + 0.80×1024 = 825.6 microseconds

Next, we calculate the variance of the message interarrival time distribution:

variance o f message interarrival time distribution = var (TA )

= 0.20×[32−E (TA )]2 + 0.80×[1024−E (TA )]2

= 157450.24 microseconds2

Finally, we calculate the squared coefficient of variation for the message interarrival time distribution:

squared coe f f icient o f variation =
E 2(TA )

var (TA )_ _______ =
(825.6)2

157450.24_ _________ = 0.23099

This shows that the fluctuations are not as severe as would be encountered with an exponential message
interarrival time distribution. In practice, we might choose to be pessimistic (fluctuations can
presumably only make things worse) by using an exponential interarrival time distribution rather than
using a constant interarrival time distribution.

9.2.5 Additional Reading

[1] M.B.Wilk, R.Gnanadesikan, Probability Plotting Methods for the Analysis of Data, Biometrika,
55 (1), 1-17 (1968).

[2] H.Heffes, A Class of Data Traffic Processes--Covariance Function Characterization and Related
Queuing Results, Bell System Technical Journal, 59 (6), 897-929 (1980).

9.3 Service Time Distribution

The sequence of service or processing times can be characterized by their joint distribution. Rather than
do so, we assume the processing times are independent identically distributed random variables, because
in many cases this is a reasonable match of data, and because it is analytically tractable and allows
many sensitivity studies to be readily performed.

9.3.1 Exponential Service Time Distribution A program executes one hundred times on the same
hardware configuration with different inputs. The following statistics summarize how long the program
executed:

Table 9.2.Execution Time Summary_ ___________________________________ __________________________________
0-1000 machine cycles 28 runs
1001-2000 machine cycles 21 runs
2001-3000 machine cycles 16 runs
3001-4000 machine cycles 10 runs
4001-5000 machine cycles 9 runs
5001-10,000 machine cycles 13 runs
10,001-15,000 machine cycles 2 runs
>15,000 cycles 1 run_ ___________________________________ __________________________________
Total 100 runs

We wish to summarize all this data with one easy to work with statistic, such as the mean number of
machine cycles per run. Here the mean number of machine cycles executed per run is roughly 6,630
machine cycles (check this!). We might use 5,000 to 7,500 machine cycles per job to bracket this
estimate in further analysis. What about the distribution of machine cycles per job?
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If we test this data against an exponential distribution model using a quantile-quantile plot, the results
are plotted in the following figures.

Figure 9.2.Empirical Quantiles vs Exponential Model Quantiles

Since the graph is approximately a straight line, the goodness of fit of the data to the exponential
distribution model is felt to be adequate.

Because of this data analysis, we assume that the distribution of machine cycles can be summarized by

PROB [execution time ≤X ] = 1−exp (−µX ) = 1−exp (−X ⁄E (TS ))

E (TS ) ∼∼
machine clock rate

6,630 machine cycles_ __________________

Hence, the mean rate of executing work is µ jobs per unit time, while the mean time per job to
completely execute it is 1⁄µ = E (TS ). The moment generating function of this distribution is given by

E [e
−zT

S ] =
µ + z

µ_____ =
zE (TS ) + 1

1_ _________

The second moment and variance are given by

E [TS
2] = 2E 2[TS ] var (TS ) = E 2(TS )

9.3.2 Constant Service Time Distribution If all the runs for a given program require virtually the same
amount of time, irrespective of the input, the service times are deterministic or constant, and

PROB [execution time ≤X ] =


 0 X ≤E (TS )

1 X >E (TS )

The moment generating function for this distribution is

E [e
−zT

S ] = e
−zE (T

S
)

The second moment and variance is given by

E [TS
2] = E 2[TS ] var (TS ) = 0
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9.3.3 Erlang Service Time Distribution Suppose that we have a pipeline of K processors, with each
processor executing only one program. Each program and each processor is identical. The operation of
a single program on a single processor is measured, and is found to be exponentially distributed. Thus,
the total execution time is the sum of the execution time of each stage:

TS ,total =
J =1
Σ
K

TS ,J

Since each stage is identical, the total mean execution time is K times the mean execution time for any
one stage:

E (TS ,J ) =
K

E (TS ,total )_ ________ J =1,...,K

The moment generating function for the total time to execute a job is:

E [e
−zT

S ,total ] =



 K

zE (TS ,total )_ _________+1

1_ ____________ 




K

K =1,2,3,...

This is called an Erlang distribution in honor of the great Danish teletraffic engineer who laid the
foundations for much of modern queueing theory and analysis of congestion.

EXERCISE. Check that this has mean E (TS ) for all K .

For K =1 this is the exponential distribution, while for K >1 this is a more complicated expression. The
second moment of this distribution is

E [TS
2] = E 2(TS )

K
K +1_ ____

and hence the squared coefficient of variation is given by

squared coe f f icient o f variation =
K
1_ _

For K =1 this is the exponential distribution, while for K →∞ this is approaching the constant or
deterministic distribution, and hence models fluctuations inbetween these extremes.

9.3.4 Hyperexponential Service Time Distribution A processor executes any one of N types of jobs.
Once a job begins execution, it runs to completion. Measurements are gathered on the system in
operation.

• The fraction of jobs of each type are measured; FK ,K =1,...,N denotes the fraction of jobs that were
executed that were type K

• The execution time statistics of each job are measured, and are felt to be adequately modeled for
each and every job type by an exponential distribution but with a different mean depending upon the
job type: E (TS ,K ),K =1,...,N denotes the mean execution time of job type K

This type of distribution is called the hyperexponential distribution which is a mixture or sum of two or
more exponential distributions.

The chart below shows one method for generating hyperexponential random variables: For two
distributions, we see

PROB [TS ≤X ] = F 1(1−e
−X ⁄E (T

S ,1
)
) + F 2(1−e

−X ⁄E (T
S ,2

)
) F 1 + F 2 ≡ 1

If we fix the mean, we can make the squared coefficient of variation greater than one, and hence model
fluctuations greater than those encountered for the exponential distribution case.

Exercise: Find the moment generating function of the hyperexponential distribution.

Solution: >From the definition, we see
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Figure 9.3.Hyperexponential Random Variable Generation

E [exp (−zX )] =
0
∫
∞

exp (−zX )dG (X )

=
K =1
Σ
N

FK
0
∫
∞

exp (−zX )
E (TS ,K )

1_ _______exp (−X ⁄E (TS ,K ))dX =
K =1
Σ
N

FK zE (TS ,K ) + 1
1_ ___________

9.3.5 Hypoexponential Distribution A job is decomposed into N tasks, with each task executed by a
single processor. Measurements are gathered on

• The fraction of arriving jobs due to each type of task, denoted by FK ,K =1,...,N

• The execution time statistics of each task which are exponentially distributed with mean
E (TS ,K ),K =1,..,N for stage K

The chart below summarizes work flow.

Figure 9.4.Hypoexponential Distribution Flow Chart
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This type of execution time statistics is called the hypoexponential distribution which generalizes the
Erlang distribution. One way to generate random variables from this type of distribution is to first
generate an exponential random variable, and then allow a fraction F 1 of jobs to have this distribution
while the rest of the jobs require not only this service but additional service which is generated from a
second exponential distribution with possibly different mean, and we can repeat this process again and
again.

Exercise: Show the Erlang distribution is hypoexponential.

Solution: A random variable from the Erlang distribution can be generated by using N exponential
random number generators each with the same mean in a pipeline, with the output from one stage
feeding the input to the next stage.

9.3.6 Single Link Flow Control One transmitter receives messages from a variety of sources and
transmits them over a data link to a single receiver. The following steps are involved in message
transmission:

[1] The transmitter adds source and destination header to the message, adds start and end of message
delimiters, adds an appropriate cyclic redundancy check to the message, and transmits the
message; this requires a time interval Ttransmitter

[2] The receiver buffers the message, strips off the start and end delimiters, checks the cyclic
redundancy check to see if errors might be present, passes the message on to the proper
destination, and if all is correct transmits an acknowledgement of proper transmission to the
transmitter; this requires a time interval Treceiver

[3] The transmitter processes the acknowledgement, and flushes the message from its buffer

The transmitter and receiver can operate at widely disparate speeds:

• The transmitter might be an electromechanical terminal and the receiver a computer

• The transmitter might be an intelligent disk controller and the receiver a microprocessor controlled
electronic funds transfer automatic teller

In order to insure that no messages are lost due to speed mismatching, because the receiver has limited
and finite buffering or storage of messages, a maximum of B unacknowledged messages can be
transmitted from the transmitter to the receiver; beyond this point, the transmitter waits to receive an
acknowledgement. This is called flow control because the flow of data over the link is paced or
controlled by this mechanism.

We now consider the case where the propagation effects are negligible compared to the transmitter and
receiver message execution times. This will be the case in a local area network, with terminals and
computers interconnected over a distance of a few kilometers or less, for example. Since we only have
one transmitter and one receiver, the greatest amount of concurrency or parallelism possible is to have
both resources executing messages. Thus, we consider the case where at most two unacknowledged
messages can be outstanding (B=2) at the transmitter at any one time. For this special case, we also
show an illustrative timing diagram of system operation.

Note that after the initial idle to busy transient condition, the transmitter and receiver are very strongly
coupled in their operation. A race condition can occur if the transmitter finishes before the receiver or
the receiver before the transmitter and two messages have to be acknowledged. If we ignore the startup
transient, the time required to transmit a message, denoted by Tmessage , by inspection of the figure, is
given by

Tmessage = max (Ttrans ,Trec ) + Trec

The mean message transmission time is given by

E (Tmessage ) = E [max (Ttrans ,Trec )] + E (Trec )
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Figure 9.5.Illustrative Operation with Negligible Propagation Time

The message handling time is not simply the sum of the individual message handling times. What is the
distribution of the message handling time distribution? To find this, we need to find the distribution of
the maximum of the transmitter and receiver message handling time distributions:

PROB [max (Ttrans ,Trec )≤X ] = PROB [Ttrans ≤X ]PROB [Trec ≤X ]

On the other hand, rather than work with this complicated expression directly, we might be satisfied
with simply bounds on the message handling time:

max [E (Ttrans ,Trec )] ≤ E [max (Ttrans ,Trec )] ≤ E (Ttrans ) + E (Trec )

Check this! How do we interpret these two bounds?

• The lower bound says that the slower of the transmitter and receiver will be the system bottleneck

• The upper bound says that if fluctuations are sufficiently great about the mean values, the mean
message handling time will be approximately the same mean time as if the receiver could only
buffer one message at a time, with no parallelism or concurrency possible

Here is a different way of understanding this phenomenon:

• The transmitter can be much slower than the receiver:

E (Ttrans ) > > E (Trec )

and hence there will never be any queueing at the receiver, or the receiver can be much slower than
the transmitter:

E (Trec ) > > E (Ttrans )

and hence there will always be two messages at the receiver. This case is called speed mismatch

• Fluctuations about the mean transmitter and receiver times can be severe:

• If the transmitter and receiver message service times are constant, then

E (Tmessage ) = max [E (Ttrans ),E (Trec )] + E (Trec )

• If the transmitter and receiver message service times are exponential random variables, then

E (Tmessage ) =
E (Ttrans ) + E (Trec )

E (Ttrans )E (Trec )_ ________________ + E (Trec )

The figures below plot the ratio of the mean of the maximum of the transmitter and receiver message
handling times divided by the single message at a time, assuming the transmitter and receiver have
identical distributions with identical squared coefficients of variation.
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Figure 9.6.Mean Throughput Gain of Double vs Single Buffering

When the speed of the transmitter and receiver are roughly equal, and the squared coefficient of
variation is close to zero, then the gain approaches fifty per cent. When the speeds of the transmitter
and receiver are mismatched by a factor of two or more, or the fluctuations become significant (squared
coefficient of variation greater than one), or both, the gain is roughly ten per cent or less.

9.4 Resource Allocation Policy

At each arrival epoch and each completion epoch, a decision must be made for which task(s) are
processed. What are some of the means for resolving contention for a processor?

• At each arrival epoch, we could use the arrival time as a priority index. The smaller the index, the
higher the priority leads to the policy of service in order of arrival, or first come, first served.

• At each arrival epoch, we could use the arrival time as a priority index, but now the larger the index
the higher the priority! If we decide that we will execute jobs to completion once they begin to
execute, i.e., to execute nonpreemptively, then our work discipline is service in reverse order of
arrival, last come, first serve, nonpreemptive. If we decide that we will make scheduling decisions at
job arrival instants, i.e., to execute preemptively, then we could choose to preempt a job and either
resume processing at the point of interruption or repeat processing from the beginning, or any of a
number of other points.

• At each arrival epoch, we could use a given label on the job as a priority index. Jobs would be
executed according to priority index; jobs with the same index would be executed in order of arrival.
At least two options are available, preemptive resume scheduling where higher priority jobs interrupt
lower priority jobs upon arrival and execution is resumed at the point of interruption, and
nonpreemptive scheduling where once a job begins to execute it runs to completion.

• At each arrival epoch, we could use both the arrival time and a second quantity which is the desired
execution time window of that job to determine priority: we simply add the arrival time to the
window, and execute jobs according to highest priority. This is called deadline scheduling because
the arrival time plus window is called the deadline for that job.

• At each arrival epoch, we could use the processing time of the job to determine its priority. If we
schedule jobs nonpreemptive, then one such rule is to execute that job with the shortest processing
time at all times; if we schedule jobs preemptive resume, then one such rule is to execute that job
with the shortest remaining processing time at all times.
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Many more policies are known, as well as variations on those above. We will not deal with all of these,
but only wish to give the reader some idea of how rich the policy space in fact is. One way of
classifying these policies is by the labels static and dynamic: a static policy depends only upon the
attributes of a job that do not change with time, while a dynamic policy does allow the priority or
urgency of a job to depend on time.

9.5 Measures of Congestion

Broadly speaking, there are two types of congestion measures, those oriented toward the customer and
those oriented toward the system. For each type, we might associate a cost, and then attempt to trade
off among them: as we improve customer oriented measures, system oriented measures degrade, and
vice versa!

Customer oriented criteria deal with the mean throughput rate and the delay statistics for each type of
task. We characterize delay by

• queueing time or flow time or time in system of a task, denoted TQ

• waiting time, the time interval from arrival until a task first receives service, denoted TW

System oriented criteria deal with

• mean number of jobs in execution in the system, defined as

mean number o f executing jobs =
mean interarrival time

mean service time_ ___________________

which follows from Little’s Law

• utilization, defined as

utilization = f raction o f time resource busy

• distribution of number of tasks in the system (at arrival epochs, completion epochs, or arbitrary time
epochs)

This list is not complete. Our goal will be to calculate these different measures given certain arrival
statistics, service time statistics, and policies for arbitrating contention.

9.5.1 Additional Reading

[1] R.B.Cooper, Introduction to Queueing Theory, Chapters 1-3, Macmillan, NY, 1972.

[2] H.Kobayashi, Modeling and Analysis: An Introduction to System Performance Evaluation
Methodology, Chapter 2, 3.1-3.5, Addison-Wesley, Reading, Mass. 1978.

[3] L.Kleinrock, Queueing Systems, Volume I: Theory, Chapters 1-2, Wiley, NY, 1975.

9.6 Approximation of the Inverse of a Laplace Transform

We have already introduced and used the concepts of moment generating function and Laplace
transform. These transforms are often easier to manipulate and work with, rather than working directly
with probability distributions. Furthermore, since we are demanding additional distributional
information concerning the workload, we would like to get more out of this input than simply a mean
value: what fraction of the time does a transaction take longer than T seconds to spend either waiting or
executing? what point in time in system will result in ninety per cent or ninety five per cent or ninety
nine per cent of the transactions being completed? This suggests numerical methods for approximating
the inverse of the moment generating function or Laplace transform.

The properties that we wish to preserve with our numerical methods are

• Nonnegativity--Certain types of approximations result in negative probabilities in exactly the region
of interest, the tail of the distribution, the point at which ninety five per cent of the jobs have been
completely executed; our goal here is to have a nonnegative class of approximations
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• Monotonicity--Certain types of approximations, such as those based on Fast Fourier Transform
methods, result in oscillations and waves in the region of interest (not surprising, if the
approximation is a sum of sinusoidal waves); we wish to preserve monotonic behavior

In summary, we will approximate a distribution function by another distribution function.

9.6.1 Description of Basic Approximating Algorithm Consider a function g (x ) for which the Laplace
transform, denoted g̃ (z ), defined by

g̃ (z ) =
0
∫
∞

e−zx g (x )dx

exists for all Re (z )>β where β is the abscissa of convergence of the transform. We will assume that
g (x ) drops off exponentially fast in x, which will occur with the problems we will encounter.

x →∞
lim g (x )e γx =





 0
constant
∞

γ>β
γ=β
γ<β

We now define a sequence of linear functionals that will approximate g (x ), denoted by Ln ,n =0,...,∞,
given by

Ln [g (x )] = gn (x ) =
n !

(−1)n
_ _____ z n +1

dz n

d n g̃ (z )_ ______ 
z +

z
n +1_ ____

It can be shown that

n →∞
lim gn (t ) = g (t )

The zeroth order approximation is given by

L 0[g (x )] = zg̃ (z )
z =

x
1_ _

while the first order approximation is given by

L 1[g (x )] = −z 2

dz
dg̃ (z )_ _____ 

z =
x
2_ _

The reason for choosing this type of approximation is that the resulting approximation is nonnegative.
Other methods, such as those based on Fast Fourier Transform techniques, do not preserve positivity.
This is not free: if we go from the nth order approximation to the 2nth order approximation, the error
will only halve, while using other methods (such as those based on Fast Fourier Transform techniques)
result in the error being quartered.

9.6.2 An Example To illustrate all of this, we try a probability distribution function of the form:

PROB [T >x ] = g (x ) = 1⁄2e−x + 1⁄2e−3x

This is convenient and easy to work with analytically, to illustrate our points. The Laplace transform of
this function is given by

g̃ (z ) =
0
∫
∞

g (x )e−zx dx = 1⁄2


 z + 1

1_ _____ +
z + 3

1_ _____




The abscissa of convergence here is one, i.e., the minimum of three and one.

The zeroth and first order approximation to g (x ) is given by

g 0(x ) = 1⁄2


 1+x

1_ ___ +
3x +1

1_ ____




g 1(x ) = 1⁄2


 (1⁄2x +1)2

1_ _______ +
(3x ⁄2+1)2

1_ ________
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The tables below summarizes numerical studies as a function of approximation parameters:

Table 9.3. α=0_ ______________________________ _____________________________
x g g 50 g 100_ ______________________________ _____________________________
2 0.06891 0.07203 0.07048
4 0.00916 0.01064 0.00990
8 0.00017 0.00030 0.00023

Table 9.4. α=1_ _______________________________ ______________________________
x g g 50,1 g 100,1_ _______________________________ ______________________________
2 0.06891 0.06911 0.06901
4 0.00916 0.00916 0.00916
8 0.00017 0.00017 0.000017

Since the abscissa of convergence of the Laplace transform of g (x ) is one, α=1 is the appropriate value
to use here.

The error is halved in going from fifty to one hundred terms, as expected. The effect of α=1 is greater
for larger values of t since the exponential term which is being tracked becomes dominant.

A different type of example is shown in the figure below. The total mean arrival is fixed at 0.5 arrivals
per second, with each arrival requiring a mean service of one second. Jobs are executed in order of
arrival. The final parameter is the second moment of the service time distribution; this allows
fluctuation about the mean.

Figure 9.7.Fraction of Time TQ >X vs X

For example, ninety per cent of the jobs are executed within four seconds of their arrival if there is no
fluctuation in the service time distribution, while for the exponential distribution ninety per cent of the
jobs are executed within six seconds of their arrival.
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9.6.3 Additional Reading

[1] D.Jagerman, An Inversion Technique for the Laplace Transform with Application to
Approximation, Bell System Technical Journal, 57 (3), 669-710(1978).

9.7 Kendall’s Queueing System Notation

Kendall has introduced a notation for characterizing queueing systems:

ARRIVAL ⁄SERVICE ⁄NUMBER OF SERVERS ⁄CAPACITY

These terms are as follows:

• ARRIVAL --the interarrival time distribution

• SERVICE --the service time distribution

• NUMBER OF SERVERS --the number of processors or servers

• CAPACITY --the total system capacity for tasks (if this is infinite, this term is often omitted)

The following abbreviations are often used to characterize these different interarrival and service time
distributions:

• M --exponential (Markovian) distribution

• D --deterministic or constant distribution

• EK --Erlang-K distribution, a type of gamma distribution

• H --hyperexponential distribution (linear combination of two or more exponentials)

• G --general or arbitrary distribution (as distinct from the above highly structured distributions)

Many other abbreviations have crept into use than just those above. Here are some examples of this
nomenclature:

• M ⁄M ⁄1--a single server queue with exponential interarrival times and exponential service times

• M ⁄G ⁄1--a single server queue with exponential interarrival times and arbitrary or general service
times

• G ⁄EK ⁄3⁄7--a three server queue with capacity seven with arbitrary or general interarrival time
distribution and Erlang-2 service time distribution

This nomenclature is widely used, and we will adopt it from this point onward.

9.7.1 Additional Reading

[1] D.G.Kendall, Some Problems in the Theory of Queues, J.Royal Stat.Society (B), 13, 151-173,
1951.

[2] P.Kuehn, Delay Problems in Communications Systems: Classification of Models and Tables for
Application, IEEE International Conference on Communications, 1, 237-243, Chicago, Illinois,
1977.

9.8 Single Server Queues with Poisson Arrivals and General Service Times

We wish to assess the impact on performance when the arrival statistics are Poisson but the service
times for jobs are arbitrary. This allows us to quantify the impact on delay statistics for jobs that have
different processing time requirements and also different delay goals: often we wish to execute short
jobs that have stringent delay criteria much more quickly than long jobs whose delay criteria are much
more loose, and this class of models allows us to quantify the gain due to scheduling to achieve these
goals. For example, we might be interested in how variable size packets impact congestion in a packet
switching system, so we might choose to fix the mean packet length but allow the distribution or
variance to fluctuate to see how performance is affected.
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9.8.1 Mean Value Analysis In what follows, we are interested in mean throughput rate and queueing
and waiting time statistics. Our mean value analysis allows us to plot the mean throughput rate versus
the mean arrival rate, as shown in the figure below.

Figure 9.8.Mean Throughput Rate vs Mean Arrival Rate

As long as the mean arrival rate is less than the maximum rate at which jobs can be serviced, the mean
throughput rate equals the mean arrival rate, i.e., the arrival rate is limiting the mean throughput rate.
On the other hand, the mean delay can be anything from the mean service time on up to infinity, i.e., we
can say nothing about the mean delay at this level of analysis. Different scheduling policies will lead to
different delays.

Once the mean arrival rate exceeds the maximum rate of executing jobs, the single serially reusable
resource is a bottleneck. Furthermore, delays will exceed any threshold, because the resource cannot
keep up with arrivals, i.e., buffers overflow and so forth.

9.8.2 The M/G/1 Queue with Service in Order of Arrival The benchmark against which we will judge
all of our different scheduling policies is the policy of service in order of arrival. We now present one
result from the general theory of the M ⁄G ⁄1 queueing system. The moment generating function of the
waiting time distribution is given by

E [exp (−zTW )] =
z − λ[1 − E [exp (−zTS )]]

z (1 − ρ)_ _____________________

which has mean value given by

E (TW ) =
2(1 − ρ)

λE (TS
2)_ _______

E (TS
2) is the second moment of the service time distribution, or, in other words, the first moment of the

waiting time distribution depends on more than just the first moments of the interarrival and service time
distributions. If we adopt the previous definition of squared coefficient of variation, we see

E (TW ) =
2(1 − ρ)

λE 2(TS )[1+CS
2]_ _____________

CS
2 =

(mean o f service time distribution )2

variance o f service time distribution________________________________

A different way of expressing the mean waiting time is
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E (TW ) =
1 − ρ

ρ_ _____
2E [TS ]

E [TS
2]_ ______

In words, the mean waiting time is the product of two factors, one that depends only on the fraction of
time the server is busy, ρ, and one that depends on the fluctuations in the service times for jobs, which
is the ratio of the second moment over twice the first moment. Under light loading, ρ→0, the mean
waiting time is negligible, while under heavy loading, ρ→1, the mean waiting time is inflated or
stretched by 1⁄(1 − ρ) and can dominate the mean queueing time.

The queueing time (or time in system) moment generating function is given by

E [exp (−zTQ )] = E [exp (−zTW )]E [exp (−zTS )]

which has mean value

E (TQ ) = E (TW ) + E (TS ) =
2(1 − ρ)

λE (TS
2)_ _______ + E (TS )

Several special cases are of interest:

• exponential service, CS
2 = 1:

E (TW ) =
1 − ρ

λE 2(TS )_ _______

• deterministic or constant service, CS
2=0:

E (TW ) =
2(1 − ρ)

λE 2(TS )_ _______

which is one half the mean waiting time of that of the exponential case

• hyperexponential service, where one might encounter CS
2 = 100 for example:

E (TW ) =
2(1 − ρ)

101×λE 2(TS )_ ___________

The random variable N denotes the number of jobs in the system (including the job in execution), and
this has moment generating function given by

E [X N ] = E [exp (−TQ [λ(1−X )])]

>From Little’s Law, we recall that the mean number in system equals the mean arrival rate multiplied
by the mean time in system:

E (N ) = λ E (TQ )

We have summarized these formulae graphically in the following plots of mean queueing time, waiting
time, and number in system versus the fraction of time the single server is busy, with the squared
coefficient of variation of the service time distribution varied from the deterministic case of zero through
the hypoexponential case of one half, through the exponential case of one, and on into the
hyperexponential case of one and a half, two, and two and a half. In all cases, the mean service time of
a job is one time unit. Two plots are presented, one for utilization varied out to one, and the second for
the more typical loading case where the utilization varies up to one half. These plots are useful for
assessing transients: if the system is normally loaded to thirty to forty per cent utilization, but suddenly
a workload surge raises this to seventy per cent, then the mean values can be see to roughly double or
triple in all cases. This suggests doubling system design margins to allow for these longer times and
greater amount of storage.

The fraction of time the waiting time and queueing time exceed X is plotted in Figure 9.9, assuming an
exponential service time distribution.

This figure shows that under light loading, ρ=0.1, the fraction of time a job waits greater than one
service time is under ten per cent, while as the loading increases, ρ→1, the fraction of time a job waits
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Figure 9.9.A.Mean Waiting Time vs Utilization ρ≤1

Figure 9.9.B.Mean Queueing Time vs Utilization ρ≤1

ten or more service times becomes larger and larger.

Finally, the random variable TB denotes the duration of a busy period; the processor is busy, idle, busy,
idle, and so on. The moment generating function for the busy period distribution is given implicitly by

E [exp (−zTB )] = E [exp (−TS (z +λ−λE [exp (−zTB )]))]

and hence the mean duration of a busy period is

E (TB ) =
1−λE (TS )

E (TS )_ ________

9.9 The FS/G/1 Queue with Service in Order of Arrival

What if the arrivals are generated from a finite rather than infinite population? Our model is as follows:

• N identical stations attempt to execute jobs; each station is either idle or is active (either waiting to
execute or executing). The idle times for all stations form a sequence of independent identically
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Figure 9.9.C.Mean Number in System vs Utilization ρ≤1

Figure 9.10.A.Mean Waiting Time vs Utilization ρ≤0.5

distributed exponential random variables with mean idle time 1⁄λ

• the execution times for each station form a sequence of independent identically distributed random
variables, with associated transmission time TS which has an associated moment generating function
γT

S
(z ) defined by

E [exp (−zTS )] = γT
S
(z )

• jobs are executed in order of arrival

The mean rate of executing jobs is simply the fraction of time the server is busy executing jobs divided
by the mean time to execute one job. We denote by ρ the server utilization, while E (TS ) is the mean
job execution time, and see

mean throughput rate =
E (TS )

ρ_ _____
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Figure 9.10.B.Mean Queueing Time vs Utilization ρ≤0.5

Figure 9.10.C.Mean Number in System vs Utilization ρ≤0.5

Since each station is either idle or active, the mean cycle time for one station to go from idle to active
and back to idle is simply

mean station cycle time = E (Tidle ) + E (Tdelay )

and by definition the mean throughput rate is the number of stations divided by the mean cycle time per
station:

mean throughput rate =
E (Tidle ) + E (Tdelay )

N_ ________________

Equating these two expressions, we see

E (Tdelay ) =
ρ

N E (TS )_ _______ − E (Tidle )

The mean utilization is given by
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Figure 9.11.A.Fraction of Time TQ >X versus X

Figure 9.11.B.Fraction of Time TW >X versus X

ρ =

1 +
J =1
Σ
N 


 J

N 

 K =0
Π
J −1

[E [exp (λ(K TS ))]−1]

J =0
Σ

N −1 

 J

N −1 

 K =0
Π

J

[E [exp (λ(K TS ))]−1]
_ _______________________________

Note that we are computing the moment generating function of the job execution time distribution at
evenly spaced points. This means that the mean delay depends on more than just the mean message
length.

EXERCISE: Compute the mean delay versus N for Tidle =1 and E (TS )=0.3, for exponential and
deterministic service time distributions, for a finite source model. Compare these calculations with those
from an infinite source model with arrival rate λ=N ⁄Tidle .
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Figure 9.11.C.Fraction of Time N >K versus K

9.10 M/G/1 Last Come, First Serve

In this section we examine a different policy for administering a single serially reusable resource: service
in reverse order of arrival. Two cases are possible here:

• Upon arrival, the job in service is preempted and the arrival will seize the resource

• Upon arrival, the job in service is not preempted but finishes execution, and the latest arrival then
seizes the resource and is completely executed

For the case of preemption, we will only examine the case where service is resumed for the preempted
task(s) at the point of interruption. A different case might be to start execution anew or afresh for a
preempted job, which we will not deal with here.

Why deal with this policy? Many computer systems employ a hardware device called a stack which
conceptually is a single serially reusable resource that operates according to a policy of the last arrival is
served first.

9.10.1 Nonpreemptive Last Come, First Serve When a job arrives, it will either execute immediately
because the system is idle, or it must wait, because one job is in execution. If the job must wait, other
jobs may arrive after it but before the first job finished execution, and all of these jobs will be executed
before the job of interest is executed. The time in system is given by

TQ =


 T̃S with probability ρ

TS with probability 1 − ρ

The moment generating function is given by

E [exp (−zTQ )] = (1 − ρ)E [exp (−zTS )] + ρE [exp (−zT̃S )]

If the system is busy upon arrival, a job must wait until the current job in execution is finished, which
we denote by T̂S

E [exp (−zT̂S )] =
zE (TS )

1−E [exp (−zTS )]______________

If we stretch T̂S to account for arrivals after the job in question, we find T̃S :

E [exp (−zT̃S )] = E [exp (−yT̂S )]
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y = z + λ − λE [exp (−zTB )]

E [exp (−zTB )] = E [exp ((z + λ − λE [exp (−zTB )]TS )]

The mean queueing time is given by

E (TQ ) = E (TS ) +
2(1 − ρ)

λE (TS
2)_ _______

This is identical to that for service in order of arrival. The reason is that no preemption is allowed, so
when a job completes, another starts (the last one or the first one), and hence the mean number of jobs
in the system either waiting to execute or in execution is the same for either policy. Little’s Law tells
us that the mean queueing time must be the same for the same mean arrival rate.

9.10.2 Preemptive Resume Last Come, First Serve If we allow preemptive resume service, then as soon
as a job arrives it begins execution, irrespective of whether the processor or server is busy. However,
this job can be preempted by later arrivals. Hence, we see

E [exp (−zTQ )] = E [exp (−yTS )]

y = z + λ − λE [exp (−zTB )]

E [exp (−zTB )] = E [exp (−(z + λ − λE (exp (−zTB ))TS )]

The mean queueing time is given by

E (TQ ) =
1 − ρ
E (TS )_ _____

This is the same form as the mean queueing time for an M/M/1 system with service in order of arrival,
except that here we have arbitrary service and preemptive resume service in reverse order of arrival. By
switching the scheduling policy, the mean value behaves as if the service time were exponentially
distributed.

9.10.3 Example The distribution of number of clock cycles per assembly language instruction is
measured and found to be adequately modeled by an constant distribution with a mean of two cycles per
instruction. We wish to compare the impact on performance using a stack with either nonpreemptive or
preemptive resume arbitration versus a fifo or first in, first out buffer discipline. The table below
summarizes the mean number of clock cycles per instruction (including both execution and waiting):

Table 9.5.Mean Execution Time E (TQ )_ _______________________________________________________ ______________________________________________________
FIFO LCFS

Utilization Policy Nonpreemptive Preemptive Resume_ _______________________________________________________ ______________________________________________________
0.1 2.1 cycles 2.1 cycles 2.2 cycles
0.5 3.0 cycles 3.0 cycles 4.0 cycles
0.9 11.0 cycles 11.0 cycles 20.0 cycles


















The impact due to fluctuations for preemptive resume versus nonpreemptive scheduling is severe as the
load grows.

BONUS: What is the variance about the mean for each of these policies?

9.10.4 Graphical Comparisons For the special case of deterministic or constant service time, we can
explicitly calculate the exact distribution of TQ . This is plotted in Figure 9.12 assuming Poisson arrivals
with mean arrival rate of one job every two seconds, while the mean service time for each job is one
second, so the processor is fifty per cent utilized. In addition, we have plotted the zeroth and first order
approximations to the exact solution, plus the modified approximations assuming the fraction of time
TQ >X drops off exponentially as exp−αX . The approximation g 0,α(X ) is within ten per cent of the exact
solution, while g 1,α(X ) is within five per cent of the exact solution.

By way of comparison, if we change the service time distribution from constant to exponential, and keep
everything else the same, then the results are plotted in Figure 9.13. For example, for the constant
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Figure 9.12.Last Come First Served Preemptive Resume/Constant Service

Figure 9.13.Last Come First Served Preemptive Resume/Exponential Service

service time distribution case, ninety nine per cent of the jobs are serviced within ten seconds while the
corresponding number for exponential service is seventeen seconds.

Finally, what if we vary the policy, but fix the Poisson arrival rate at one job every two seconds, with
each job requiring a constant one second of service. Figure 9.14 summarizes numerical approximations:

Ninety per cent of the jobs are executed within four seconds for first in first out service, while this
grows to six seconds for nonpreemptive last in first out service, and to seven seconds for preemptive
resume last in first out service. The corresponding results for exponential service is shown as follows:
Ninety per cent of the jobs are executed within six seconds for first in first out service, while this grows
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Figure 9.14.A.Poisson Arrivals/Constant Service/Different Policies

Figure 9.14.B.Poisson Arrivals/Exponential Service/Different Policies

to nine seconds for nonpreemptive last in first out service, and to twelve seconds for preemptive resume
last in first out service. Note that this is significantly greater than the constant service case.

9.11 The M/G/1 Queue with Processor Intervisits

As a useful variation on the above example, we consider the following system

• Arrivals obey simple Poisson statistics with mean arrival rate λ

• The service times of jobs are independent identically distributed random variables with TS denoting
the processing time random variable
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• Jobs are serviced in order of arrival

• The buffer for work has infinite capacity

• The processor executes all jobs until the system is completely empty of work, and then leaves for a
random time interval called an intervisit time; the sequence of intervisit times are independent
identically distributed random variables with V denoting the intervisit time random variable. If the
processor arrives from an intervisit to find the system empty, it immediately leaves to begin another
intervisit time.

In many digital systems, the processor is multiplexed amongst a number of jobs, and hence is not
available all the time to handle one job type. >From the point of view of any one job, the processor is
busy handling its type of work, and then is absent (doing work elsewhere), so this is often a much more
realistic model than the model of the previous section (remember: always check your particular
application to see what assumptions are valid!)..

Let’s examine a special case of this to gain insight: TS ≡0. This situation is not uncommon in digital
systems: often no one job requires a great amount of service, but the processor must handle so many
different types of jobs that the time it is absent (doing jobs elsewhere) is much much longer than the
time it is present handling any one job type. If the mean time between intervisits is denoted by E (V ),
then many people would claim that the mean waiting time is simply one half the duration of a mean
intervisit time interval, because on the average a job arrives half way through a mean intervisit interval.
This is false! In fact, the mean waiting time and also the mean queueing time (since the service time is
zero) is given by

E (TQ ) = E (TW ) + [E (TS )=0] =
2E (V )
E (V 2)______ = 1⁄2E (V )


1 + CV

2


CV
2 = squared coe f f icient o f variation o f intervisit =

E 2(V )
var (V )_ ______

Only if the intervisit times are constant will the mean waiting time be one half of a mean intervisit time:
if there are severe fluctuations about the mean, such as with an exponential distribution where the
squared coefficient of variation is one, then the mean waiting and queueing time will lengthen (for the
exponential distribution the mean waiting and queueing time will be twice that of the constant
distribution).

This is a very subtle phenomenon: in words, if there is a severe fluctuation about the mean, the impact
on congestion will be much worse than might be expected: work will continue to arrive, and the system
will take longer and longer to process this work by passing it off to other queues (where it is absent
most of the time anyway), compounding the process in a regenerative or positive feedback manner.
Some refer to this phenomenon as length biasing: arrivals are much more likely to occur during long
intervisit time intervals than during short intervisit time intervals, and so on.

How do we show this? Let us denote by tK the arrival instants of jobs, K =1,2,.... The probability that
the waiting time at some time instant say t is less than or equal to some threshold say X is given by

PROB [TW (t ) ≤ X ] =
K =1
Σ
∞

PROB [t <tK ≤t + X <tK +1]

=
K =1
Σ
∞

t
∫

t +X

[1−GV (t +X −u )]dGA [tK ≤u ]

In words, at least one arrival must occur during (t ,t +X ] and this event can occur in several mutually
exclusive ways, since the last arrival in the time interval (t ,t +X ] may be the first, the second, the third,
and so on. The mean number of arrivals during the time interval (0,t ] is equal to

E [TA (0,t )] =
K =1
Σ
∞

PROB [tK ≤t ] =
E (V )

t_____

Using this, we see
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PROB [TW (t )≤X ] =
E (V )

1_____
t
∫

t +X

[1−GV (t +X −u )]du =
E (V )

1_____
0
∫
X

[1−GV (y )]dy

which is independent of t . The moment generating function of this distribution is given by

E [exp (−zTQ )] =
E (V )

1−E [exp (−zV )]_ _____________

If we use the earlier identity, we can determine all moments of integral order.

What about if TS ≠0? Now we see that the mean waiting time is simply the sum of an intervisit time
interval plus the time required to complete the backlog of work that is present when a given arrival
occurs, the virtual workload described earlier:

TW = V + W → E [exp (−zTW )] = E [exp (−zV )]E [exp (−zW )]

The queueing time is the sum of the waiting time plus the service time:

TQ = TV + TW + TS

→ E [exp (−zTQ )] = E [exp (−zTV )]E [exp (−zTW )]E [exp (−zTS )]

The mean waiting time is given by

E (TW ) =
2E 2(V )
E (V 2)_ ______ +



 2(1 − λE (TS ))

λE (TS
2)_ ____________ =

1 − λE (TS )

λE (TS )_ __________
2E [TS ]

E [TS
2]_ ______





We have deliberately rewritten the mean waiting time as the product of a term dependent only on mean
utilization λE (TS )≡ρ and the randomized mean service time. The mean queueing time is given by

E (TQ ) = E (TW ) + E (TS )

As an example of this phenomenon, let’s look at the Laplace transform of the waiting time distribution
of an M/G/1 queueing system with service in order of arrival:

E [exp (−zTW )] =
z + λ − λE [exp (−zTS )]

(1 − ρ)z_ ____________________

= (1 − ρ)
K =0
Σ
∞

ρK E K [exp (−zT̃S )]

E [exp (−zT̃S )] =
zE (TS )

1 − E [exp (−zTS )]_ _______________

For light loading, ρ< <1, we see

E (TW ) = (1 − ρ) + ρE (T̃S ) + . . .

E (T̃S ) =
2E (TS )

E (TS
2)_ ______

In words, this says that on the average, under light loading, an arrival will not wait at all a fraction of
the time 1 − ρ, and will wait for one job a fraction of the time ρ with the waiting time being E (T̃S ), and
other terms are negligible (proportional to ρK ,K >1).

9.11.1 Additional Reading

[1] L.Takacs, Introduction to the Theory of Queues, pp.10-11, Oxford University Press, New
York, 1962.

9.12 Synchronous Data Link Control

A widely used data link control procedure is called Synchronous Data Link Control (SDLC). and its
international standard cousin (HDLC). Compared with previous widely used data link control
procedures, it offers a number of advantages:
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• It is insensitive to the actual character set being used, because it deals with bit streams, and knows
nothing about character sets

• The encoding and buffering is simplified because it is done on the fly, as bits arrive

• A very high link efficiency is achievable compared with other widely used approaches

This does not come for free. Its’ disadvantages include

• Variable lengths of messages or frames, which leads to complicated buffering strategies compared to
earlier approaches

• The overhead is dependent on the pattern of ones and zeros in the data

• Certain types of single bit errors are undetectable; how often these errors occur can determine how
suitable this is in a given application

How does SDLC function? Data arrives at a link controller, is encoded with appropriate address, control
field, and error detecting and/or correcting cylic redundancy checking (CRC) coding, and then
transmitted over a link. Each frame begins and ends with a unique bit pattern called a flag that delimits
frames from one another.

Figure 9.15.SDLC Frame Format

Contention for the link is arbitrated using a nonpreemptive priority policy: data has highest priority,
while at the lower priority level a flag is always present to be sent. If there is no data, a flag is
transmitted. At the end of each flag transmission, the controller checks to see if any data is ready to be
transmitted, and if so, begins transmission; otherwise, a flag is transmitted, and the process repeats itself.

Figure 9.16.Priority Arbitration Queueing Network Block Diagram

Flags delimit the start and finish of data transmission: a flag is inserted at the beginning and appended to
the end of every data transmission. The flag consists of R+2 bits: a leading zero bit, R+1 successive
one bits, and a trailing zero bit. It is mandatory that the flag pattern not appear in the middle of the
data. Special circuitry in the link encoder monitors the total data transmission: if a zero is followed by
R successive ones, the special circuitry at the transmitter inserts a zero immediately after the R
successive ones, i.e., it stuffs a bit into the data, and hence is called a bit stuffer. At the receiver all
stuffed bits are removed by an analogous process. Figure 9.17 illustrates a thirteen bit data stream with
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a four bit flag (a leading zero, two ones, and a zero) that leads to an encoded stream of nineteen bits:
two flags of four bits each, thirteen data bits, and two inserted or stuffed bits.

Figure 9.17.Illustrative Bit Stuffing Example: D=13, R=2

In the following example, a single bit channel error in bit position five results in the received frame
being a flag, which would be undetected by the controller described here (but presumably would be
caught by other protocol levels).

Figure 9.18.Illustrative Spurious Flag from Single Bit Error

There are D data bits per message, with a mean of E (D ) data bits and a variance of var (D ) bits 2 per
message. There are A =8 address bits, C =8 control bits, and CRC =16 error coding bits associated with
each message. The total number of bits to be encoding by bit stuffing is B =D +32 bits. Figure 9.19
summarizes both the frame encoding, bit stuffing encoding, and link arbitration.

If P and Q =1−P denote the fraction of D bits that are ones and zeros, respectively, then the mean and
variance of the number of data bits between inserted or stuffed bits is

mean number o f bits between bit stu f f s ∼∼ µ
B_ _
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Figure 9.19.SDLC Link Controller Block Diagram

variance o f number o f bits between bit stu f f s ∼∼ µ
B_ _

µ2

σ2
_ __ +



 µ

B_ _




2

var (D )

µ =
Q P R

1 − P R
_ ______ σ2 =

(Q P 2)2

1_ _______ −
q P R

2R +1_ _____ −
Q 2

P___

SDLC employs a one byte flag: R =5 with the flag consisting of a zero, six ones, and a zero. For
P =Q =1⁄2 , i.e., equal fractions of ones and zeros, the mean number of bits that are transmitted before a
bit stuffing occurs is sixty two bits, µ=62 bits . Put differently, the mean overhead is one bit out of
every sixty three bits, or 1.5873 %. For P =2⁄3, i.e., two thirds of the bits are ones, one bit is stuffed on
the average every 19.78 bits, for a bit stuffing overhead of 4.812%; for P =1⁄3, i.e., one third of the bits
are ones, one bit is stuffed on the average every 363 bits, resulting in bit stuffing overhead of 0.274%.
This makes it clear that the bit stuffing overhead incurred by this type of encoding uses relatively few
bits to achieve a transparent encoding of a bit stream: note that there are no special control characters
with this encoding strategy, unlike other approaches such as Binary Synchronous Communications.
Furthermore, the overhead is relatively insensitive to the proportion of ones and zeros in a frame.

BONUS: What is the overhead per frame for a four bit flag, R =1 as a function of 0<P <1? Repeat for
a two byte flag, R =13.

A frame consists of a leading flag, an address field, a control field, a data field, a CRC field, and a
trailing flag. The mean number of bits per frame is given by

mean number transmitted bits ⁄f rame = 2(R +3) + B



1 +

µ
1_ _





The first term is due to the two flags, the term B is due to the control and data bits, and the final term
B ⁄µ is due to bit insertions among the control and data bits. The variance of the number of bits in a
frame is given by

variance (number bits transmitted ⁄f rame ) = σf rame
2 =

µ
B_ _

µ2

σ2
_ __ +

µ2

var (D )_ ______

The maximum rate at which the link can transmit the frame is given by

λmax =
mean number bits ⁄f rame
link data rate (bits ⁄sec )_ _____________________

The table below summarizes the mean and variance of the number of bits per frame transmitted
(including control bits and inserted or stuffed bits) assuming equal fractions of ones and zeroes in the
data bits, with parameters being the mean number of data bits per frame, and the squared coefficient of
the number of data bits per frame (denoted Cdata

2):
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Table 9.6.Bits Transmitted/Frame Statistics(Rounded up to Nearest Integer)_ ___________________________________________________________________ __________________________________________________________________
Mean Data Mean Bits σf rame

Bits/Frame Transmitted/Frame Cdata
2=0 Cdata

2=1_ ___________________________________________________________________ __________________________________________________________________
500 589 3 9
1000 1097 5 13
2000 2113 6 33














This numerical summary shows that this encoding method incurs a small amount of overhead beyond
the needed seventy two bits per frame for flags, address and control fields, and CRC coding, and that the
fluctuations about the mean measured in units of standard deviations are relatively modest.

If the message arrival statistics to the controller can be adequately modelled by a Poisson process with
rate λ, then the mean delay, including bit stuffing and transmission, from when the first bit of the
message arrives until the last bit is transmitted is the sum of three terms:

• a term accounting for the delay in waiting for the last flag to be transmitted, and since each flag
consists of a fixed number of R +3 bits each frame will be delayed on the average by 1⁄2(R +3) bit
transmission times

• a term accounting for the delay while the backlog due to previously arrived frames is transmitted

• a term due to transmitting the frame

Combining all this, we find:

mean f rame delay = E [TQ ]= E [Tf rame ] + 1⁄2Tf lag

+





 ∞

1 − λE [Tf rame ]

λE [Tf rame ]_____________
2(mean number of bits ⁄f rame )2

variance (number of bits ⁄f rame_ ___________________________

λ≥λmax

λ<λmax

E [Tf rame ] =
link data rate (bits ⁄sec )

mean number of bits ⁄f rame_ _______________________ Tf lag =
link data rate (bits ⁄sec )

R +3 bits ⁄f lag_ ____________________

EXERCISE: Plot the mean frame delay versus message arrival rate for 500, 1000, and 2000 data bits
per frame with a four, eight, and sixteen bit flag, assuming P =1⁄2 and P =2⁄3.

9.12.1 Additional Reading

[1] R.J.Camrass, R.G.Gallager, Encoding Message Lengths for Data Transmission, IEEE
Transactions on Information Theory, 24 (4), 495-496 (1978).

[2] R.L.Donnan, R.Kersey, Synchronous Data Link Control: A Perspective, IBM Systems Journal, 13
(2), 140-161, 1974.

[3] J.S.Ma, On the Impact of HDLC Zero Insertion and Deletion on Link Utilization and Reliability,
IEEE Transactions on Communications, 30 (2), 375-381 (1982).
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CHAPTER 10: PRIORITY SCHEDULING II

The previous chapter laid the groundwork for analyzing priority system performance. In this chapter we
will focus on the following topics:

• Static priority scheduling of a single serially reusable resource

• Performance comparisons of different priority scheduling policies

• Overload control of a single serially reusable resource

• Priority scheduling of voice and data over a single digital link

• Sliding window link level flow link level flow control

10.1 Examples

A wide variety of examples motivate interest in this subject.

10.1.1 Static Priority Scheduling of a Single Processor Figure 10.1 shows the tasks that must be
executed and the order for a single processor packet switching system.

Figure 10.1.Packet Switching System Work Flow

Jobs typically arrive in bursts or clumps: there is nothing, or there is a pile of jobs waiting to be
executed. Each task of each job must be done in the order shown, i.e., there is correlation between
tasks. Each job and perhaps each task generates at its arrival an interrupt of the processor. Both these
phenomena must be included when calculating performance. The conventional assumption in the
previous chapter of purely random arrivals (simple independent Poisson streams) may result in unduly
optimistic performance projections.

In general purpose computer systems, the servicing of a job requires the execution of several tasks with
different urgencies. At a minimum, the processing of a job will usually require two different types of
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work modules, the invocation of a request type module followed by the appropriate service type module.
In addition, at the completion of a job, various tables and pointers must be reset before processing the
next job. A second source of clustering in arrival patterns occurs in computer communication networks,
where jobs are serviced in batches and arrivals and departures tend to clump. Each task of each job is
assigned a priority. At any instant of time the processor executes the highest priority task. How should
priorities be assigned to achieve desired performance? What is the penalty paid in mean throughput rate
and mean queueing time if the arrival stream is more bursty than just Poissson? How is performance
impacted by interrupt handling and operating system calls?

10.1.2 Voice and Data Multiplexing over a Single Digital Link A digital transmission link is clocked at
a repetitive time interval called a frame. Each frame consists of S time intervals called slots, with F
frames per second. During each time slot one packet or chunk of information can be transmitted. Two
types of requests bid for use of the link. The first type is voice telephone calls. Each call requires one
time slot for the duration of a call; if a slot is available, it is held for the call duration, while if no slot
is available, the call is rejected and will try later. The second type is data generated from low speed
terminals and computers. Each data transmission attempt requires one or more time slots to be
transmitted; if no transmission capacity is available, the attempts are buffered or delayed until capacity
is available. In order to provide adequate voice service, only a fraction of the time slots will carry voice
on the average, e.g., sixty to eighty per cent, and hence the remaining transmission capacity is available
for data. How much voice and data can be handled?

10.1.3 Sliding Window Link Level Flow Control A transmitter wishes to send a message to a receiver
over a communications channel. The receiver only has a limited amount of buffering available for
messages. If all the receiver buffers are filled with messages, and the transmitter sends another message,
some message will be lost. A sliding window flow control policy paces the transmitter: the transmitter
can send up to a maximum of W (the window) messages before an acknowledgement is required; if no
acknowledgement is received, the transmitter stops sending packets, and hence delay increases and mean
throughput rate drops. What is the penalty of using a sliding window flow control policy in terms of
mean throughput rate and mean delay versus infinite buffering or versus a buffer capable of holding only
one message? How does the speed mismatch of the transmitter and receiver impact this system? The
previous chapter laid the groundwork for analyzing priority system performance. In this chapter we will
focus on the following topics:

• Static priority scheduling of a single serially reusable resource

• Performance comparisons of different priority scheduling policies

• Overload control of a single serially reusable resource

• Priority scheduling of voice and data over a single digital link

• Sliding window link level flow link level flow control

10.2 Examples

A wide variety of examples motivate interest in this subject.

10.2.1 Static Priority Scheduling of a Single Processor Figure 10.1 shows the tasks that must be
executed and the order for a single processor packet switching system. Jobs typically arrive in bursts or
clumps: there is nothing, or there is a pile of jobs waiting to be executed. Each task of each job must
be done in the order shown, i.e., there is correlation between tasks. Each job and perhaps each task
generates at its arrival an interrupt of the processor. Both these phenomena must be included when
calculating performance. The conventional assumption in the previous chapter of purely random arrivals
(simple independent Poisson streams) may result in unduly optimistic performance projections.

In general purpose computer systems, the servicing of a job requires the execution of several tasks with
different urgencies. At a minimum, the processing of a job will usually require two different types of
work modules, the invocation of a request type module followed by the appropriate service type module.
In addition, at the completion of a job, various tables and pointers must be reset before processing the
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Figure 10.1.Packet Switching System Work Flow

next job. A second source of clustering in arrival patterns occurs in computer communication networks,
where jobs are serviced in batches and arrivals and departures tend to clump. Each task of each job is
assigned a priority. At any instant of time the processor executes the highest priority task. How should
priorities be assigned to achieve desired performance? What is the penalty paid in mean throughput rate
and mean queueing time if the arrival stream is more bursty than just Poissson? How is performance
impacted by interrupt handling and operating system calls?

10.2.2 Voice and Data Multiplexing over a Single Digital Link A digital transmission link is clocked at
a repetitive time interval called a frame. Each frame consists of S time intervals called slots, with F
frames per second. During each time slot one packet or chunk of information can be transmitted. Two
types of requests bid for use of the link. The first type is voice telephone calls. Each call requires one
time slot for the duration of a call; if a slot is available, it is held for the call duration, while if no slot
is available, the call is rejected and will try later. The second type is data generated from low speed
terminals and computers. Each data transmission attempt requires one or more time slots to be
transmitted; if no transmission capacity is available, the attempts are buffered or delayed until capacity
is available. In order to provide adequate voice service, only a fraction of the time slots will carry voice
on the average, e.g., sixty to eighty per cent, and hence the remaining transmission capacity is available
for data. How much voice and data can be handled?

10.2.3 Sliding Window Link Level Flow Control A transmitter wishes to send a message to a receiver
over a communications channel. The receiver only has a limited amount of buffering available for
messages. If all the receiver buffers are filled with messages, and the transmitter sends another message,
some message will be lost. A sliding window flow control policy paces the transmitter: the transmitter
can send up to a maximum of W (the window) messages before an acknowledgement is required; if no
acknowledgement is received, the transmitter stops sending packets, and hence delay increases and mean
throughput rate drops. What is the penalty of using a sliding window flow control policy in terms of
mean throughput rate and mean delay versus infinite buffering or versus a buffer capable of holding only
one message? How does the speed mismatch of the transmitter and receiver impact this system?
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10.3 The CP/G/1 Queue with Static Priority Arbitration

In the previous chapter, the arrival streams of jobs were uncorrelated from one another, and there was no
way to explicitly model the bursty nature of the work load. Here we allow tasks to arrive according to
compound Poisson (CP) statistics. More than one job can arrive at a time, and each job consists of one
or more tasks. This gives us a rich enough class of models to capture the correlated bursty nature of the
work load.

10.3.1 Arrival Process A job consists of one or more tasks. Jobs arrive at N infinite capacity buffers
according to a vector valued compound Poisson (CP) process. The buffers are assumed to be capable of
holding all arrivals, i.e., there is never any buffer overflow. The arrival process sample paths or
realizations may be visualized as follows: the arrival epochs’ interarrival times form a sequence of
independent identically distributed exponential random variables. At each arrival epoch, a random
number of tasks of each of the N types of jobs arrive. We assume the interarrival times are independent
of the number of tasks arriving at each arrival epoch. Multiple jobs of the same or different type can
arrive simultaneously. The first case to be investigated in any design may well be the case of
independent streams to each buffer. These streams can be perturbed from simple to batch or compound
Poisson to study the effect on system performance of bunching of arrivals.

A second case is to assume that a job is actually a sequence of tasks that must be done in a specified
order. Here we model this by having a simultaneous arrival of each type of task to each buffer, and we
can measure performance as the distribution of time interval from when the task arrives with the highest
priority until the task with the lowest priority is completely processed, and take a look at distributions of
the intermediate task flow times. The main requirement is that the partial ordering on the sequence of
performing the jobs must be consistent with the priority indices. Note that in effect we allow the task to
migrate from buffer to buffer. We emphasize that the migration problem may well be the more realistic
case, especially if the priority ordering is not consistent with the partial ordering; we give up an element
of realism in order to analyze something tractable.

A third case is to assume that the highest priority work models overhead incurred by the operating
system in handling interrupts, while the lower level priorities are dedicated to application programs.

One final case is to assume that the lowest level task is so called maintenance or diagnostic checking
work, where the operating system is called to check both its own integrity as well as various hardware
items. Here we model this by assuming that the single processor can keep up with work in all but the
lowest levels, so that instead of the system ever becoming idle, it goes into a maintenance state, which
will be concluded when tasks at any higher priority level arrive to be processed.

10.3.2 Processing Time Distribution Arrivals to each particular buffer are assumed to require
independent identically distributed amounts of processing. Note that the type of processing is quite
arbitrary. In many dedicated applications, certain types of tasks require processing times that lie within
narrow bounds, while other types of tasks require processing times that may fluctuate wildly.

10.3.3 Processor Work Discipline We confine attention to nonpreemptive and preemptive resume static
priority work disciplines. For a nonpreemptive schedule, once a task begins execution, it is the highest
priority task in the system, and will run to completion. For a preemptive resume schedule, a job in
execution may be preempted by the arrival of a higher priority task; the state of the task that is
interrupted is saved, and once all higher priority tasks are executed, execution of the interrupted task is
resumed at the point of interruption.

Once a task arrives it is assigned to one of N queues. The processor visits the queues according to a
static priority scheduling rule:

[1] Each queue is assigned a unique index number. The smaller the value of the index, the higher
the priority of tasks in that queue over tasks with larger indices.

[2] Tasks within the same priority class are served in order of arrival.
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10.3.4 Nonpreemptive Static Priority Arbitration The figure below shows a queueing network block
diagram for a nonpreemptive static priority scheduler. At the lowest priority level a scheduler job is
always ready to be executed. Once it completes execution, the processor scans the queues in downward
priority order to find work; if work is present, it is executed, and the scheduler is invoked once again at
completion of execution of the highest priority job. Put differently, the scheduler is a loop, and hence
the processor is always busy, either executing jobs at priority levels K=1,...,N or executing scheduler
work.

Figure 10.2.Nonpreemptive Static Priority Scheduling

10.3.5 Controlled Nonpreemptive Scheduling One variant on nonpreemptive scheduling is so called
controlled nonpreemptive scheduling. One problem with nonpreemptive scheduling is that once a job
begins execution, it cannot be interrupted. One way to provide some responsiveness is as follows. Each
job consists of one or more tasks, with no task capable of executing more than a maximum number of
processor seconds. Once a task finishes execution, the scheduler is invoked, and the processor scans the
ready list for the highest priority task. In effect, no job can be locked out of execution for more than
the maximum length of time of any task, but a task might have to be split into multiple tasks
(artificially) in order to meet this design constraint. The scheduler will run at the lowest priority level in
the system if no work is present:

Figure 10.3.Controlled Nonpreemptive Scheduling

10.3.6 Multiple Level Downward Migration In many systems jobs that require a short amount of
execution are delayed by jobs that require a large amount of execution. One scheduler that gives short
jobs priority at the expense of long jobs is a quantum multiple level feedback scheduler. Each job
receives some service at the highest priority level, and either finishes or migrates to the next lowest
priority level. The maximum amount of service at each priority level is called the quantum for that
priority. In practice, most jobs should finish in one quantum, i.e., short jobs should run to completion,
while long jobs can migrate to lower priority levels, because long jobs take a long time.
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Figure 10.4.Multiple Level Downward Migration Scheduling

10.3.7 Interrupt Driven Preemptive Resume Scheduling In order to be responsive, the processor should
respond at the arrival of a job. Each job consists of two tasks, an interrupt task or trap handler,
followed by a useful work task. Once the processor is interrupted, the context of the current task is
saved, and will be restored for execution at the point of interruption once all higher priority work
(including subsequent interrupts) are executed.

Figure 10.5.Interrupt Driven Preemptive Resume Scheduling

10.3.8 General Static Priority Scheduling The most general case dealt with here consists of
decomposing each job into three tasks: an interrupt or trap handling task executed at highest priority
level, a useful work task executed at priority level K=1,2..., and a cleanup task executed at the highest
priority level. At any instant of time there are wait queues, holding tasks that have received no service,
and active queues each capable of buffering one task at most, with tasks that have begun execution but
not yet finished in the active set of queues.

Figure 10.6.General Static Priority
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Each job upon arrival consists of a setup task, arriving at the highest priority level, plus tasks arriving at
lower priority levels. Tasks at these lower levels consist of a work task followed by a cleanup task. All
tasks have two priority indices upon arrival, a nonpreemptive or dispatching index and a preemptive
index. Initially tasks are entered into the various system buffers according to their dispatching index, in
what will be called a wait list. Tasks that have received some processing are stored in what will be
called an active list, where there are at most N entries on the active list, each indexed from 1 to N. We
assume there is a single job type; if there are multiple job types, we assume an arbitration rule exists for
deciding which tasks from which job are entered into the system buffers when jobs of different types
arrive simultaneously. Any partial ordering within the tasks are assumed consistent with the dispatching
priority index ordering. The processor scans the active list, and services that task with the lowest index
first, according to a preemptive resume work discipline, until this list is empty. The processor next
scans the wait list and services that task with the lowest index and earliest arrival epoch; once this task
receives some service, it is removed from the wait list and entered on the active list, but it moves to that
entry on the active list specified by its preemptive index, assumed here to be less than or equal to the
dispatching or nonpreemptive index. Note that if the two indices are equal for all tasks, then we have a
pure preemptive resume work discipline, while if the second index is set to one, i.e., the preemptive
index is as high as possible, then that task, once it starts execution, cannot be interrupted. In effect, we
have changed the priority of a task, artificially raising it to insure that when it accesses some logical
resource, such as an operating system table, the integrity of this resource is assured; since we do this by
a physical resource, i.e., the processor, we see that we are actually treating a multiple resource
scheduling problem, where we use the priority indices for both controlling system responsiveness and
system integrity. This practice is quite common in modern operating system design in practice. A little
thought will show that if we wish to control a resource, we might simply construct a queue or buffer for
that resource, which would be managed in such a way to maximize performance. The method described
here is quite popular at present, but does not appear to be the only method for restricting access to a
resource.

This particular labeling scheme also clarifies the concepts of mixing preemptive resume and
nonpreemptive work disciplines, which on close inspection is much more complex than at first sight (try
a three buffer system, with the first buffer operating preemptive resume and the second two
nonpreemptive, and study the waiting and flow time of tasks arriving at the middle buffer).

With this pair of priority indices, we can now simply model the processor work involved at the
completion of a job by setting its preemptive priority index to unity, guaranteeing it will not be
interrupted. In many computer applications there is a third list in addition to the wait list and active list,
where tasks that are blocked from further processing (due to waiting for the completion of another task,
or attempting to access a critical table while another task is doing so, for example) are stored.

Finally, we cannot handle the arbitrary case where the preemptive index is greater than the
nonpreemptive index.

10.3.9 Summary of Results The waiting time of a task is the time interval between the arrival epoch of
this task and the instant at which processing starts on the task. The queueing or flow or response time
of a task is the time from when a task arrives until it is completely processed and leaves its buffer.
Granted this, we can quantify what levels of work load result in no more than five per cent of the
arrivals in priority class seven experiencing waiting times in excess of three seconds, or flow times in
excess of ten seconds.

Our method for evaluating the waiting and flow time distributions involves tracing a job through the
system. The waiting time is the sum of two time intervals, with the first due to work in the system at
arrival that must first be processed, and the second due to work of higher priority that arrives at the
same time. Both these time intervals can be stretched by the time required to execute subsequent
arrivals of higher priority work. The flow time of a task is the sum of two time intervals, with the first
due to waiting time, while the second is due to processing time (the time from when processing is
started until it is completed: in preemptive resume work disciplines the processing time interval could
involve interruptions due to servicing of a newly arrived higher priority task). The detailed expressions
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for these transforms as well as numerical studies are given in subsequent sections. The claim is often
made that one would like to schedule the processor with a preemptive resume work discipline in order
to gain maximum control over responsiveness, but the penalty paid in overhead on the processor for
each interrupt rules this out. With a nonpreemptive work discipline the processor overhead can be
simply lumped into the service required for each job, but one might have to wait for the processor to
finish a low priority slowly running task before more urgent high priority work can be handled. Because
of this, one finds that the most urgent work in applications is scheduled using preemptive resume, while
less urgent work uses a nonpreemptive work discipline.

10.4 Analysis of the CP/G/1 Queue with Static Priority Arbitration

We now summarize our analysis with formulae and examples.

10.4.1 Arrival Process Tasks arrive at N infinite capacity buffers according to a vector valued
compound Poisson arrival process, A_ _(t )=(A 1(t ),...,AN (t ). AK (t ),1≤K ≤N denotes the number of arrivals
to buffer K in the time interval [0,t). c denotes the mean rate of arrival epochs, i.e., the interarrival
times between arrival epochs are independent identically distributed exponential random variables with
mean 1⁄c . The random variable A_ _(t ) is defined as the sum of M independent random variables with a
given probability distribution H, where M is the number of arrival epochs in the interval [0,t), and H is
the probability distribution governing the number of arrivals at each arrival epoch. The probability
generating functional of A_ _(t ) is given by

ηA (t ,x 1,...,xN )=E


K =1
Π
N

xK
A

K
(t )





 xK  <1,K =1,...,N

ηA (t ,x 1, . . . , xN )=exp [−ct (1−η(x 1, . . . , xN ))] t ≥0;  xK  <1;K =1,...,N

where η(x 1,...,xN ) is the probability generating function of the arriving batch size distribution H,

η(x 1,...,xN )=
J_
Σ



K =1
Π
N

xK
j
K




H (j 1, . . . , jN )  xK  <1;K =1,...,N

The rate of arrival of tasks with priority index K, denoted λK , is then given by

E [AK (t )]=ct
∂xK

∂η_ ___  x
I
=1−=λK t I =1,...,N ;K =1,...,N

λK =c
∂xK

∂η_ ___  x
I
=1−=cE [jK ] I =1,...,N

10.4.2 An Example of Correlated Arrivals Packets of digital data arrive at a packet switching node in a
data communications network. Each packet requires two processing operations, validity checking
(protocol processing) and routing processing for subsequent transmission. For simplicity of analysis, the
arrival epochs are assumed to occur according to Poisson statistics with intensity c, and the probability
distribution for the number of packets in a group is given by H̃ (.). Let validity checking be the type
one task and communication routing processing the task with priority index two (with type one having
higher priority over type two). Then

η(x 1,x 2)=ηH̃ (x 1x 2)  x 1x 2 <1

where ηH̃ is the probability generating function of H̃ (.),

ηH̃ (y )=
k =1
Σ
∞

H̃ (k )y k  y  <1

and H̃ (0) is assumed here to be zero. Let EH̃ (k ) denote the expected number of packets in each arrival
group. Then the rate of arrival of tasks of priority one and priority two is given by

λ1=λ2=cEH̃ (k )
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10.4.3 An Example of Correlated Arrivals Digital data arrives from different types of peripheral
devices to a central processor in a dedicated application, e.g., in a petrochemical refinery, in a telephone
switching center, or in a data communications network switching node. For simplicity of analysis, the
arrival epochs are assumed to occur in accordance with a Poisson process of intensity c, and we further
assume there are only two different types of peripheral devices. Whenever a task arrives, it must be
checked by the processor to see if it should be acted upon; we assume the processor interrupts whatever
work it is doing, checks the arrival to see whether or not it must be acted upon, and then resumes
processing the interrupted task at the point it was at. Each type of arrival consists of a random number
of jobs, which together make up the task. We let the highest priority level, one, denote the interrupt
handling overhead associated with the tasks, i.e., the work involved in checking each arrival to see
where it must be assigned. We let levels two and three denote the actual work tasks, where the lower
the index the higher the priority. For example, in a switching node in a data communications network,
level two might correspond to checking parity on the received data packet, while level three might
represent the work associated with reformatting the received messages for further transmission. Let η(.)
denote the generating function associated with the joint multivariate distribution for the number of
arriving jobs at each arrival epoch, denoted H (j 1,j 2,j 3),

η(x 1,x 2,x 3)=x 1η̃(x 2x 3)

where η̃ is the joint moment generating function associated with arrivals at levels two and three. For
example, if the arrival streams are simple Poisson, then η̃ can be given explicitly by

η̃(x 2,x 3)= λ1

λ2_ __x 2+ λ1

λ3_ __x 3 λ1 ≡ λ2+λ3

In the general case, the mean arrival rates are given by

λ1=c λK =c
∂xK

∂η̃_ ___  x
1
=x

2
=x

3
=1 K =2,3

10.4.4 Two Examples of Bursty Arrivals Jobs arrive according to compound or batch Poisson arrival
statistics for execution by a single processor. The interarrival times between job batches are independent
identically distributed exponential random variables with mean time 1⁄c . At each arrival epoch a
geometrically distributed number of jobs arrive:

H (K ) = (1 − α)αK K =1,2,... η(X ) =
K =1
Σ
∞

X K H (K ) =
1 − αX

(1 − α)X_ _______

The total mean arrival rate of jobs is given by

λ = c
∂X

∂η(X )_ _____  X =1 = c η′ (1) = c
K =1
Σ
∞

K H (K ) =
1 − α

c_ _____

By way of contrast, if a constant number of jobs, say D , arrived at each arrival epoch, then

H (K ) = 1 K =D H (K )=0 K ≠D η(X ) = X D

The total mean arrival rate of jobs is given by

λ = c
∂X

∂η(X )_ _____  X =1 = cD

10.4.5 An Illustrative Example of Correlated Bursty Arrivals The job interarrival times are independent
identically distributed exponential random variables with mean time 1⁄c . At each arrival epoch a
geometrically distributed number of jobs arrive. Each job consists of two tasks, an interrupt handling
task and a work task. The interrupt handling task is executed at priority level 1, while the work task is
executed at priority level K=2,...,N. The distribution of jobs at each arrival epoch is given by

H (K ) = (1 − α)αK K =1,...; η(X ) =
K =1
Σ
∞

X K H (K ) =
1 − αX

(1 − α)X_ _______

The generating function for number of tasks at each arrival epoch is given by
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E


K =1
Π
N

X
J

K





=
1 − αY

(1 − α)Y_ _______ Y =X 1
K =2
Σ
N

XK FK

where FK are the fraction of arrivals of type K.

10.4.6 Processing Time Distribution PKr denotes the time required to process the rth arrival to buffer
K, independent of the arrival process. For each K, the sequence { PKr :r =1,2,..} is an independent
identically distributed set of random variables. The joint distribution function and its Laplace Stieltjes
transform for the priority class K arrivals will be denoted by GP

K
(.) and ĜP

K
(.), respectively, where

GP
K
(t )=Pr [PKr ≤t ], GP

K
(0)=0 for r =1,2..;K =1,...,N ;t ≥0

ĜP
K
(y )=

0
∫
∞

e−yt dGP
K
(t ) Re (y )≥0

10.4.7 Processor Work Discipline There is a single processor which operates in accordance with the
following static priority scheduling rule:

[1] Each buffer is assigned a unique index number. The smaller the index, the higher the priority of
tasks in that buffer. Tasks in this set of infinite capacity buffers will be said to be on the wait
list. In addition to this set of buffers, there is a second set of finite capacity buffers, numbered
from 1 to N, each of which can hold at most one task. The smaller the value of the index, the
higher the priority of the task in this finite buffer over all other tasks in the other finite capacity
buffers with larger indices. Tasks in this set of finite capacity buffers are said to be on the active
list.

[2] Tasks within the same buffer (same priority class) on the wait list are served in order of arrival.

[3] The processor scheduling decision epochs are arrival epochs and completion epochs of tasks. At
each decision time epoch, the processor first scans the active list, and services the highest priority
task in that list. If the active list is empty, the processor scans the wait list, and chooses the task
with the earliest arrival time that has the highest priority. Each task in the wait list thus has
received no processing at all. Associated with each task is a multi-index (K,I), where K refers to
the wait list priority, and I refers to the order of the task within a job. When the processor
begins to service a task, the task is moved from the wait list to the active list, and inserted into
buffer 1≤νKI ≤K on the active list. By construction this position must be empty of work. If we
allowed the number of tasks composing each job to become infinite, while keeping the mean
amount of service per task constant, then for a pure nonpreemptive work discipline, in the limit
as the number of tasks became infinite, in this sense we would approach a pure preemptive
resume work discipline. Here such a limiting process does not result in a preemptive resume
work discipline (why?).

[4] We now differentiate between nonpreemptive and preemptive resume scheduling:

• For nonpreemptive arbitration, when a task of type I arrives to find the processor occupied
with a type J task (where we assume 1≤I <J ≤N ), the processor does not interrupt the
processing of the lower priority task. The higher priority task enters buffer I and waits for
the lower priority task to complete.

• For preemptive resume arbitration, when a task arrives to find the processor occupied with a
type J task, it will interrupt the processing of that task if and only if J >I .

For special cases, e.g., νKI =1, the preemptive index is set as high as possible, and such a task cannot be
interrupted by any other task. This allows us to model at one stroke both processor scheduling overhead
associated with interrupt handling as well as task completion scheduling overhead.

10.4.8 Load Process Let LK (t ) denote the total processing time required for the arrivals to buffers 1
through K inclusive in the time interval [0,t). For each K, { LK (.)} is a stationary independent increment
process. The moment generating functional for { LK (.)} is denoted by ĜL

K
(t ,y ), where
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ĜL
K
(t ,y )=E [e

−yL
K

(t )
]=exp [−t ΦK (y )] Re (y )≥0; t ≥0; 1≤K ≤N

ΦK (y )=c [1−η(ĜP
1
,ĜP

2
,...,ĜP

K
,1,1,...,1)] Re (y )≥0; 1≤K ≤N

It is convenient to adopt the convention

Φ0(y )≡0

By differentiating these expressions, we see

E [LK (t )]=UK t t ≥0;1≤K ≤N

UK =
dy

d ΦK (y )_ _______  y =0=
I =1
Σ
K

λI E [PI ]<∞ 1≤K ≤N

UK is the fraction of time the processor is busy in order to keep up with the work arriving in buffers 1
through K inclusive, with the letter U a mnemonic for utilization. If UN <1, the processor can keep up
with its workload, i.e., the processor will go idle, and no job will be locked out forever from execution.
If UN ≥1 the system is always busy.

For each K (1≤K ≤N ), realizations of the load process are nondecreasing, constant except for positive
jumps occurring at random time epochs, where the jumps epochs obey Poisson point process statistics
with mean positive rate cK

cK =ΦK (∞)<∞

Let { SKr ; r =1,2,..} be the sequence of independent, identically distributed, positive random variables
representing the jump amplitudes in { LK (.)} where r indexes the arrival or jump epoch. The joint
distribution of the { SKr } is denoted by GS

K
(.) which has associated Laplace Stieltjes transform ĜS

K
(y ),

Pr [SKr ≤t ]=GS
K
(t ), GS

K
(0)=0 t ≥0

ĜS
K
(y )=

0
∫
∞

e−yt dGS
K
(t )=1−

cK

ΦK (y )_ _____ Re (y )≥0

10.4.9 Summary of Results The waiting time of a task is the time interval between the instant of arrival
of this task and the instant at which processing starts on the task. The flow or response time of a task is
the sum of the waiting time and the processing time of a task. For each k(1≤K ≤N } , let the sequence of
waiting times and flow times encountered by tasks of priority K be denoted
{ WKr ; r =1,2,...} ,{ FKr ≡WKr +PKr ; r =1,2,...} , respectively, where { PKr ;r =1,2,...} denotes the processing
times required by the sequence of arrivals of priority K. The { PKr } are exogenous variables of the
system, while the { WKr } are endogenous variables which determine system performance. The moment
generating functions associated with the waiting and queueing time distributions are given as follows:

ĜW
K
(y )=

0−
∫
∞

e−yt dGW
K
(t ) ĜF

K
(y )=

0−
∫
∞

e−yt dGF
K
(t ) Re (y )≥0

For nonpreemptive priority arbitration, UN <1, these transforms are given by

ĜW
K
(y )=ĜV

K
(ζK (y ))ĜD

K
(ζK (y )) Re (y )≥0;1≤K ≤N UN <1

ĜF
K
(y )=ĜW

K
(y )ĜP

K
(y ) Re (y )≥0;1≤K ≤N UN <1

ĜV
K
(y )=

y +cK −cK ĜS
K
(y )

(1−UN )y +
I =K +1
Σ
N

λI [1−ĜP
I
(y )]

_ _______________________ UN <1

ĜD
K
(y )=

λK [1−ĜP
K
(y )]

ΦK (y )−ΦK −1(y )_ _____________ UN <1
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ζK (y )=y +cK −1−cK −1ĜB
K −1

(y ) UN <1

BK denotes the busy period associated with doing work at level 1,...,K. ĜB
K
(y ) is the moment

generating function associated with BK , and is the unique root inside the unit circle of

ĜB
K
(y )=ĜS

K
(y +cK −cK ĜB

K
(y )), ĜB

0
=1 UN <1

If UL −1<1, UL ≥1 (L =1,...,N ),then for K<L

ĜW
K
(y )=ĜV

K
(ζK (y ))ĜD

K
(ζK (y )) UN ≥1

ĜF
K
(y )=ĜW

K
(y )ĜP

K
(y ) UN ≥1

ĜV
K
(y )=

y +cK −cK ĜS
K
(y )

I =K +1
Σ
L −1

λI [1−ĜP
I
(y )]+

UL −UL −1

1−UL −1_ ________λL [1−ĜP
L
(y )]

_ ____________________________________ UN ≥1

where ĜD
K
(y ),ζK (y ),ĜB

K
(y ) are as given for UN <1,while if K ≥L ,

GW
K
(t )=0 GF

K
(t )=0 0≤t <∞

10.4.10 Example We return to the earlier example of communications processing to illustrate these
results. We first obtain the moment generating functional of the load process:

E [exp (−yLK (t )]=exp [−t ΦK (y )] K =1,2 where

Φ1(y )=c [1−ηH̃ (ĜP
1
(y ))]

Φ2(y )=c [1−ηH̃ (ĜP
2
(y ))]

where we assume Re (y )≥0. Since H̃ (0)=0, and the mean service times were both assumed finite, we see
that

c 1=Φ1(∞)=c 2=Φ2(∞)=c

ĜS
1
(y )=ηH̃ [ĜP

1
(y )] ĜS

2
(y )=ηH̃ [ĜP

1
(y )ĜP

2
(y )]

λ1=λ2=cEH̃ (k )

U 1=λ1E [P 1] U 2=λ1E [P 1]+λ2E [P 2]

If U 2<1, then we can write

ĜV
1
(y )=

y +c −c ηH̃ [ĜP
1
(y )]

(1−U 2)y +λ2(1−ĜP
2
(y ))

_ ___________________

ĜV
2
(y ) =

y +c −c ηH̃ [ĜP
1
(y )ĜP

2
(y )]

(1−U 2)y_ ____________________

ĜD
1
(y ) =

λ1[1−ĜP
1
(y )]

c [1−ηH̃ (ĜP
1
(y ))]

_ ______________

ĜD
2
(y ) =

λ2[1−ĜP
2
(y )]

c [ηH̃ (ĜP
1
(y ))−ηH̃ (ĜP

1
(y )ĜP

2
(y ))]

_ ___________________________

ζ1(y ) = y ζ2(y ) = y + c − cĜB
1
(y )

where ĜB
1
(y ) is the unique root inside the unit circle of

ĜB
1
(y ) = ĜS

1
[y + c − cĜB

1
(y )]
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After substituting all this into the appropriate formulae, we finally obtain the desired results:

ĜW
K
(y ) = ĜV

K
(y ) ĜD

K
(y ) K =1,2

ĜF
K
(y ) = ĜW

K
(y )ĜP

K
(y ) K =1,2

EXERCISE. Compute an explicit analytic formula for the mean waiting time and mean flow or
queueing time for each type of task.

10.4.11 Preemptive Resume Arbitration Now we turn to preemptive resume arbitration, with UN <1.
The formulae are analogous to the nonpreemptive case. The key differences are that the backlog of
work is only due to work at the same or higher priority level, and the processing of a job must be
stretched to account for interruptions by higher priority work:

ĜW
K
(y )=ĜV

K
(Ĝ ζ

K
(y ))ĜD

K
(ζK (y )) Re (y )≥0;1≤K ≤N UN <1

ĜF
K
(y )=ĜW

K
(y )ĜP

K
(ζK (y )) Re (y )≥0; K =1,...,N UN <1

ĜV
K
(y )=

y −cK [1−ĜS
K
(y )]

(1−UK )y_ _____________ UN <1

ĜD
K
(y )=

λK [1−ĜP
K
(y )]

ΦK (y )−ΦK −1(y )_ _____________

ζ̂K (y )=y +cK −1−cK −1ĜB
K −1

(y )

ĜB
K
(y ) is the unique root inside the unit circle of

ĜB
K
(y )=ĜS

K
(y +cK −cK ĜB

K
(y )), ĜB

0
=1

EXERCISE. Substitute into the expressions given earlier for both nonpreemptive and preemptive
resume scheduling. Assume N =3, with interrupt handling at level one, and work at levels two and
three. Every job includes a cleanup phase. Assume λ is the total job arrival rate. The fraction of type
K arrival is fixed at F 2=0.25,F 3=0.75. The arrival statistics are varied from independent simple Poisson
streams, to correlated simple Poisson streams where at each arrival either a type one and type two or a
type one and type three arrive, independent bursty Poisson streams with either geometric or constant
batch size distributions, and correlated bursty Poisson streams. The service time distributions are either
constant or exponential, the mean interrupt handling service time equals one second, the mean service
time at levels K=2,3 equals three and ten, respectively, and the cleanup service time to equal one tenth
second. Plot the mean queueing time versus the total arrival rate of jobs. Write an expression for the
queueing time Laplace Stieltjes transform, plot its approximate numerical inverse for U 3=0.5.

10.4.12 Numerical Studies In order to numerically study the performance of a static priority arbitration
system we must specify

• The fraction of arrivals of each job type

• The bursty character of the job arrival stream

• The tasks that make up each job:

• For a nonpreemptive scheduler, each job includes a series of tasks: some tasks involving useful
work time followed by some cleanup or context switching time.

• For a preemptive resume scheduler, each job includes a series of tasks: some interrupt handling
work followed by some clumps of tasks, with each task clump involving some useful work time
followed by some cleanup or context switching time.

• The execution time statistics of each task: constant, hypoexponential, hyperexponential, arbitrary.

• The scheduling policy:
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• For a nonpreemptive scheduler, a scheduler task is always ready to execute at the lowest priority
level, i.e., the scheduler is a loop. At the completion of each task, the list of ready tasks is
scanned, and the processor executes the highest priority task to completion without interruption.

• For a preemptive resume scheduler, the highest priority task is executed at any instant of time. If
a task arrives of higher priority than the task in execution, the task in execution has its context
saved, and the processor begins execution of the higher priority task. Once all higher priority
tasks have been executed, the interrupted task resumes execution at the point of interruption.

We might not have all this information available. On the other hand, we can postulate all this
information, and see how sensitive performance might be to parameters that we do not in fact know.

10.4.13 Example A processor executes only two types of jobs. The fraction of time the processor is
doing useful work is assumed to be fifty per cent; so U 2=0.5. The mean work service time for type one
tasks is fixed at one second, E (TS 1)=1, while the mean work service time for type two tasks is varied
from one to three to five seconds, E (TS 2)=1,3,5. For one extreme, we assume arrivals are simple
Poisson streams, no batching of arrivals, with each task requiring a constant amount of execution time,
and no time required to execute the scheduler in the background or for cleanup. This extreme would be
the best possible performance: if this is unacceptable, then the design has to be redone. The other
extreme for worst possible performance would be geometric batching of arrivals (α=0.25), with each
task requiring an exponentially distributed amount of execution time, and a background scheduler that
requires one half second of execution time, plus a cleanup task associated with each work task of one
half second of execution time. These two cases are plotted in the following figures:

Figure 10.7.Best Case Nonpreemptive Scheduler: PROB[TQ >X ] vs X
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Figure 10.8.Worst Case Nonpreemptive Scheduler: PROB[TQ >X ] vs X

How can this data be interpreted?

• The fraction of time a one second priority one job is executed within ninety per cent of the time
varies from four to eight seconds for the best case, while it varies from six to eleven seconds for the
worst case. In other words, ninety per cent of the time a high priority job spends one second in
execution and from three to ten seconds waiting to be executed.

• The fraction of time a one second priority two job is executed within ninety per cent of the time
varies from five to twenty eight seconds for the best case, while it varies from eighteen to thirty
seven seconds for the worst case. In other words, ninety per cent of the time a low priority job
spends from one to five seconds in execution, and from zero to thirty six seconds waiting to be
executed.

In order to go beyond this analysis, more precise numbers are needed for each task execution step. On
the other hand, this is exactly what computers can readily do, if appropriately instrumented. Put
differently, this set of data should be gathered anyway simply to confirm the implementation of any
priority scheduler.

10.5 Packet Switch Delay Analysis

A single processor is multiplexed amongst several different types of tasks that arise in switching a
packet of information through a communications system. We first discuss the problem in more detail,
and then the method of analysis.
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10.5.1 Problem Statement The processor uses a static priority nonpreemptive work discipline as
follows:

• at any given instant of time, the highest priority task in the system is being executed

• a message upon arrival generates an interrupt, and then is executed by input handling routines,
routing and switching routines, and output routines

• interrupt handling is done at the highest priority level, followed by output handling, routing and
switching, input handling, and background maintenance tasks

• within each priority class, tasks are executed in order of arrival

• at the completion of the input handling, routing and switching, and output handling there is some
process overhead involved in switching from one task to the next

In order to complete the description of the model, we must describe the arrival statistics and the
processing required by each task.

The interarrival times between message groups are assumed to be independent identically distributed
exponential random variables. The number of messages arriving in each group are assumed to form a
sequence of independent identically distributed random variables; here we cover two cases, although
others are possible, a geometric batch size distribution and a constant batch size distribution, with the
mean arrival batch size fixed. The case of constant batch size could be the result of one flow control
strategy, while the geometric arrival batch size could be the result of a different flow control policy.

In order to complete the model description, we assume that the processing times at each priority level
are constant, within the following ranges:

• interrupt handling--0.5-1.0 msec per interrupt

• maintenance--2.5 msec per task

• routing and switching--5.0-7.5 msec

• input and output handling--1.0-2.0 msec (assumed symmetrical)

• context switching--0.5-1.0 msec per context switch

• system call for sanity checking--0.5-1.0 msec per call

The last item warrants additional comment. One of the dangers of priority scheduling is the so called
insane process, a process that grabs control of the processor and never relinquishes it. In order to
combat this, we choose to make a given number of system calls at evenly spaced points throughout the
execution of a message to return control to the process scheduler; this incurs additional overhead, which
we can quantify, showing its impact on throughput and delay characteristics.

In order to assess performance, it seems worthwhile to demand as a benchmark that the total processor
message delay cannot exceed a mean value of one hundred milliseconds during a normal busy hour and
two hundred milliseconds during a peak busy hour, as a first cut at capacity estimation. Some such goal
or set of goals is needed to interpret the results. This can then be modified as additional information
comes to light.

10.5.2 Mathematical Analysis Our goal is to calculate the long term time averaged flow time
distribution of a packet, where the flow time is the time interval from packet arrival to departure. The
sequence of processing times is

• Ptrap ,in --trap handling at the input

• Pinput --input handling

• Pinput −route --context switching from input handling to routing
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• Proute --routing

• Proute −output --context switching from routing to output handling

• Poutput --output handling

• Ptrap ,out --trap handling at the output

We denote by ĜP (y )=E (exp (−yP )) the moment generating function of the appropriate processing
distribution. The moment generating function for the number of packets arriving in a batch is given by
η(x ), while the interarrival times between batches are independent identically distributed exponential
random variables with mean 1⁄c . Thus, the amount of work brought into the system by a packet,
denoted by the random variable S , has moment generating function ĜS (y ) where

ĜS (y ) = η 
Ĝtrap ,in Ĝinput Ĝinput −route Ĝroute Ĝroute −output Ĝoutput Ĝtrap ,out




The backlog of work that must be completed by the processor before it can start an arriving packet is
denoted by the random variable V , which has the associated moment generating function ĜV (y ) given
by

ĜV (y )=
y −c (1−ĜS (y ))

(1−cE (S ))y_ ____________

In addition, during the execution of this backlog of work, additional work arrives with associated trap
handling, and thus we must stretch the packet flow time to account for this. We denote by B the
random variable for the busy period of the processor solely concerned with input trap handling work.
Its moment generating function is denoted by ĜB (y ) and is given implicitly by

ĜB (y )=η 
Ĝtrap ,in (y +c −cĜB (y ))




In addition, a packet is delayed by the execution of packets that arrive with it in its arrival batch but are
executed ahead of it. We assume that the packets are chosen randomly for execution within an arrival
batch, and the batch delay random varible, Tbatch , has associated moment generating function

ĜT
batch

(y ) =
η′ (1)(1−Ĝwork (y )Ĝoverhead (y ))

1−η(Ĝwork (y )Ĝoverhead (y ))_ ________________________

Ĝwork (y )=Ĝinput (y )Ĝroute (y )Ĝoutput (y )

Ĝoverhead (y )=Ĝinput −route (y )Ĝroute −out (y )Ĝtrap ,out (y )

with the terms work and overhead having the obvious meanings.

Combining all this, the moment generating of the packet queueing or flow time distribution is given by

E (exp (−zF )) = ĜF (y ) = ĜV (y )ĜT
batch

(y )Ĝoverhead (y )Ĝwork (y )Ĝtrap ,out (y )

y =z −c +cĜB (z )

We can numerically approximate the inverse of this generating function via several techniques, or we
can simply compute a mean value.

10.6 The M/G/1 Queue with Processor Sharing

Instead of first come, first service for arbitrating contention, we adopt a different policy: if N tasks are
present, each will receive (1/N) of the effective processing time of the processor, i.e., the processor will
be quickly multiplexed amongst the different tasks. Why do this? One of the problems with service in
order of arrival is that if there is a wide disparity in the service time required, i.e., a large squared
coefficient of variation, then the waiting time for all tasks is severely inflated, even those tasks that
require little processing relative to many other tasks. The problem is that tasks with large processing
time requirements tend to lock out or hog the processor relative to those with small processing time
requirements. If we could multiplex the processor quickly among all the tasks present, the short tasks
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could finish quickly (figuratively speaking) while the long tasks would finish after a long time, as
expected.

The key result here is that the mean time in system, the mean queueing time, for a task that requires X
seconds of processing, is

E (TQ  task requires X seconds o f processing ) =
1 − ρ

X_ _____

Note that this is independent of the shape of the service time distribution!

The figure below is a plot of the mean queueing time versus the service required for a job for processor
sharing and for service in order of arrival, first in first out.

Figure 10.9.Mean Queueing Time vs Service Time Required

If the service required is less than E (T̃S ), then processor sharing enjoys lower mean queueing time than
first come first serve. If the service required is greater than E (T̃S ), then first come first serve enjoys
lower mean queueing time. In words, if the service required is less than the randomized mean service
time, these jobs can be executed more quickly by processor sharing than service in order of arrival. On
the other hand, if the service required is greater than the randomized mean service time, service in order
of arrival executes these jobs more quickly than processor sharing. For example, if all jobs take a
constant amount of service, than service in order of arrival enjoys the lower mean queueing time.

10.6.1 Additional Reading

[1] L.Kleinrock, Queueing Systems, Volume II: Computer Applications, Chapter 4.4, Wiley, NY,
1976.

[2] S.F.Yashkov, A Derivation of Response Time Distribution for a M/G/1 Processor Sharing Queue,
Problems of Control and Information Theory, 12 (2), 133-148 (1983).

10.7 Comparisons of Scheduling Policies with Fixed Workloads

Our goal in this section is to quantitatively compare different policies for arbitrating contention for a
single serially reusable resource.

10.7.1 Performance Measures What will be the measures of performance used?

• The mean queueing time of a task, averaged over a long time interval

• The mean waiting time of a task, averaged over a long time interval
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• The variance of the queueing time of a task, averaged over a long time interval

• Percentiles of the queueing time and waiting time distributions, averaged over a long time interval

• The fraction of time that tasks with a given urgency meet their associated deadline

• The fraction of tasks that exceed their associated deadline

• The behavior of the system under transient overloads of many sorts, such as encountering a step
function increase in the number of arrivals per unit time over a given time interval that then subsides

10.7.2 M/G/1 with FIFO, LIFO, and RANDOM Service Policies The first comparison is

• service in order of arrival, first come, first served

• last come, first served, with or without preemption

• random service: at the completion of each task, any task of those remaining is equally likely to be
serviced

For this set of policies, we see that the mean number in system is identical, and the mean throughput
rate is identical, so from Little’s Law the mean time in system is identical. Hence, we know the mean
time in system for each of these policies:

E (TQ ) =
2(1 − ρ)

λE (TS
2)_ _______ + E (TS )

E (TW ) =
2(1 − ρ)

λE (TS
2)_ _______

What about second moments? It can be shown that

ELCFS ,nonpreempt (TW
2) =

1 − ρ
1_ _____ EFCFS (TW

2)

while under the assumption of exponential service times

ERANDOM (TW
2) =

1 − 1⁄2ρ
1_ ______EFCFS (TW

2)

Thus, as we increase the arrival rate or offered load, the second moment is smallest for first come, first
served, next smallest for random, and largest for last come, first served.

10.7.3 M/G/1 with Priority Arbitration Policies Now we build on the above studies. We wish to
compare some of the facets required in assessing what policy is adequate for attaining desired
performance of a single server queueing system. We focus on

• FCFS--first come, first serve, or service in order of arrival

• PS--processor sharing, where if N tasks are present, each receives 1/Nth of the total processor time

• Nonpreemptive static priority--two classes, shorter processing time at higher priority level, breakpoint
chosen to minimize total mean queueing time

• Preemptive resume static priority--two classes, shorter processing time at higher priority level,
breakpoint chosen to minimize total mean queueing time

• SPT--shortest processing time nonpreemptive static priority

• SRPT--shortest remaining processing time preemptive resume static priority

What about a general comparison of several of these policies for fixed mean service time but different
service time distributions and different policies? Here we choose to compare service in order of arrival,
processor sharing, nonpreemptive shortest processing time, and preemptive resume shortest remaining
processing time against a two class nonpreemptive (NP) or preemptive resume (PR) scheduling policy
where the jobs are sorted such that short jobs run at high priority and long jobs at low priority, with the
point that determines the priority chosen to minimize the total mean queueing time of jobs in the system.
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Those results are summarized below:

Table 10.1.Total Mean Queueing Time vs Utilization_ ________________________________________________ _______________________________________________
Exponential Service Time, E (TS )=1_ ________________________________________________ _______________________________________________

Utilization FCFS PS NP PR SPT SRPT_ ________________________________________________ _______________________________________________
0.3 1.4 1.4 1.4 1.3 1.4 1.2
0.5 2.0 2.0 1.8 1.5 1.7 1.4
0.7 3.3 3.3 2.5 2.1 2.3 1.9
0.9 10.0 10.0 5.3 4.6 4.2 3.6







Table 10.2.Total Mean Queueing Time vs Utilization_ ________________________________________________ _______________________________________________
Uniform (0,2) Service Time, E (TS )=1_ ________________________________________________ _______________________________________________

Utilization FCFS PS NP PR SPT SRPT_ ________________________________________________ _______________________________________________
0.3 1.3 1.4 1.3 1.2 1.2 1.2
0.5 1.7 2.0 1.6 1.5 1.5 1.4
0.7 2.6 3.3 2.2 2.0 2.1 2.0
0.9 7.0 10.0 5.0 4.9 4.6 4.4







As can be seen, the gain in going to two classes apparently buys most of the benefit, and the refinement
of the optimal policies of shortest processing time and shortest remaining processing time buy relatively
little compared to the rough cut. In practice, since the distributions are not known precisely in many
cases, this may be the best design compromise available, in order to allow short tasks to finish quickly
at the expense of delaying long tasks. Note that a simple two class priority arbitration policy does much
better than the processor sharing discipline for the numbers chosen here.

10.7.4 Impact due to Fluctuation in Service Time Distribution The table below summarizes the impact
of varying the shape of the distribution on system performance:

Table 10.3.Mean Queueing Time
Erlang K, (K Phases), Utilization=0.9E (TS )=1.0_ _________________________________________ ________________________________________
Number of Phases FCFS PS SPT_ _________________________________________ ________________________________________

∞ 5.5 10.0 5.5
10 5.6 10.0 4.2
5 6.4 10.0 4.1
3 7.0 10.0 4.1
2 7.8 10.0 4.2
1 10.0 10.0 4.2

This shows quantitatively that the gain can be dramatic, especially if there is a mixture of short and long
tasks. Note that the more irregular the distribution, the fewer the number of phases in the Erlang
distribution, the better the processing sharing discipline performs relative to the rest. On the other hand,
the more knowledge we have, the more regular the processing time statistics of tasks, the worse the
processing sharing discipline performs relative to service in order of arrival or other priority arbitrary
schemes that take advantage of this knowledge. This is because processor sharing discriminates against
long jobs in favoring short jobs, but if there is no significant spread or mean squared coefficient of
variation greater than unity then these other disciplines can outperform it.

Finally, what about higher order moments? The variance of the queueing time is tabulated below for
two different distributions and two different policies:
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Table 10.4.Variance of Total Mean Queueing Time_ ______________________________________________ _____________________________________________
Exponential Service Erlang-2 Service

Utilization FCFS SPT FCFS SPT_ ______________________________________________ _____________________________________________
0.3 2.0 1.9 1.0 1.0
0.5 4.0 3.6 2.1 2.2
0.7 11.1 12.3 5.9 8.0
0.9 100.0 222.2 55.1 186.2
















Here we see that service in order of arrival does much better than the priority arbitration rule. Put
differently, the criterion we are addressing might involve both a mean and a variance, and the choice
may not be so clear cut in practice!

10.7.5 Other Scheduling Policies Many other types of scheduling policies are possible. One such class
of policies are called policy driven schedulers because the user or system manager defines a desired
policy for executing work and then the system dispatches work in an attempt to meet this goal. The
figure below shows one example of a desired set of policies for two tasks, denoted 1 and 2, respectively.
The policy is defined by giving a trajectory for each type of task depicting cost versus time in system.
In the example shown in the figure, type 1 tasks incur a linear cost versus time in system initially, then
the cost is constant versus time in system, then increases linearly versus time, and at some final time
becomes infinite; a similar scenario holds for type 2 tasks. The user must define the breakpoints and the
costs at each end of the different time in system intervals. Some reflection shows that this is exactly
what deadline scheduling does: the execution time windows are the different breakpoints in executing a
job.

Figure 10.10.Illustrative Cost Functions versus Time
For a Two Class Policy Driven Scheduling Policy

10.8 Optimum Scheduling Policies

Very little is known about scheduling policies to minimize or maximize various performance measures
for an M/G/1 queueing system. Here is a sampling of what is known:

• service in order of arrival minimizes the long term time averaged variance of queueing time over all
other policies. In addition this policy minimizes the maximum lateness and maximum tardiness
assuming all tasks have the identical execution time window

• shortest processing time minimizes the long term time averaged mean queueing time over all other
static priority nonpreemptive policies

• shortest remaining processing time minimizes the long term time averaged mean queueing time over
all other scheduling policies; this can be seen intuitively using Little’s Law, because in order to
minimize the total mean queueing time we must have on the average the smallest number of jobs in
the system at any one time, independent of arrival and service time statistics.
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• deadline scheduling minimizes the maximum tardiness and lateness over all job classes and arrival
statistics

• if we use nonpreemptive scheduling, where the job streams have independent Poisson arrival
statistics but different independent identically distributed arbitrary service times, then the vector
space of admissible mean queueing and waiting times, averaged over a long time interval, is a
convex set. If we wish to minimize a linear combination of the mean waiting or queueing times we
should use a policy at the extreme points of this space; it can be shown under a variety of
assumptions that these extreme points are achieved by static priority nonpreemptive scheduling. The
figure below shows the admissible set of mean waiting time vectors for a system with two different
types of tasks with arbitrary processing time statistics, and independent Poisson arrival streams for
each job type.

Figure 10.11.Admissible Region of Mean Waiting Time Vectors
for Nonpreemptive Scheduling of One Processor and Two Task Types

What are some open questions in this realm?

• Find the set of admissible mean queueing and waiting times for preemptive resume scheduling

• Find the distribution of queueing time for each class for deadline scheduling

10.8.1 Additional Reading

[1] R.W.Conway, W.L.Maxwell, L.W.Miller, Theory of Scheduling, Chapters 8-4--8-7, 9, 11,
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[2] H.W.Lynch, J.B.Page, The OS/VS2 Release 2 System Resources Manager, IBM Systems Journal,
13 (4), 274-291 (1974).

[3] W.W.Chiu, W. Chow, A Performance Model of MVS, IBM Systems Journal, 13 (4), 444-462
(1974).

[4] U.Herzog, Optimal Scheduling Strategies for Real Time Computers, IBM Journal of Research
and Development, 19 (5), 494-504 (1975).

[5] H.M.Goldberg, Analysis of the Earliest Due Date Scheduling Rule in Queueing Systems,
Mathematics of Operations Research, 2 (2), 145-154 (1977).

[6] T.Beretvas, Performance Tuning in OS/VS2 MVS, IBM Systems Journal, 17 (3), 290-313 (1978).
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10.9 Controlling Overload

The main reason for focusing on a single resource is that it is often a bottleneck in limiting system
traffic handling capabilities. What happens if the resource becomes overloaded? Here probably the
most important thing is to think how to handle the problem and what consequences of overload might
be, and then do something rather than nothing to safeguard against this possibility.

The maximum mean throughput rate, denoted λcapacity , is defined to be the maximum job completion
rate for which all delay requirements can be met. What is an overload? An overload can be of two
types

• An external overload is due to a surge of work beyond the design limits of the system; this we have
no control over and will occur when the arrival rate exceeds λcapacity

• An internal overload is due to allowing so much work into a system that delay criteria are violated;
this we can control

There are two basic mechanisms for controlling overload:

• Rejecting work when the load becomes too great

• Smoothing the arriving work stream to make it more regular and less bursty

In normal operation, virtually no work would be rejected and the arrivals would enter and leave the
system with no delay other than the execution delay. In overload operation, the converse would be true.

We choose to tackle this in two stages:

• First we size up the mean throughput rate, because if a fraction L of arrivals are rejected or lost out
of a total mean arrival rate of λ jobs per unit time, then the mean throughput rate is

mean throughput rate = λ(1−L )

Under normal operation L <<1 while under overload we expect the mean throughput rate to saturate
at some limit:

λ→∞
lim mean throughput rate = constant

• Second, with the mean throughput rate properly sized, we must investigate delay characteristics.

We will examine two cases of overload control, one due to static priority scheduling, the other due to
designing a control valve.

10.9.1 Static Priority Scheduling Overload Control A single resource has N types of jobs, each with its
own static priority. At any given instant of time, the job with the highest priority is being executed. If
an overload occurs, the single resource will spend more time executing high priority jobs and less time
executing low priority jobs, and the low priority jobs may begin to miss delay goals. On the other hand,
these jobs were chosen to be low priority for a reason: they really are not as urgent as higher priority
jobs. One often hears that this type of scheduling is not fair, and a variety of different policies are
proposed for overcoming the problem of not giving all job classes some service all the time (which
requires a very great conceptual leap to determine what delays are acceptable and not acceptable, but
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that is not our problem). Here is one such argument: we propose to poll all job classes exhaustively,
first taking one job class and emptying the system of all that work, then the next, and so on in a logical
ring manner. This will avoid the lock out of low priority work by high priority work since the job class
with highest priority changes with time. What happens now? Let’s look at an example from our earlier
discussion: two class of jobs, one with a mean execution time of one second and one with a mean
execution time of ten seconds. If we have a surge of work, we will spend a larger fraction of time
doing jobs with ten second average execution time, and a smaller fraction of time doing jobs with one
second average execution time. In fact, the delay criterion for the jobs with one second execution time
may very well be violated, in our attempt to be fair (whatever that means), rather than simply giving the
shorter jobs higher priority all the time over the longer jobs. Moral: Be careful in jumping to
conclusions!

10.9.2 Overload Control Valve Design Suppose we designed our system with a first stage queue that
every task must enter followed by a second set of queues that tasks will migrate amongst once they pass
through the first stage. The first stage would be a valve, and would control the amount of work that
would get into the system in two ways:

• The first stage queue has a finite capacity of Q jobs; when an arrival occurs and Q jobs are present
in the input queue, one job gets rejected or lost and presumably will retry later

• When the single server visits the first stage queue, a maximum number of jobs, say S tasks, will be
removed per visit

Under normal operation, only rarely would jobs be rejected, and all jobs would be removed on each
server visit. Under overload operation, the input queue would always be full with jobs, and the
maximum allowable number would be removed per server visit.

The size of the first stage queue and the maximum number of jobs removed per visit would be chosen in
order that the largest number of jobs could be handled by the total system, i.e., the mean throughput was
as large as possible while still meeting delay criteria. In this sense, the first stage is a control valve,
preventing the internal overload from occurring at other stages when an external overload occurs.

First we calculate the mean throughput rate. The server is either present at the input valve or not
present, and we denote these two time intervals be Tpresent and Tabsent . The server alternates back and
forth, either present or absent, and hence the mean cycle rate is simply the reciprocal of the total mean
cycle time. The fraction of time the server is present at the input queue is simply the ratio of the time it
is present over the total cycle time:

f raction o f time server present at input queue =
E (Tpresent ) + E (Tabsent )

E (Tpresent )_ ___________________

The mean throughput rate is simply the fraction of time the server is present, multiplied by the rate at
which the server can execute input jobs:

mean rate server can execute jobs at input queue =
E (Tinput ,S )

1_ _________

mean throughput rate =
E (Tpresent ) + E (Tabsent )

E (Tpresent )_ ___________________
E (Tinput ,S )

1_ _________

Under overload, the input queue will always have more than S jobs, and hence the mean time spent at
the input queue will be

E (Tpresent ) ∼∼ SE (Tinput ,S ) overload

On the other hand, the total cycle will in any reasonable design be dominated by the time the server is
doing useful work elsewhere, and hence

E (Tabsent ) > > E (Tpresent )
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This suggests the following approximation for the mean throughput rate under overload (for the input
queue only, but once jobs clear the input queue they sail through the rest of the system):

mean throughput rate ∼∼
E (Tabsent )

SE (Tinput ,S )_ __________
E (Tinput ,S )

1_ _________ =
E (Tabsent )

S_ ________

What does this say in words?

• As we make S larger, as we remove more jobs, the mean throughput rate increases

• If we get a faster server or processor, the time spent elsewhere, absent, will drop, and hence the
mean throughput rate increases

• If we fix the mean throughput rate, then we have chosen to fix the ratio of the maximum number
removed from the input queue and the mean time the server is absent from the input queue

Next, how do we size up the delay statistics for this system? Under light loading, the mean time spent
by a job in the input queue will simply be

E (TQ ) ∼∼
2E (Tabsent )

E (T 2
absent )_ __________ = 1⁄2E (Tabsent )[1+C 2(Tabsent )] light load

We want to have the absent times have a small squared coefficient of variation, little variability, in order
for this to be close to one half a mean intervisit time.

Under overload, the input buffer will always be full when the server visits it. Let’s look at two policies
for running the input buffer:

• Latest arrival cleared--If the input buffer is full when a job arrives, the latest arrival is rejected or
cleared

• Earliest arrival cleared--If the input buffer is full when a job arrives, the earliest arrival is rejected or
cleared

Why look at these two extremes? In the first approach, latest arrival cleared means that under load Q
jobs are present in the input queue and S are removed per visit, so

E (TQ ) ∼∼
S
Q_ __ SE (Tinput ,S ) = QE (Tinput ,S ) heavy load , latest arrival cleared

On the other hand, for earliest arrival cleared, what happens? All jobs always enter the input queue, but
only some of them get serviced, and some get rejected. The amount of jobs that are rejected for either
policy is the same: whenever the input queue is full and there is a new arrival, one job (either the arrival
or the one in the input queue for the longest time) gets rejected. Which job do we wish to reject: the
one that is closest to missing its delay goals, which is the job that has been in the system the longest
time. Jobs that get serviced with the earliest arrival cleared policy are jobs that spend little time in the
input queue, which is exactly what we want.

What is the mean queueing time for jobs in the first stage with the earliest arrival cleared policy? Here
we use Little’s Law again. We denote by Tre ject the time a rejected job spends in the input queue under
earliest arrival cleared. Since a fraction L of the arrivals are lost, with the total arrival rate denoted by
λ, we see that the mean number of jobs in the input queue for latest arrival cleared under heavy load is
given by

E (Ninput ) = (1−L )λE (TQ ) ∼∼ (1−L )λQE (Tinput ,S ) latest arrival cleared

On the other hand, the mean number of jobs in the input queue for earliest arrival cleared is the sum of
the mean number of jobs that will be rejected and jobs that will be serviced:

E (Ninput ) (1−L )λE (TQ ) + L λE (Tre ject ) earliest arrival cleared

For either policy, the mean number of jobs must be the same, and hence we see
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E (TQ ) = QE (Tinput ,S ) −
1−L

L_ ___E (Tre ject ) earliest arrival cleared , heavy load

This shows that the mean delay will always be smaller for earliest arrival cleared versus latest arrival
cleared! In fact, under earliest arrival cleared, during a heavy overload, jobs that get serviced would
spend virtually zero time in the input buffer (why?).

How would we implement earliest arrival cleared? By using a circular buffer, with a pointer to the job
at the head of the queue; as we overload, the point will move around the buffer and begin to overwrite
or clear earlier arrivals, as desired.

10.9.3 Additional Reading

[1] E.Arthurs, B.W.Stuck, Controlling Overload in a Digital System, SIAM J.Algebraic and Discrete
Methods, 1 (2), 232-250 (1980).

10.10 Multiplexing Voice and Data over a Single Digital Link

In this section we analyze the performance of a digital link multiplexer handling synchronous (e.g.,
voice) and asynchronous (e.g., data) streams.

Two types of sources use the link for communications: synchronous sources that generate messages at
regularly spaced time intervals, and asynchronous sources that do so at irregular points in time. Figure
10.12 is a block diagram of a model of a link level multiplexer we wish to analyze.

Figure 10.12.Link Level Multiplexer

The fundamental logical periodic time unit is called a frame. A frame is subdivided into slots and each
slot is available for transmission of a chunk of bits. The design question is to decide which slots will be
assigned to synchronous and which to asynchronous message streams. Figure 10.13 shows a
representative frame. Three cases arise.

10.10.1 Dedicating Time Slots to Each Session The first policy is dedicating time slots during a frame
to each session so that each message stream has its own digital transmission system. Each transmission
system can be engineered separately with no interaction between different types of message streams.
This allows sharing and hence a potential economy of scale of hardware, software, and maintenance
costs. Synchronous sources can be multiplexed by a generalization of circuit switching: one or more
slots per frame can be dedicated to a communication session, while conventional circuit switching has
only one slot per frame per session. For example, with a frame rate of 1200 frames per second, four
slots per frame, and two bits per slot, one 2400 bit per second terminal would require one slot per
frame, while one 4800 bit per second terminal would require two slots per frame. In order to transmit
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Figure 10.13.An Illustrative Frame

data from asynchronous sources via synchronous transmission facilities, one common practice is to
always transmit an idle character if no data character is present, so that the asynchronous stream has the
transmission characteristics of a synchronous bit stream.

10.10.2 Sharing Time Slots Among All Sessions Allowing all sessions equal access to any time slot
within a frame is a different policy. This allows sharing and hence a potential economy of scale for
hardware, software, and maintenance costs, as well as the transmission costs. A priority arbitration rule
is employed to determine which message stream gains access to the link. The priority might be chosen
according to the urgency of the message stream.

10.10.3 Dedicating Time Slots to Some Sessions and Sharing the Remainder The remaining case, a
hybrid of the previous two, involves dedicating some transmission capacity to each session, with a
common shared transmission capacity pool that is used by all sources in the event that the dedicated
capacity is completely exhausted.

10.10.4 Overview Our purpose is to study the most difficult case for analysis: totally shared
transmission capacity for all communication sessions. Because the message streams can have radically
different characteristics, which will have a profound impact on our analysis, we digress to discuss each
traffic in more detail.

10.10.5 Synchronous Message Streams First, we focus on a very common type of synchronous
message stream, a voice telephone call. In practice, analog voice signals are sampled, encoded into a
digital bit stream, and then transmitted over a link. The voice samples are delivered at regularly spaced
time intervals for each conversation, with at least one and at most two sampling intervals (due to clock
jitter and skew) between successive samples. All the samples must be buffered and transmitted before
the next arrivals. This suggests inserting a fixed delay, hopefully negligible compared to voice time
scales, which is the time required to load and unload a voice sample during a conversation. Typically
voice conversations last for one hundred to three hundred seconds, while the initiation and completion
lasts for one to five seconds; this suggests attempting to dedicate transmission capacity for the duration
of a conversation, and if no capacity is available at the instant a telephone call is attempted, new arrivals
or attempts should be blocked or rejected, because it is highly unlikely that transmission capacity would
become available within the next few seconds. Voice bit stream utilization per conversation is typically
on the order of thirty to fifty per cent, a further argument for demanding that transmission capacity be
dedicated to each conversation for the duration of a call, because it is quite likely that the transmission
capacity will in fact be needed. These conditions are felt to be sufficient for high quality speech
reproduction, but may be unduly conservative when compared with other alternatives.

10.10.6 Asynchronous Message Streams Second, we focus on data traffic generated by interactive
terminals and computer systems. Messages within each conversation or session arrive at very irregularly
spaced time intervals. In applications representative of online computer systems for support of telephone
company operations activities, the authors have found traffic is typically one to two bytes per second per
session for a stream generated by a terminal interacting with a computer, with the interarrival times
between samples being much less regular than voice. Furthermore, the utilization of a typical dedicated
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link for one terminal interacting with a computer is often well under one per cent. Since the message
arrival statistics are highly irregular, and the link utilization is quite low, this suggests pooling or
buffering messages from a number of sources (with the pooling strategy based on the statistics of the
message streams and their urgencies) for subsequent transmission over a link. This allows both the
transmitter and the link to be simultaneously busy, and hence offers a higher total mean throughput rate,
at the expense of additional storage. Communication session initiation and completion cleanup times
can be comparable to data transmission message times, unlike for the synchronous message stream. If a
controller is capable of setting up and taking down a circuit in a time much shorter than the session, this
type of switch might be chosen: less time would be spent in overhead versus in useful communications.
If this is not the case, then a packet switch might be the choice. In addition, a variety of control bits are
required to govern flow control, addressing, error handling, and so forth, that must be transmitted along
with the actual data bits, further reducing link utilization.

10.10.7 Outline In the next section we present a naive analysis of the benefits of total sharing of
transmission capacity that leads to completely erroneous insight into the gain of such a policy. The
reason for the error is that a mean value analysis of first order statistics for the arrival rates and holding
times of voice and data conversations ignores secondary statistics such as fluctuations about the mean
values and more importantly correlations from one frame to the next, which cannot be ignored here.
The following section gives a more rigorous analysis that quantifies these statements. Great care is
required in engineering a transmission system that pools messages from sources with radically different
characteristics. The closing section summarizes our findings and presents a number of options or
alternatives for effective use of a single link by both synchronous (e.g., voice) and asynchronous (e.g.,
data) message streams.

10.10.8 Problem Statement Information is transmitted over a digital link in repetitive time intervals
called frames. Frame n =1,2,... consists of Sn slots. Each slot contains a fixed number of bits.
Messages arrive from synchronous sources and are either accepted or rejected, and presumably will retry
later. The synchronous message streams that have been accepted for transmission demand Vn time slots
in frame n =1,2,.... From this point on, in the interest of brevity, we will refer to the synchronous
message stream as voice. Each remaining slot within a frame can be used to transmit messages from
asynchronous sources. Asynchronous messages arrive during frame n =1,2,... and require Dn time slots
of transmission capacity. From this point on, in the interest of brevity, we will refer to the
asynchronous message stream as data. Sn −Vn is the amount of transmission capacity (measured in time
slots) available during frame n =1,2,... for transmission of asynchronous traffic. The random variable Rn

denotes the amount of asynchronous chunks waiting to be transmitted at the start of frame n. From this
discussion, Rn is governed by the following recursion:

Rn +1 = max (0,Rn +Dn +Vn − Sn ) n =0,1,2,...

In the interest of brevity we fix Sn =S . If we allowed the number of available slots to vary from frame
to frame, this would correspond to the case of partially shared transmission capacity for synchronous and
asynchronous message streams. Our goal is to study the statistics of Rn as a function of the statistics of
Dn and Vn for a given choice of S .

Granted that Dn +Vn −Sn obeys Markovian statistics, our analysis shows that the long term time averaged
distribution of Rn ,n →∞, is a weighted sum of geometric distributions. The weights and modes of the
different geometric distributions are dependent upon the particular modeling assumptions for the arrival
and holding time statistics for the synchronous and asynchronous message streams as well as the policy
for allocating time slots within a frame. One of the modes of the long term time averaged distribution
for Rn ,n →∞ will decay more slowly than all the other modes, and will dominate the asynchronous
traffic delay and buffering requirements under load. The geometric decay parameter for the most slowly
decaying mode of the distribution of Rn ,n →∞ will be called the critical exponent because it will be
critical in determining the fraction of time the buffer contains greater than a given amount of data
chunks.
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10.10.9 Summary of Results >From an engineering point of view, knowing that the long term time
averaged distribution for data decays geometrically suggests that the most slowly decaying mode of all
the distributions should be measured. In a well engineered system, this should be close to zero, i.e.,
there should be relatively little data buffering. If this mode is close to one, then there is a potential for
buffering significant amounts of data. If voice and data are multiplexed together over a common link,
the analysis presented here suggests that the voice can demand all the transmission capacity for a period
of time that is brief relative to the duration of a voice telephone call, yet is much longer than typical
data transmission times. Effectively voice locks out data for time intervals unacceptable to data. This
suggests that prudence is required in assessing the benefits of dedicating transmission capacity versus
totally sharing transmission capacity for each type of message stream. Engineering practice based on
mean values, average loadings and the like appear to give excellent insight into traffic handling
characteristics for dedicated transmission systems handling only one type of service. When transmission
capacity is shared average loading and mean value analysis can be misleading, and much greater caution
and sophistication is required. Here timing between stations is quite controlled and regular; other
schemes have been proposed that involve uncontrolled and irregular timing, and hence should do worse
than the approach described here for handling data.

10.10.10 A Naive First Cut Analysis Consider the following example: S =24 time slots are transmitted
eight thousand times per second, with each time slot containing eight bits. Each voice call requires one
slot per frame, or 64 KBPS. Suppose that the link is engineered to handle sufficient voice telephone
calls such that no more than one per cent of the voice traffic is blocked or rejected. Using standard
Erlang blocking analysis techniques, we find the link will handle on the average 15.3 voice telephone
calls, i.e.,

PROB [all S =24 slots f illed with voice ] = B (S ,A )<0.01→S =24,A =15.3

where B (S ,A ) is the Erlang blocking function for S servers and an offered load of A erlangs. This
implies we have S −A =24−15.3 or 8.7 time slots per frame available for data, or 557 KBPS. If we only
use 64 KBPS for data, for example, always transmit one byte of data every frame, then the total (both
voice and data) link utilization will be (16.3/24) or 67.9%; the data delay may be roughly two frames, or
250 µsec, and hence the mean data buffering may be 64 KBPS multiplied by 250 µsec or 16 bits.

The table below summarizes the mean number of time slots filled with voice out of twenty four (S =24)
for a given level of blocking B , the transmission capacity that is idle for handling surges of voice and
data:

Table 10.5.Time Slots/Frame, 8000 Frames/Sec Transmission Rate_ _____________________________________________________________________ ____________________________________________________________________
Fraction of Mean Number Mean Number Excess Transmission

Attempts Blocked of Voice Filled Slots of Idle Slots Capacity for Data_ _____________________________________________________________________ ____________________________________________________________________
0.001 12.1 Slots 11.9 Slots 762 KBPS
0.002 13.0 Slots 11.0 Slots 704 KBPS
0.005 14.3 Slots 9.7 Slots 621 KBPS
0.010 15.3 Slots 9.3 Slots 557 KBPS
0.020 16.7 Slots 7.3 Slots 467 KBPS
0.050 19.0 Slots 5.0 Slots 320 KBPS
0.100 20.7 Slots 3.3 Slots 211 KBPS




































This type of analysis is based on mean values. Unfortunately, this chain of reasoning ignores both the
fluctuations of the voice and data about their mean values, and the correlation present from one frame to
the next for voice. The combination of these phenomena makes the mean value analysis sketched here
much too optimistic: we will need much greater buffering for data than expected, data delays will be
much greater than expected, with much less margin for overload surges.

The reason for this is clear on physical grounds: voice telephone calls last for two to three minutes, or
one hundred to two hundred seconds. Data messages can last for one to ten milliseconds. The time
scale for voice is hundreds of seconds, which is four to five orders of magnitude greater than that for
data. A relatively short surge of voice traffic might last for one to ten seconds, but this short surge may
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demand all the available transmission capacity, i.e., none is available for data. As far as data is
concerned, the link has just failed: no messages can be transmitted. With the link engineered for a
voice service grade of one per cent blocking, this will occur one per cent of the time during an hour, or
a total of thirty six seconds, scattered throughout the hour: five seconds here, two seconds there, ten
seconds there. Data will be arriving throughout the time when all the transmission capacity is dedicated
to voice, potentially leading to thousands of data packets arriving during such an interval. Once this
occurs, the validity of the model is now in question: higher level data communications protocols, which
are ignored here, come into play, flow control procedures are invoked, timeouts occur, retries and
reinitialization of link control procedures take place, compounding the data delay even more. The figure
below is an illustrative simulation of this phenomenon: an illustrative sample path of the stochastic
processes we wish to study, that is typical of that encountered in simulation studies.

Figure 10.14.Illustrative Simulation Sample Path

The voice traffic rarely surges to seize all the available transmission capacity. Once the voice blocks all
data transmission, enormous data queues arise, that persist long after the voice blocking has ended. Put
differently, most of the time the data is not delayed at all, but if the data is delayed, it is delayed a long
time.

10.10.11 A More Sophisticated Analysis In order to get more insight into the behavior of the example
in the previous section, we study in greater detail the statistical behavior of the voice loss system. The
sequence of nonblocked voice telephone calls holding times are assumed to be independent identically
distributed exponential random variables with mean 1⁄µ. The modeling assumptions here are that the
duration of a voice call is much longer than a frame, and that we require a geometrically distributed
number of frames to be dedicated to each telephone call. The figure below shows states and transition
rates for the voice telephone calls. We denote by λ≡λo f f ered the mean arrival rate of the offered voice
traffic load, while λcarried is the mean throughput rate of the carried voice traffic load, given by

λcarried = λo f f ered [1 − B (S ,A =λo f f ered ⁄µ)]

A level is fixed, denoted by L, for the maximum number of simultaneous active voice telephone
conversations. When the number of calls in progress exceeds L , newly arriving voice calls will be
rejected or blocked. Hence, 0<L ≤S . π(K ),K =0,...,S denotes the fraction of time there are K
simultaneously active voice calls in progress. The rate of entering the state of having L calls in
progress from the state of having L −1 calls in progress is denoted by rL −1,L . This implies using
standard techniques that

rL −1,L = λo f f ered π(L −1)
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Figure 10.15.Voice Telephone Call States/Transition Rates

In words, the fraction of time there are L −1 simultaneous voice telephone calls multiplied by the total
arrival rate of voice calls yields the rate of entering state L from state L −1.

TL ,L −1 denotes the mean time to move from state L to state L −1, i.e., to move out of the blocking state
of having L simultaneously active voice telephone calls. This implies

rL −1,L TL ,L −1 =
K =L
Σ
S

π(K )

In other words, to find the mean time to move from the state of L to L −1 active telephone calls, the
total fraction of time the Markov process modeling voice calls is in state K =L ,...,S must be divided by
the rate of entering state L from L −1:

TL −1,L =
λo f f ered π(L −1)

K =L
Σ
S

π(K )
_ ____________

Choosing L =S simplifies all of this:

rS −1,S = λo f f ered π(S −1) = µ S B [S ,λo f f ered ⁄µ]

For example, with S =24 time slots per frame, and with 1⁄µ=100 seconds for a voice call holding time of
one hundred seconds, and the voice call blocking engineering to be no more than one per cent of the
time (B (S ,A )=0.01) the mean time to enter the state of having all S =24 time slots filled from the state
of having of having S −1=23 time slots filled with voice, is given by

rS ,S −1

1_ _____ =
µSB (S ,λo f f ered ⁄µ)

1_______________ ∼∼ 416
3
2_ _ seconds S =24 slots ⁄f rame

In words, on the average every four hundred and sixteen and two thirds seconds the link will be
completely filled with voice calls in progress. How long will this last on the average? For a mean time
denoted by TS ,S −1, where

TS ,S −1 =
µS
1_ __ ∼∼ 4.16667 seconds S =24

As far as the data is concerned, on the average, every four hundred and sixteen and two thirds seconds
the voice will demand all the transmission capacity for a mean time interval of four and one sixth
seconds. If data arrives at an average rate of 64 KBPS, then at least 256K bits of data on the average
must be buffered when the link is busy handling nothing but voice, or 32K bytes. Furthermore, the
transmission capacity for data once the system leaves the voice blocking state is now only 64 KBPS,
which only keeps up with arriving data but does not empty the buffer, and the very strong correlation
suggests that the link might block within the next second or two with nothing but voice, as before.

The table below is a summary of similar calculations for the same parameters described in the earlier
section:
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Table 10.6.Time Slots/Frame, 8000 Frames/Sec Transmission Rate_ ___________________________________________________ __________________________________________________
Fraction of Mean Excess Transmission Mean Time to Enter

Attempts Blocked Capacity Available for Data Voice Blocking State_ ___________________________________________________ __________________________________________________
0.001 762 KBPS 4166.67 sec=69.44 min

0.002 704 KBPS 2083.33 sec=34.72 min

0.005 621 KBPS 833.33 sec=13.89 min

0.010 557 KBPS 416.67 sec=6.94 min

0.020 467 KBPS 208.33 sec=3.47 min

0.050 320 KBPS 83.33 sec=1.39 min

0.100 211 KBPS 41.67 sec=0.69 min























The sojourn time in the all blocking state is 100/24 seconds or 4.16 seconds. Would a customer choose
a system with voice blocking only one per cent of the time, while 557 KBPS of idle transmission
capacity is available, knowing that on the average every 6.94 minutes the idle transmission capacity
would drop to zero for an average of 4.16 seconds? Many knowledgeable engineers would argue that it
is difficult enough to get such systems to work at all, without having to handle interactions between
different services like voice and data such as this is.

10.10.12 A Lower Bound on Critical Exponent Here is a lower bound on the critical exponent ω that
illustrates the impact that correlation can have on performance. This is much much easier to calculate
than carrying out an exact analysis, and the techniques are felt to be of general interest and hence should
be popularized. To simplify notation, we define a new random variable, Yn , which is the difference
between the voice and data arriving in frame n and the total available transmission capacity, in slots:
Yn = Dn + Vn − S . We model correlation by assuming that Yn is modulated by a Markov chain. This
means that there is an underlying Markov chain with state σn for frame n taking values in a discrete
state space denoted by Ω, and with transition probability generator for the voice and data given by
Hlk (i ,j ):

Hlk (i ,j ) = PROB [Dn =i ,S −Vn =j ,σn +1=k   σn =l ]

As one example, we assume the voice traffic is generated by a birth and death process, with λ denoting
the probability of an arrival and i µ denoting the probability of a departure given there are i active voice
calls. The state of the underlying Markov chain associated with the start of frame n is denoted by σn .
Given these assumptions, we see that

Rn +1 = max (0,Rn +Yn ) n =0,1,2,...

>From this recursion, we can rewrite the fraction of time that Rn ,n →∞ exceeds a finite threshold, say
K :

n →∞
lim PROB [Rn >K ] =

J =0
Σ
S

π(J )PROB [
n

sup[Y 1+Y 2+...+Yn ]>K   σ0=i ]

If we focus only on the state where the synchronous traffic has seized all available time slots, i.e., and
drop the other (S −1) states from consideration, then we obtain a lower bound on our expression of
interest:

n →∞
lim PROB [Rn >K ] > π(S )PROB [Y 1+Y 2+...+Ym >K   σ0 = S ]

Since the process is Markovian, the holding time distribution in this state is geometric, with the number
of time slots in this state, say M , having a moment generating function given by

E [X M ] =
1 − SX µ

X (1 − S µ)_ _________

The lower bound on the fraction of time Rn ,n →∞ exceeds K can be written as

n →∞
lim PROB [Rn >K ] = π(S )PROB [D 1+...+DM >K   σ0 = S ]

For example, with one data chunk arriving every frame, Dn =1(a.s. ),
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n →∞
lim PROB [Rn >K ]>π(S )(1−S µ)K

where

π(S ) = B (S ,λ⁄µ) =

k =0
Σ
S

(λ⁄µ)k ⁄k !

(λ⁄µ)S ⁄S !__________

and hence

ω > 1−S µ

which is independent of the arrival rate. For example, choosing S =24 and one hundred second voice
holding time, so µ = 1⁄(100 seconds )(8000 f rames ⁄sec ), we find

ω > 1 −
100 × 8000

24_ __________ = 1 −
40000

1_ _____ = 0.999975

On the other hand, if Dn obeys a geometric distribution, so as n →∞,Dn →D ,

E

x

D 
 =

1−αx
(1−α)x_ ______

then the same chain of arguments can be used to show

ω > 1−(1−S µ)(1−α) > 1 − (1 − S µ)

which is even closer to unity than ignoring the bursty nature of the data arrivals, i.e., the shape of the
data arrival distribution statistics matter!

As a second example of how to use this model, what if we wish to multiplex data during speech silence
intervals, e.g., in between words and pauses in conversation? Again, we can refine the above argument
as follows: let (i,j) denote i active calls and j calls actively talking at a given time epoch, where
i =0,...,S ;j ≤i . We model this via a Markov chain as follows:

PROB [i +1,j +1 i ,j ] = λ 0≤i <S

PROB [i ,j +1 i ,j ] = β(i −j ) 0<i ≤S ,j <i

PROB [i ,j  i +1,j +1] = µ(j +1) 0≤i <S

PROB [i ,j  i ,j +1] = γ(j +1) 0≤i ≤S

Then paralleling the previous arguments we see that the fraction of time the long term time averaged
amount of data buffered exceeds a threshold K is lower bounded by

n →∞
lim PROB [Rn >K ] = π(S ,S )PROB [D 1+...+Dm >K ]

where the random variable m is drawn from a geometric distribution,

PROB [m =J ] = γS (1−γS )J −1 J >0

and hence

ω > 1−S γ

To summarize both these exercises, granted these assumptions, we have shown

ω > 1 −
Mean holding time (in slots )⁄call

Number o f slots ⁄f rame_ ____________________________

which is independent of the arrival rate. As the arrival rate approaches zero, it is not the exponent that
approaches zero but rather the constant multiplying the exponential term that approaches zero.

10.10.13 Numerical Comparison of Bounds and Exact Analysis How close is the bound to that of an
exact analysis? To answer this, we choose the following parameters: a frame consists of two time slots,
each capable of holding eight bits. The frame repetition rate is eight thousand times per second, so each
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frame is one hundred and twenty five microseconds. Voice calls require one time slot per call for the
duration of the call, and are generated according to simple Poisson statistics. Voice calls last for a
geometrically distributed number of frames. Eight bits of data always arrives every frame. If all
available transmission capacity is filled with voice calls, new voice calls are blocked or rejected. If all
available transmission capacity is filled with voice calls, data is buffered or delayed until capacity
becomes available.

The figure below shows the bound on the critical exponent as well as the exact critical exponent for
different levels of blocking, as a function of mean voice holding time. When the voice holding time
exceeds ten milliseconds, the agreement between the bound and the exact analysis is excellent.

Figure 10.16.Exact Critical Exponent and Bound vs Mean Voice Holding Time

Since in reality voice telephone calls last for hundreds of seconds, for all practical purposes there is no
numerical difference between the bound and the exact analysis.

What about the constant? Maybe this is close to zero, while the exponent is close to one, with the net
result being small data delay. The figure below shows the fraction of time data is delayed at all versus
the fraction of time voice is blocked (which will occur when all time slots are filled with voice, V =S ).
To complement this, we plot the mean data delay versus the fraction of time voice is blocked. For these
numbers, with the mean voice holding time being ten to fifty slots per frame, the fraction of time that
data is delayed at all can be made small. On the other hand, the mean data delay can be in excess of
one millisecond. As the voice holding time increases, the mean data delay will increase, even for
relatively low levels of voice blocking. This confirms our intuition: most of the time the data is
transmitted immediately, but when it is delayed, it is delayed for a very long time (tens and hundreds of
milliseconds).

10.10.14 Summary and Closing Comments Our goal was to study properties of the statistics of Rn , the
amount of data waiting to be transmitted at the start of frame n , which was governed by the recursion

Rn +1 = max [0,Rn + Dn + Vn − S ]

Two phenomena are present which can impact traffic handling characteristics:

• fluctuations in Dn ,Vn or, in other words, the shape of the distribution

• correlation from frame to frame of Dn ,Vn or, in other words, the relative time scale of the different
types of traffic

Under certain specific assumptions, it can be shown that
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Figure 10.17.Fraction of Time Data Delayed vs Voice Blocking

Figure 10.18.Mean Data Delay vs Voice Blocking

n →∞
lim PROB [Rn >k ] ∼∼ CONSTANT ×ωk

The constant and ω can be evaluated. The transient behavior of the system is related to time scales of
the order of 1⁄ω which is also of great interest.

How can we combat the phenomena here? There are a variety of methods. One approach is to dedicate
a given amount of transmission capacity to voice and a given amount to data, and engineer these two
systems separately. The voice transmission capacity could be chosen to meet a lost calls cleared grade
of service, while the data transmission capacity could be chosen to meet a delayed message grade of
service. The problem in the example here was the transmission capacity was shared or pooled, and the
voice swamped the data. A second approach is as follows: In many applications, the amount of bits
transmitted due to voice is much much greater than that due to data: rather than demand the relatively
small amount of data be delayed by the relatively large amount of voice, why not reverse the priorities?
Simply give the data higher priority over the voice, and if there is a surge in voice, drop the voice bits
and not the data bits. This is possible because people are generating the voice, and will detect problems
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(clicks, unusual sounds, spurious signals, and so on) and will retry ("What did you say?" or "Could you
repeat that, we seem to have a bad connection!")

Our point here is totally sharing transmission capacity for voice and data with fixed bandwidth appears
to offer no benefit over dedicating bandwidth to each service. Adding enough bandwidth to handle each
separately appears to offer significant benefits.
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10.11 Flow Control of a Single Virtual Circuit over a Single Link

We wish to study the traffic handling characteristics of a policy for pacing the flow of information from
a transmitter to a receiver over a logical abstraction of a physical circuit (a so called virtual circuit)
within a local area network. The transmitter formats a message into one or more packets. If the
receiver has only a limited amount of storage, and the transmitter is faster than the receiver, packets can
be transmitted and blocked or rejected by the receiver because no room is available. A protocol is used
for controlling the flow of information to insure that no packet is lost due to no room being available, as
well as for other reasons. The transmitter must be turned on and off to insure no packet are lost. What
is the penalty in mean throughput rate and packet delay statistics as a function of receiver buffering and
transmitter and receiver processing speeds? We analyze a model for a class of protocols, so called
sliding window* protocols, for controlling the flow of information between a transmitter and receiver. If
the time for a packet to propagate from the transmitter to the receiver and back is negligible compared

__________________

* As far as the transmitter is concerned, there is a window on the packet stream: some packets have been transmitted but not yet
acknowledged. The window slides from the start of the packet stream to the end.
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to the transmitter and receiver packet processing times, such as in local area network applications, it is
possible to engineer a virtual circuit to achieve predictable performance. This protocol is representative
of a great many protocols currently in use, each of which differs in detail in terms of error handling, but
not in terms of pacing the flow of packets between the transmitter and receiver.

10.11.1 Problem Statement Messages arrive for execution to a transmitter. The transmitter buffer has
infinite capacity. Each message is composed of one or more packets: The packet arrival statistics are
compound Poisson, i.e., the packet group interarrival times form a sequence of independent identically
distributed exponential random variables, and the number of packets arriving at each arrival epoch forms
a sequence of independent identically distributed random variables. The transmitter executes packets in
order of arrival, with the transmitter processing times forming a sequence of independent identically
distributed arbitrary random variables. The receiver has capacity W packets, with the packets being
executed at the receiver in order of arrival, and the receiver processing times forming a sequence of
independent identically distributed arbitrary random variables. The transmitter will not execute packets
between the time interval when the receiver buffer is filled with W packets until the receiver buffer is
filled with B packets. The transmission propagation times between the transmitter and receiver are
assumed to be zero.

We fix notation for the following random variables:

• TT ,k --the communications processing time at the transmitter for the kth packet; the sequence of
packet processing times are assumed to be independent identically distributed random variables

• TR ,k --the communications processing time at the receiver for the kth packet; the sequence of receiver
processing times are assumed to be independent identically distributed random variables

• Aj --the interarrival time between the jth and (j+1)th batch of packets; the sequence of interarrival
times are assumed to be independent identically distributed exponential random variables with mean
1⁄λ

• Bj --the number of packets arriving at the jth arrival epoch; the sequence of batch sizes are assumed
to be independent identically distributed random variables with associated moment generating
function E [xB ] = η(x ) and QJ denotes the probability an arrival batch contains J ≥1 packets

• Fk --the time interval from the arrival to the departure of packet k

10.11.2 Summary of Results The long term time averaged message flow time distribution for the start
stop (W=1) protocol has a moment generating function given by

k →∞
lim E [e

−zF
k ] =

z − λ + λη[ĜT +R (z )]

[1−λE (B )E (TT + TR )]zĜT +R (z )_ __________________________
E (B )[1 − ĜT +R (z )]

1 − η[ĜT +R (z )]_ ________________

For the double buffering protocol for (W=2) the moment generating function for the message flow time
distribution is given by

k →∞
lim E [e

−zF
k ] =

1 + λE (TI −TM )

1−λE (B )E (TM )_ _____________
z − λ + λη[ĜM (z )]

zĜI (z ) + λ[ĜM (z ) − ĜI (z )]_ _______________________
E (B )[1−ĜM (z )]

1−η[ĜM (z )]_ _____________ ĜR (z )

We have used the following notation:

ĜT (z ) = E [exp (−zTT )] ĜR (z ) = E [exp (−zTR )] ĜT +R (z ) = ĜT (z )ĜR (z )

ĜM (z ) = E [exp (−z max (TT ,TR ))] ĜI (z ) = E [exp (−z max (TT ,TR −A ))]

Here are the expressions for mean message delay for the special case of constant packet processing
times at the receiver and transmitter. First, for W=1, the long term time averaged mean packet delay is
given by
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k →∞
lim E (Fk ) =

2(1−λE (TT +TR ))

λE ((TT +TR )2)_ ______________+E (TT +TR )

assuming λE (TT +TR )<1.

Next, for W=2, the long term time averaged mean packet delay is given by

k →∞
lim E (Fk ) =

2(1−λE (TM ))

λE (TM
2)_ ___________+E (TT +TR )+

(1+E (e
−λ(T

M
−T

T
)
)(1−λE (TM ))

E (e
−λ(T

M
−T

T
)
)_ _______________________

assuming λE (TM )<1 where TM =max (TT ,TR ). Finally, for W →∞, the long term time averaged mean
message delay is given by

k →∞
lim E (Fk ) =

2(1−λE (TM ))

λE (TM
2)_ ___________+E (TT +TR )

assuming λE (TM )<1, where TM =max (TT ,TR ). The insight in the earlier section is that double buffering
appears to achieve most of the benefit of infinite buffering, in the face of speed mismatches and
fluctuations in processing times.

The extension to compound Poisson arrival statistics is handled as follows: The Laplace Stieltjes
transform for the flow time distribution is given by

ĜF (z ) =
E (N )

E


K =1
Σ
N

e
−zF

K



_ __________

where the random variable N is the number of packets serviced in a busy period. The mean number of
packets served during a busy period equals the mean number of packets arriving in a batch multiplied by
the mean number of groups of packets serviced during a busy period. The first group of packets
serviced during a busy period contributes to the numerator of the flow time Laplace Stieltjes transform

f irst group contribution =
J =1
Σ
∞

QJ [ĜI (z )[I + ĜM (z ) + . . . + ĜM (z )J −1]]

= ĜI (z )
1 − ĜM (z )

1 − η[ĜM (z )]_ ___________

If a group is the Kth group during a busy period, (K >1), and the first packet of a group has to wait WK

time units, then the Kth group contributes a term of the form

non f irst group contribution = E [e
−zW

K ]
J =1
Σ
∞

QJ [ĜM (z ) + . . . + ĜM (z )J ]

= E [e
−zW

K ] ĜM (z )
1 − ĜM (z )

1 − η[ĜM (z )]_ ___________ K >1

to the numerator of the flow time distribution Laplace Stieltjes transform. Combining all this, we see

ĜF (z ) =
η′ (1)E [γ]

1_ ________



ĜI (z ) + ĜM (z )E [

K =2
Σ
γ

e
−zW

K ]


 1 − ĜM (z )

1 − η[ĜM (z )]_ ___________

where the random variable γ denotes the number of groups of packets serviced during a busy period,

E [γ] = 1 +
1 − λη′(1)E [TM ]

λ[E [TI ] + [η′ (1) − 1]E [TM ]_ _______________________

and η′ (1) is the derivative of the moment generating function of the arrival batch distribution evaluated
at one, i.e., the mean number of packets arriving in a batch.



-- --

CHAPTER 10 PRIORITY SCHEDULING II 39

E [
K =2
Σ
γ

e
−zW

K ] =
ĜM (z )

λ_ _____
z − λ + λη[ĜM (z )]

ĜM (z ) − ĜI (z )η[ĜM (z )]_ ____________________

The figure below plots mean packet delay versus mean packet arrival rate, assuming simple Poisson
arrival statistics, for the receiver and transmitter processing times being exponentially distributed, with
the mean receiver processing time per packet fixed at one second, while the mean transmitter processing
time per packet is fixed at one second.

Figure 10.19.Mean Packet Delay vs Mean Packet Arrival Rate.
Exponential Transmitter/Receiver Times, E (TT )=E (TR )=1.0

The companion figure does so for the transmitter and receiver packet time transmission distributions
constant, with mean E (TT )=E (TR )=1.0:

Figure 10.20.Mean Packet Delay vs Mean Packet Arrival Rate
Constant Transmitter/Receiver Times, E (TT )=E (TR )=1.0

The following figure is a segment of the above plots, covering only the lower range of mean packet
arrival rates, in order to make it graphically clear that for normal operating regions the difference in
mean delay for infinite window size versus double buffering is practically speaking negligible and
considerably smaller than start stop buffering.
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Figure 10.21.Mean Packet Delay vs Mean Packet Arrival Rate
Exponential Transmitter/Receiver Times,E (TT )=E (TR )=1.0

Figure 10.22.Mean Packet Delay vs Mean Packet Arrival Rate
Constant Transmitter/Receiver Times,E (TT )=E (TR )=1.0

The case of exponentially distributed packet processing times is highly pessimistic; a constant
distribution for packet processing times is more common in practice, because there is little data
dependency or looping or fluctuations in many applications. Even for this very pessimistic set of
assumptions, there is remarkably little difference in the performance of infinite buffering and double
buffering versus the single buffering case.



-- --

CHAPTER 10 PRIORITY SCHEDULING II 41

Problems

1) A packet switching system handles two types of packets, control packets and data packets. The
system consists of a single processor that executes the highest priority job in the system at any point in
time. The total arrival statistics are Poisson distributed. The fraction of arrivals that are control packets
is twenty per cent under normal operations, and is eighty per cent under overload. The packet execution
times are given in the table below:

Table 10.7.Packet Execution Times_ _______________________________ ______________________________
Type Distribution Mean_ _______________________________ ______________________________

Control D 100 µsec
Data M 500 µsec

Under normal conditions, the processor is thirty per cent utilized. Under overload conditions, the
processor is seventy per cent utilized. The design goal is to process a control packet within 200 µsec
during normal operations, and 1000 µsec under overload, ninety per cent of the time for both cases.
What is the largest mean throughput rate of data packets that the system can handle if we schedule work
according to

A. Service in order of arrival

B. Service in reverse order of arrival, nonpreemptive

C. Service in reverse order of arrival, preemptive resume

D. Static priority nonpreemptive scheduling, with control higher priority than data

E. Static priority preemptive resume scheduling, with control higher priority than data

2) A local area network is used for multiplexing voice and data over a common shared bus. The
following information is measured on system operation:

• Each user will be involved with five telephone calls per peak business hour. Each telephone call
will last for a mean of three minutes. Each telephone call involves converting speech to digital bits,
for transmission at 64 KBPS over the bus

• Each user is involved with twenty five data transactions during a peak busy hour. Each transaction
involves one thousand bytes (eight bits per byte) of data being input to the system, and two thousand
bytes of data being output to the user.

All bits are encoded into a two thousand byte fixed length packet for transmission over the bus. Plot the
mean data delay versus bus transmission speed, from the range 10 KBPS to 10 MBPS, for each of the
two policies below:

A. Voice has higher priority than data with nonpreemptive scheduling

B. Data has higher priority than voice with nonpreemptive scheduling

3) P processors access a common shared memory. Only one processor at a time is allowed to access the
memory. The mean memory access time is two clock cycles. The mean time interval between memory
access requests for a given processor is five clock cycles.

A. Each memory access time is assumed to be constant and equal to two clock cycles. Plot the mean
memory access delay versus the number of processors, for one to four processors, using a finite
source arrival process model. Repeat for an infinite source arrival process model, and compare
results.
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B. Repeat if the memory access times are drawn from an exponential distribution with a mean of two
clock cycles.

C. Repeat if the memory access times are drawn from a hyperexponential distribution with a mean of
two clock cycles and with a squared coefficient of variation of ten.

4) A processor executes two types of jobs. Each job consists of three tasks: a setup task, an execution
task, and a cleanup task. The setup phase requires a constant time of one tenth of a second. The
execution phase requires a mean time of one second. The cleanup phase requires a mean time of two
tenths of a second. Jobs arrive according to batch Poisson statistics, with a total mean arrival rate of
λK ,K =1,2 jobs per second, and a bimodal distribution of jobs at each arrival epoch: with probability P
one job arrives at an arrival epoch, and with probability 1−P five jobs arrive at an arrival epoch.

A. What is the largest rate at which type one jobs and type two jobs can be executed, if jobs are
executed in order of arrival?

B. What is the largest rate at which type one jobs and type two jobs can be executed, if the setup is
executed at priority zero, the work at priority K, and the cleanup at priority zero, with a
preemptive resume work discipline?

C. What is the largest rate at which type one jobs and type two jobs can be executed, if the setup,
work, and cleanup are all executed at priority K for job type K, with a nonpreemptive priority
work discipline?

D. Plot the mean queueing time for each task versus the total mean arrival rate, assuming a mix of
20% type one and P =0.5. Repeat if the mix is 80% type one. Repeat all the above if P =0.1 and
P =0.9.

5) A local area network has a data clock rate of 10 MBPS. Both voice and data packets are transmitted
over the network. Voice packets are 512 bits long, the total voice bit rate for a telephone call is 64
KBPS, and a voice telephone call lasts for three minutes. Data packets are 8192 bits long. Assume that
voice telephone calls and data packets are generated according to Poisson statistics with mean arrival
rate λvoice and λdata respectively.

A. What is the largest possible value of λvoice such that no more than one call in one million is
blocked? No more than one call in ten thousand? No more than one call in one hundred?

B. How often does the voice traffic lock out the data? For how long on the average?

C. If a voice surge ties up all available transmission capacity, what is the maximum number of data
packets that must be buffered?

D. If the system is engineered so that 64 KBPS of transmission capacity is available for data all the
time, i.e., the number of simultaneous voice calls is always one less than the maximum possible
number, what changes in the above discussion?

E. What changes if voice is transmitted at 32 KBPS? 16 KBPS?

6) A transmitter employs a sliding window flow control policy to send packets to a transmitter. The
mean number of instructions executed by the transmitter is one hundred assembly language instructions,
while for the receiver it is two hundred assembly language instructions. The transmitter and receiver
employ different microprocessors and each microprocessor can execute one hundred thousand assembly
language instructions per second. The transmitter and receiver are connected via a local area network,
with a constant network propagation delay of 50 µ seconds per packet.
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A. What is the maximum mean throughput rate for transmitting packets assuming the window size is
one packet? an infinite number of packets? two packets with constant execution times at the
transmitter and receiver? two packets with exponentially distributed execution times at the
transmitter and receiver?

B. What is the mean packet queueing time for the above versus the total packet arrival rate?

C. Repeat all the above if the microprocessors can execute one million assembly language
instructions per second. What changes for ten million assembly language instructions per second?

7) A single processor can execute one hundred thousand assembly language instructions per second. We
wish to design an overload control for this processor that has the following design parameters:

• The mean loss must be one per cent or less of arriving jobs

• The mean overload control delay must be one hundred microseconds or less.

• The mean time the processor is elsewhere than handling input, i.e., executing work, cannot be greater
than one millisecond.

The arrivals statistics are measured and felt to be Poisson distributed. The number of instructions
executed in overload control input handling is felt to be constant and independent of the job. For each
of the cases below, how many assembly language instructions can be executed by the processor doing
overload control input handling?

A. A static priority arbitration scheme

B. A first in, first out buffer

C. A circular buffer

D. What changes if the processor can execute one million assembly language instructions per second?

8) A job consists of a mean number of Q tasks. The number of tasks per job is initially fixed at Q =3.
Each task requires one second to be executed on a single processor. Jobs arrive according to simple
Poisson statistics, with mean arrival rate λ. Plot the mean queueing time for a job versus mean arrival
rate for

A. Execution in order of arrival

B. Processor sharing

C. Downward migration priority arbitration, where initially the job receives up to one second of
processing time at the highest priority level and it either finishes or migrates to the next highest
priority level, until eventually it finishes.

D. Repeat all the above if the number of tasks per job is geometrically distributed with a mean of Q
tasks per job.

E. Repeat all the above if the number of tasks per job is bimodally distributed with three quarters of
the jobs consisting of one task and the remainder consisting of a fixed number of tasks such that
the total mean number of tasks per job is fixed at Q =3.

F. Repeat all the above if each task requires one tenth of a second to be executed on a single
processor.
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